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Summary

Infroduction

With most diets, microbial cells ire the major contributor to total non-ammonia nitrogen
flowing to the intestines, and the latter is the primary determinant of wool growth rate.
Consequently, at constant intake, variation in the yield of microbial cells, more specifically
microbial protein, from the rumen riay account for a proportion of the between-sheep variation
in wool growth rate. Recently, urinary excretion of purine derivatives has been suggested as a
non-invasive method for estimating the vyield of microbial protein from the rumen. However,
some doubts exist as to the validity of this technique. Thus the studies reported in Chapters 8
and 9 examined the metabolism of ¢ llantoin, the major purine derivative in the urine of sheep, in
an attempt to determine if the uriiary excretion of purine derivatives is a valid method for
estimating the yield of microbial protein from the rumen.

In the studies reported ir Chapters 10 and 11, the urinary excretion of purine
derivatives was used to examine whether divergent selection for clean fleece weight had
produced animals that differed in tt e yield of microbial protein from the rumen. In addition,
the importance of yield of microbial nitrogen from the rumen and the efficiency of utilisation of
absorbed amino acids, in accountiny: for differences between the selection lines in wool growth
rate was calculated.

Finally, the suitability of lithium chloride as a marker of supplement intake in grazing
sheep was assessed in the studies reported :n Chapter 12. The studies reported in Chapter 13
used lithium chloride as a marker o~ supplement intake to determine whether genetic variation
existed between fine-wool Merino bloodlines, grazing at pasture, in the response of wool

growth rate, average fibre diameter .ind live weight gain to increasing amino acid intake.

Absiracts

Chapter 8

Allantoin metabolism was studied in two rumen-cannulated sheep by means of a single
intravenous injection of [4,5-'*C] allantoin.  The decline in the specific radioactivity of
allantoin in plasma was best described by a double exponential function, indicating that in
sheep, allantoin moves between at least 2 kinetically distinct compartments.  Recovery of

"*C-allantoin in urine for the 12 h fo lowing tracer injection was about 80% of the “C-allantoin



XVviii

injected. Only negligible amounts of radioactivity entered saliva indicating that the transfer of
allantoin to the rumen via saliva was quantitatively unimportant. In support of this, the mass
of allantoin-C that was degraded ar d appeared in either blood or rumen HCO;™ was on average
less than 5% of the net flux of allantoin through the blood pool. This indicates that ruminal,
post ruminal and tissue associated degradation of allantoin to carbon dioxide in the sheep is
quantitatively unimportant. In lig1t of this, use of allantoin excretion in urine to estimate the
flow of microbial protein in rumen digesta will not have to be corrected for transfer to the gut

and subsequent degradation.
Chapter 9

The sensitivity of estimates of allartoin net flux to changes in allantoin supply was determined
on two rumen-cannulated sheep which were equipped with bladder catheters and received a
continuous intra-jugular infusion o} [4,5-'*C] allantoin for 17 h. Unlabelled allantoin (tracee)
was included in the infusate for th: final 7 h of the infusion. Estimates of allantoin net flux
derived from plasma and urine difered but these differences were largely removed during
infusion of the tracee. Transfer of allantoin-C to bicarbonate in blood or rumen fluid was
negligible and this was in agreement with the previous study reported in Chapter 8.  The
recovery of tracee which was taken to be the difference between the estimates of net flux prior
to and after infusion of tracee was on average 55% and 83% for estimates made in blood
plasma and urine respectively.  This disparity is of concern, and suggests that the use of
allantoin flux rates in blood to predict microbial yield from the rumen should be used with

