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3. Farm Planning - Theory and Practice

3.1 Introduction

This chapter examines the importar ce of planning in farm management. It relates this
to the goals of the farm manager, o~ which profit is assumed to be a primary one. The
theory underlying several of the aviilable farm planning models are reviewed. Linear
and multiperiod linear programmin;; models receive particular attention as they are the
basis of this study. A brief review of their use in a planning context at the farm level is

provided.

3.2 Farm planning

The farm business has human, technical, economic and financial components. It is
subject to seasonal, market and institutional influences which involve risk and
uncertainties (Makeham and Malcolm 1993, p. 8. When considering change the farm
manager must consider the unique combination of land, labour and capital available to
the farm business, together with the goals, interests, skills and resources of the farm

family.

A key consideration are the goals cf the farm business and individual members of the
farm management team. Patrick aid Eisgruber (1986, p. 492) define an individual’s
goal as an objective or condition, not yet reached, that provides direction to their
motivation and hence behaviour. They argue that individuals endeavour to attain a
number of goals simultaneously, and that these goals may be competitive,
complimentary, or independent. Tte goals of the farm firm are influenced by those of
the individuals within the farm mar agement team, those of other members of the farm
family, those common to all familics, and those unique to farm families. The overall
satisfaction, or utility, that each meriber of the management team achieves is a function
of the degree to which his/her goa s are met. This will depend upon the quantity of

resources purchased, the nature of resources and the way in which they are allocated
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amongst activities (Rae 1977, p. 8). The overall level of utility (U;) for a given resource
allocation by the jth individual is given by:

U,=f(u,uy,....u,) 3.1
where u; , i = 1,2,...,n, each refers to the util:ty attached to a specific goal.
The utility function is a personal oie. It can be one-dimensional (dependent upon the
achievement of a single goal such ¢s profit maximisation) or multi-dimensional (where
two or more goals are involved). ""he multi-dimensional nature of goals held by farm

business managers was demonstrate 1 by Patrick, Blake and Whitaker (1983, p. 317-9).

Goals form a multivariate objective function against which the expected outcomes of
alternative farm plans are evaluated In selecting a farm plan the farm manager chooses
the farm plan that attains all the yroals with an adequate level of satisfaction. This
constrains the possibility of maxiriisation of a single goal at the expense of others
(Patrick and Eisgruber 1986, p. 492 . Imperfect knowledge of the future forces the team
to allow for uncertainty in commit ing resources to a particular farm plan comprising

activity combinations and inputs.

Decision making is a dynamic process. The key elements of the planning problem have
been described by Dent et al. (1986, p. 2) as:

1. a set of goals;

2. arange of possible enterp-ises or activities; and

3. aset of limited resource s 1pplies and other constraints.
They define the problem as hov’ ‘within an uncertain biological and economic
environment, to allocate the availab e resources to the various activities in order to best

achieve the farmer’s objectives’.

3.3 Farm management economics

Production economics theory under ies the possible approaches to increasing operating
profit available to the farm manager through farm management planning. The theory is
based upon the existence of production functions relating the production of a

commodity to the use of various resources or inputs.
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These resources can be variable or fixed, depending upon the time frame being
considered. In the short term mary factors can be considered as fixed, and the costs
associated with them are independent of output. In the longer term however, all factors
can be considered variable. The production function is represented by:
Y=f(X.X,,... X X, - X,) (3.2)

where Y is output, X; to X; are variuble resources and Xy, to X,, are fixed resources.

To determine the most profitable le /el of use of resources in the production of a single
product we introduce prices (P;) ancl rewrite the operating profit (OP) as::

OP = P,Y —[Py X +..:-P, X, 1-[P X, +.+P X,] (3.3)

For a range of resource combinatio1s it is possible to determine the level of profit from
equation (3.3). Total revenue (TR) will vary from one resource combination to another
as output varies. However, total fi> ed costs remain constant for all combinations of the
variable resources. Thus the profit cquation can be simplified to exclude fixed costs:
[T=TR-TVC
=PY [P, X, + P, X, h.+P X,] (3.4)

where TVC is total variable costs.

The value of IT in the profit equatio1 (3.4) will exceed the operating profit by an amount
equal to total fixed costs. However, the combination of resources that yield the greatest
value of I is equivalent to choosin; that which maximises operating profit, because the
optimal input mix (where Marginal Value Products = Marginal Factor Costs for each

input) is independent of fixed costs.

The majority of farm operations have many different possible commodities that can be
produced from the available resources. Kae (1977, p. 73) considers each available
commodities as having a distinct production function. In representing the management
problem he assumes there are a to al of m commodities, Y; , j = 1,2,...,m, that can be
produced through the use of n procuction resources, X;, i = 1,2,....,n , according to the
production relationships:

Y, =f(X,,X;5.....X,) (3.5)

Y, =f,(X,.X,,....X,)
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Y =f.(X,,X,,....X,)
This set of possible production finctions assumes that any commodity Y; can be
produced independently of any otier. The operating profit equation (3.3) for this
situation can be written as:

OP=PY,+PY,+..+2Y, ~P X, ~P, X,~.~P, X

n n

or

OP=2 R Y - P X, (3.6)

In achieving the stated objective of >rofit maximisation, the farm manager must allocate
resources amongst possible commodities. Resources used in commodity production can
be broadly classified as unlimited or limited according to Rae (1977, p. 76). An
unlimited resource is one where the manager has both the time and money to purchase
sufficient quantity to allow its usc at the optimum level in the production of each
commodity requiring its use. In this siruation, the level of resource used in the
production of a commodity is the level which equates its price to the value of its

marginal product.

