Evaluating irrigators responses to declining groundwater supplies: a case study

Graham A. Harris

Department of Agricultural & Resource Economics
University of New England

1996
Declaration

I certify that the substance of this dissertation has not already been submitted for any degree and is not currently submitted for any other degree.

I certify that, to the best of my knowledge, any help received in preparing this dissertation, and all sources used, have been acknowledged.
Abstract

This study examines the profitability of adopting subsurface drip irrigation and alternative activities such as horticultural crops and redclaw crayfish production by a case study irrigation farm experiencing declining groundwater supplies.

A multi-period linear programming model was developed to assess the profitability of these approaches. The model demonstrated that the use of subsurface drip irrigation and annual horticultural crops was a profitable response for the case study farm. It was also shown that a lucerne hay production activity was an integral part of the optimal farm plan across the range of groundwater supply situations examined. This is despite the high consumptive use of irrigation water by this activity.

This study provides an economic analysis of subsurface drip irrigation and redclaw crayfish production - both recent developments in Australian agriculture. In addition, economic analysis of a range of traditional and alternative field and horticultural crops for this location is provided.
Contents

Declaration ... ii
Abstract .. iii
List of Tables .. viii
List of Figures .. x
Acknowledgements xi

1. Introduction .. 1
 1.1 Background 1
 1.2 Research problem 1
 1.3 Study Objectives 3
 1.4 Hypotheses 4
 1.5 Study outline 5

2. Description of the study area 6
 2.1 The Callide Valley 6
 2.2 Resources 6
 2.2.1 Climate 6
 2.2.2 Water 8
 2.2.3 Soils 9
 2.3 Agricultural Development 9
 2.4 Irrigation Industry 10
 2.4.1 Historical 10
 2.4.2 The Groundwater Resource 12
 2.4.2.1 Supply 12
 2.4.2.2 Water Quality 13
 2.4.3 Management of Groundwater Resource ... 15
 2.4.3.1 Resource Assessment 16
 2.4.3.2 Structural Works 16
 2.4.3.3 Administrative controls 18
 2.4.3.4 Landholder actions 19
 2.4.4 Irrigated agricultural systems 19

3. Farm Planning - Theory and Practice 23
 3.1 Introduction 23
 3.2 Farm planning 23
 3.3 Farm management economics 24
 3.4 Farm planning models 29
 3.4.1 Simulation models 30
 3.4.2 Budgeting models 31
3.4.3 Linear Programming 32
3.5 Long term planning 35
 3.5.1 Development planning 35
 3.5.2 Multi-period Linear Programming 36
3.6 The application of Linear Programming models 39

4. Methodology 43
 4.1 Introduction 43
 4.2 Case study farm business 44
 4.2.1 Land 44
 4.2.2 Water and irrigation 44
 4.2.3 Activity pattern 44
 4.2.4 Labour 45
 4.2.5 Overhead costs 45
 4.2.6 Capital 45
 4.3 Data sources 46
 4.3.1 Crops 46
 4.3.2 SDI 46
 4.3.3 Redclaw 46
 4.4 Data analysis 47
 4.4.1 Resource use 47
 4.4.2 Development economics 48
 4.4.2.1 Capital Investment 48
 4.4.2.2 SDI 48
 4.4.2.3 Table Grapes 49
 4.4.2.4 Redclaw 49
 4.4.3 Activity analysis 50
 4.4.3.1 Activity options 50
 4.4.3.2 Assumptions 51
 4.4.3.3 Gross margins 54
 4.5 Summary 61

5. Static LP Model 63
 5.1 Introduction 63
 5.2 Specification 63
 5.2.1 The objective function 63
 5.2.2 Activities 64
 5.2.3 Constraints 64
 5.2.4 The LP Matrix 68
 5.3 Implementation 69
 5.4 Solution 69
 5.4.1 Initial Optimal Plan 69
 5.4.2 Shadow prices 71
 5.5 Sensitivity analysis 73
 5.5.1 Announced Water Allocation 73
 5.5.2 Maximum lucerne area 76
| 5.5.3 Maximum annual horticultural area | 78 |
| 5.5.4 Casual labour | 80 |
| 5.6 Summary | 82 |

6. MLP Model

6.1 Introduction	84
6.2 Model Specification	84
6.2.1 The objective function	84
6.2.2 Activities	85
6.2.3 Constraints	88
6.2.4 The LP Matrix	91
6.3 Solution	91
6.4 Sensitivity analysis	95
6.4.1 Announced Water Allocation	95
6.4.2 Availability of borrowed capital	98
6.4.3 Starting capital	100
6.4.4 Casual labour	103
6.5 Summary	105

7. Discussion

7.1 Introduction	107
7.2 Static optimal farm plan	107
7.2.1 Activity mix	107
7.2.2 Announced water allocations	108
7.2.3 Activity level constraints	111
7.2.3.1 Maximum lucerne area	111
7.2.3.2 Maximum annual horticultural area	112
7.2.3.3 Casual labour	113
7.3 MLP optimal farm plan	113
7.3.1 Activity mix and investment decisions	113
7.3.2 Announced water allocations	114
7.3.3 Capital considerations	115
7.3.4 Casual labour availability	116
7.4 Adoption of drip irrigation technology	117
7.5 Summary	119