caution.
Chapter 10

The physiological consequences of divergent selection for (fleece plus; F,) or against (fleece
minus; F,) clean fleece weight were measured in 6 year old Merino ewes from the Trangie
fleece selection lines when fed a 1oughage diet supplemented with differing levels of urea.
Ewes from the F, flock had a 15% jreater voluntary intake (adjusted for metabolic weight) but
there were no differences between the selection lines in the apparent digestibility of DM in the
whole-tract. There were no differences between the selection lines in the concentrations of
rumen ammonia or total volatile fat.y acids, the ratio of propionate:(acetate + butyrate) or pH
in rumen fluid taken 4 h after feeding. Urinary excretion of purine derivatives and the amount

of purines excreted per unit dry matter intake (DMI) was greater in ewes from the F, flock.
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This suggests that the yield of microbial nitrogen from the rumen and the yield of microbial
nitrogen per unit DMI was greater in these ewes.

The body composition of a representative sample of ewes from both flocks was
estimated at the start and conclusio of the trial (117 d) by computer aided tomography. Ewes
in the F, group had a proportionall/ leaner body and also a greater mass of viscera (F, 6.5, Fn
5.1 kg). In F, ewes fat represented over 30% of the wool and digesta-free body mass

compared to less than 20% for ewe ; from the F, flock.
Chapter 11

Voluntary feed intake, apparent digestibility of DM in the whole-tract (ADMD), urinary
excretion of purine derivatives and nitrogen retention were measured in 6 year old Merino
ewes from the Trangie fleece plus ( =,) and minus (F,,) selection lines when fed, either once per
day or hourly, an oaten chaff diet ‘vith 1% urea. When fed once per day, ewes from the F,
flock consumed 20% more feed by 4 h after feeding but differences between the selection lines
for all other variables were not statistically significant. When the feeding regime was changed
to hourly, ewes from the F;, flock Fad a greater ADMD but the yield of microbial nitrogen (as
estimated from urinary purine excretion) per unit dry matter and nitrogen intake was greater in
ewes from the F, flock.

When the data from the two feeding regimes were combined, a significant selection line
x feeding regime interaction was re:orded for ADMD and digestible dry matter intake. Ewes
from the F, flock tended to have a greater yield of microbial nitrogen from the rumen but the

selection line differences were not statistically significant.
Chapter 12

The suitability of lithium chloride as a marker for supplement intake was examined in grazing
sheep. Eight merino weaners (8 n onths of age), grazing improved pasture, were individually
fed cottonseed meal pellets sprayel with Jithium chloride and plasma lithium concentrations
were then measured over the next 2.9 h. The results of this study showed that after ingestion
of lithium, plasma lithium conceitrations rose to reach a maximum 4 h later. The
concentration of lithium in plasma remained substantially constant between 4 and 14 h after
lithium ingestion and thereafter de:lined slowly. The use of plasma lithium concentration
(scaled for live weight) 4-9h after lithium ingestion facilitated accurate prediction of

supplement intake.



In a following experiment, 732 merino weaners (8 months of age) were split into two
groups by randomised stratificatior . These groups were fed a cottonseed meal supplement at
either 55 or 110 g/hd/d.  In order to estimate individual supplement intake over a 62 day
period, the supplement was spraved with lithium chloride on three occasions at monthly
intervals. The results of the three estimates of intake showed that within mobs (n = 366/mob)
large variation in supplement intake existed.

Both the heritability (0.17) and repeatability (0.48) of supplement intake as estimated

from paternal half-sib analysis were significantly different from zero.

Chapter 13

Greasy wool growth, average fibre diameter and live weight and the response of these traits to
increasing amino acid intake were mneasured in a group of 1100 Merino weaners (8 months of
age) comprising 9 fine-wool and 2 medium-wool bloodlines. Amino acid intake was increased
by supplementation with a cottonsced meal pellet. Wool growth, average fibre diameter and
live weight gain (fleece-free) incrcased linearly with estimated pellet intake. A significant
bloodline x pellet intake interaction occurred for both wool growth and live weight gain
(fleece-free). These interactions suggest that the bloodlines differed in the efficiency with

which cottonseed meal was metabclised to either wool or tissue.