With a limited resource however, the optimum amount may not be available. Possible

reasons for this include:

o the manager may be unable to parchase sufficient amount of the resource to enable
its use at the optimal level (as a result of limited capital for example).

e the resource may be a fixed on¢ such as land or an irrigation system. Waithin the
production time period of the commodity in question, the manager may not have the

time or capital available to expand the level of resource to the optimum.

The combination of products that cin be produced within a given set of constraints can
be represented by production poss bility boundaries. Rae (1994, p. 65) provides an
example of a production possibility boundary for the production of tomatoes and
pumpkins. In this example there arz fourteen identified constraints - land (LD), labour

(LB) and tractor services (TS) within each of four quarters (Q1, Q2, Q3 and Q4), and



crop rotational constraints (R1 and R2). When presented graphically in product-product
space it can be seen that three of the constraints dominate all others (Figure 3.1) - labour
required in Q2 and Q4, and available land in Q4. These constraints lie closest to the
origin than all other constraints. They limit the possible production for pumpkins and
tomatoes. The levels of redundant resources are in excess of those required by these

activities.

Figure 3.1: Production constraints for pumpkin and tomato production
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The three non-dominated constraints are redrawn in Figure 3.2. The line ABCD is the
production-possibility boundary which indicates the combinations of pumpkin and
tomato production activities which are physically possible as they do not violate the
constraints. All points to the left of the production-possibility boundary (shown by the
shaded portion of the figure) are feasible activity combinations. All points not on the
boundary are technically inefficient, as it is possible to expand the level of one of the
activities without decreasing the level of the other. For example, at point E 1t is possible

to expand either or both areas of crops by moving to a point between B and C.
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Figure 3.2: The production possibility boundary
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Although any combination on the production possibility boundary is technical efficient
only one is the best in the sense of maximising profit (given the existence of the
specified constraints). The combination of activities giving the highest revenue 1s found
through the use of isorevenue lines. Total revenue for any combination of two products
can be represented by the equation:

TR=P Y +PY, 3.7
where Py, and Py, represent the price per unit for each product, and Y, and Y5 represent
the amount produced of each product from the specified activity combination used. For
a given total revenue (TR*) equation (3.7) can be rearranged to give an isorevenue line:

TR*=P Y+ P T,

B Y =TR*-R Y,

Y, =TR*/F, —P},:/P),' g (3.8)
With output prices held constant. there is a family of isorevenue lines for each revenue
level, all with a slope of -Py>/Py; . Profits will be greatest with the output combination
returning the maximum total revenue. This point occurs where the isorevenue line is a

tangent to the production possibility boundary. At this point the slope of the production

possibility boundary (the marginal rate of product substitution) and the isorevenue line
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are equal. Figure 3.3 uses this approach to identify the most profitable combination of

pumpkin and tomato areas as point C (Rae 1994, p. 73).

Figure 3.3: Maximising total gross margin
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In summary, production economics provides the theoretical base upon which the goal of
profit maximisation can be attained by the farm manager. It shows that for each
commodity that a farm can produce, there are optimal allocations of inputs that
maximise profit. Similarly. within existing resource constraints it is possible to allocate
resources to the production of alternative commodities with the aim of profit

maximisation.

3.4 Farm planning models

The planning process is often an intuitive one where the farm manager initially makes
assessments, weighs alternatives and then decides upon a course of action (Dent et al.
1986, p. 8). When more complex decisions are needed more formal planning
procedures are required.  These procedures can range from pencil-and-paper
calculations through to the use of computers. Whatever approach is used requires the
farm manager to develop a model of the farm business and use it to assess the course of

action to follow and its likely outcome.
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A model can be used to aid farm planning and decision making. By definition, a model
is an abstraction and simplification of the real world. For it to be relevant for decision
making, it must ‘strive to portray re ilistically those features or characteristics of the real
world which are relevant to the part cular problem or it will fail to provide a sound basis
for prediction and decision making’ (Pearse 1973, p. 61). There are many types of
models that can be used, ranging from informal ‘mental’ models to symbolic algebraic
models (Dent et al. (1986, p. 9-10) The ciscussion that follows concentrates on three

types of symbolic models - simulation, budgeting and programming models.

3.4.1 Simulation models

Simulation model development and use has been reviewed by Anderson (1974). He
considered them to be the ‘the 1nost feasible, most workable and probably most
potentially useful types of model’ v/ithin the symbolic group of farm planning models.
This view was based upon the belief that they were the most flexible and least confined
of the symbolic models, readily allowing for the inclusion of stochastic variables not

possible by other models.