8. Summary and Conclusions

8.1 Introduction	120
8.2 Hypotheses	120
8.2.1 Hypothesis 1	120
8.2.2 Hypothesis 2	120
8.2.3 Hypothesis 3	121
8.2.4 Hypothesis 4	122
8.3 Major findings	122
8.4 Study limitations	123
List of Tables

Table 2.1: Announced allocations for Callide Valley groundwater sections 1990-91 to 1996-97 20
Table 2.2: Management strategies to improve irrigation efficiency 21
Table 3.1: The linear programming tableau 33
Table 4.1: Overhead costs for case study farm 45
Table 4.2: Equipment requirements and cost for alternative activities 48
Table 4.3: Existing and potential activities for case study farm business 51
Table 4.4: Yield assumptions used in drawing up activity gross margins 52
Table 4.5: Price assumptions used in drawing up activity gross margins 53
Table 4.6: Water use (ML/ha) assumptions used in drawing up activity gross margins 54
Table 4.7: Traditional field crop activity gross margin comparison 55
Table 4.8: SDI field crop activity gross margin comparison 56
Table 4.9: Traditional horticultural crop activity gross margin comparison 58
Table 4.10: SDI horticultural crop activity gross margin comparison 59
Table 4.11: Cattle activity gross margins 60
Table 4.12: Redclaw crayfish activity gross margins 61
Table 5.1: Activity list for LP mode 65
Table 5.2: Constraint list for LP model 67
Table 5.3: Comparison of optimal farm plans pre-intensification and post-intensification 70
Table 5.4: Shadow prices for selected constraints within the initial optimal farm plan 72
Table 5.5: The impact of changes in the announced water allocation upon the optimal farm plan 74
Table 5.6: The impact of changes in the announced water allocation upon the optimal farm plan with all activities possible and no limit on lucerne 77
Table 5.7: The impact on the optimal farm plan of relaxing the constraint on the maximum area of annual horticultural crops 79
Table 5.8: The impact on the optimal farm plan of relaxing the hired labour constraint 81
Table 6.1: Activity list for MLP model 86
Table 6.2: Details of investment activities incorporated in the MLP 87
Table 6.3: Constraint list for MLP model 89
Table 6.4: The original optimal farm plan 93
Table 6.5: The impact of changes in the announced water allocation upon the optimal farm plan 97
Table 6.6: The impact of changes in the limit on borrowing in Year 1 upon the optimal farm plan 99
Table 6.7: The impact of changes in available investment capital in Year 1 upon the optimal farm plan 101
Table 6.8: The impact of changes in the availability of casual labour upon the optimal farm plan 104
Table 7.1 Elasticities of selected variables with respect to the water resourcea 114
List of Figures

Figure 2.1: Five year moving average annual rainfall for Biloela 7
Figure 2.2: Monthly temperature data for Biloela 7
Figure 2.3: Variability in monthly Class A Pan evaporation for Biloela 8
Figure 2.4: Irrigated cropping areas in the Callide Valley 1946-47 to 1994-95 11
Figure 2.5: Distribution of nominal allocations within the Callide Valley 12
Figure 2.6: Water levels for Bore 13030084 (Section 10) for 1963-64 to 1994-95 14
Figure 2.7: Water levels for Bore 13030089 (Section 8) for 1963-64 to 1995-96 14
Figure 3.1: Production constraints for pumpkin and tomato production 27
Figure 3.2: The production possibility boundary 28
Figure 3.3: Maximising total gross margin 29
Figure 6.1: Diagrammatic layout of overall model 92
Figure 6.2: The impact of differing water availability pre- and post- intensification upon cumulative operating profit 96
Figure 6.3: The impact of changes in the borrowing limit upon cumulative operating profit 100
Figure 6.4: The impact of initial investment capital upon cumulative operating profit 102
Figure 7.1: Comparison of water shadow prices for pre- and post-intensification (bars), and existing groundwater charges (lines) 109
Figure 7.2: The impact of removing the lucerne area restriction upon the lucerne area (bars) and profitability (lines) of the pre- and post-intensification optimal farm plan, as affected by water 112
Acknowledgements

I wish to thank the following people for their assistance in the conduct of this research:

- Trevor and Lyn Stringer, 'Vorelle', Biloela who own and operate the farming business which is the subject of this study. Their innovation in dealing with the declining groundwater supplies of the Callide Valley and willing assistance during model development was invaluable.

- Paul and Leah Van Itallie, Central Queensland Crayfish, Biloela who gave freely of their time and knowledge about the fledgling redclaw crayfish industry.

- Cameron Milne, Rockhampton who provided cost detail for his recent redclaw crayfish development.

- Steve Pratt and Don Milne, Agr cultural Requirements, Biloela who provided detail on irrigation systems and their associated costs.

- Rob Badman, Primac, Biloela who provided the cost detail for inputs associated with the alternative activities investigated in this study.

- Ian Baker and Ashley Bleakley, Department of Natural Resources (formerly the Queensland Water Resources Commission) for detail on the management of the groundwater resource in the Callide Valley.

I wish to thank my supervisor Dr Oscar Cacho for his support and suggestions during the course of the study and the preparation of this dissertation. His assistance in model development is gratefully acknowledged.

The assistance of my employer, the Department of Primary Industries and its team of dedicated staff, is duly acknowledged and appreciated.

Finally, it would not have been possible to undertake the Master of Economics degree, and this dissertation, without the support and understanding of my immediate family - my wife Julie, and children Nathaniel, Jessica and Luke (our special boy), and my father-in-law, Arthur.