Significant problems with simulation models identified by Anderson (1974, p. 33-4)

were:

e the inclusion of components f the model where there is little data or logic
supporting their use;

o the need for an efficient balance of the simulator’s time between the various
components of the model. The model is only as good as the poorest component
within the model;

e the high cost of simulation; and

e the failure to include the real-world decision maker in the model development
limiting its usefulness when finally developed.

Anderson is quick to point out, however, that these problems are not necessarily unique

to simulation models, they can exist in all models developed to aid farm planning and

decision making.
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3.4.2 Budgeting models

Makeham and Malcolm (1993, 1. 367) support the use of traditional budgeting
techniques as the core of farm ranagement analysis and decision making. These
approaches are more likely to focus upon the key decisions that farm managers need to
make in contrast to more elaborate quantitative approaches, such as systems simulation,

mathematical programming and expzcted utility analysis

The manager must consider the technical, economic, financial, institutional and human
factors that impinge on a particular lecisior. By its very nature the rigorous and logical
basis of quantitative modelling ofter: ignores the importance of the farm decision makers
input into the analysis. This further prevents its use by farm managers. In contrast the
traditional budgeting models which involve the manager in their development are more

likely to be accepted as a useful dec sion tool.

There have been three primary budgeting models recommended to farm managers to aid
in decision making - gross margin aaalysis, partial budgeting and whole farm budgeting.
The choice of budget used is dependent upon the nature of the decision problem under

consideration.

There are several deficiencies in eich of the budgeting approaches to farm planning.

For gross margin analysis these include:

o the exclusion of fixed costs from the analysis limits activity comparison to those
which can be undertaken within the existing resource structure of the farm.

e where activities exhibit either competitive, complementary or supplementary
relationships, this analysis is inacequate.

e the linearity assumption that 'mplies constant extra product and returns with
increasing scale of an activity may be unrealistic, as there may be diminishing returns

at the margin.

The chief limitations of partial bud zets identified by Makeham and Malcolm (1993, p.
314-15) are:
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e being partial in nature, they caniot fully represent the complex interactions that can
exist between activities and resotrces of the farm.

e they only indicate the net gain or loss of proposed changes. They do not show if a
given change is the best alternitive, as they do not identify the return on all the

capital involved in the activity

The obvious limitation of whole tarm budgeting is the amount of time involved in
drawing up of the budgets for all possible alternative plans. This can limit the number
of alternative plans evaluated. Without comparing whole-farm budgets for alternative

plans this process cannot be considered a planning tool (Dent et al. 1986, p. 11).

3.4.3 Linear Programming

Linear programming (LP) was ceveloped during the 1940s for use in military
operations. Subsequently applications for use in managerial decision analysis in
business were developed. The techiique is suited to a wide range of problems with the
following features:

1. arange of possible activities from which the manager can choose;

2. a number of constraints that limit free selection from the available activities; and

3. the choice of activity mix is related to some measure of the managers utility function

(for example, profit) for each act vity (Dent et al. 1986, p. 33).

The LP model can be written as:

maximise Z, = ECj X, (3.9)
j=1
subject to
Ya,X,<b,, all. = 1tom (3.10)
j=1
X, 20, all, =1ton (3.11)
where
Z,= the objective function, such as total gross margin
X;= the level of the jth farm activity, such as the area of a crop grown

cj=  the expected gross margin of a unit of the jth activity (e.g. dollars per hectare)
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a; = the quantity of the ith resour:e (e.g. hectares of land or hours of labour) required

to produce one unit of the jtt activity

b= the amount of the ith resource available (e.g. hectares of land or hours of labour)
n=  the number of possible activ ties
.m = the number of resources

This problem is referred to as the pr mal LP problem.

This model aims to identify the farin plan (defined by the set of activity levels Xj, j = 1
to n) that has the largest possible gross margin Z, which does not violate any of the fixed
resource constraints (equation (3.1(1)) or involve any negative activity levels (equation
(3.11)) (Hazell and Norton 1986, p. 11). LP can also be used in the minimisation of an
objective function. The LP mod:l can be represented as a matrix of coefficients

organised into a ‘tableau’. The tablcau for this problem is shown in Table 3.1

Table 3.1: The linear programmir g tableau

Columns
Row name X, X5 X, RHS
Objective function cy c Cn Maximise
Resource constraints:
1 a an dn <b
2 az; an don <b;
m Ay an Amn <b,

Source: Hazell, P.B.R. and Norton, R.D. 1¢ 86

Limitations and criticisms of the iase of LP in addressing the decision problem of

resource allocation include:

e the lack of adequate data on nput-output coefficients, and on price and yield
expectations.

o the restrictive nature of the lincarity assumption which excludes the existence of
diminishing marginal returns in f irm production

o the high cost of linear planning applications and availability of adequate computing

facilities
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» the difficulty of extending the ap>olicability of a farm plan from a case study farm to a

wider group owing to resource he terogeneity (Dent et al. 1986, p. 198)

The first of these criticisms is equally applicable to all planning techniques except that
data demands may be greater beciuse a more comprehensive analysis is performed
(Beneke and Winterboer 1973, p. 8; Dent et al. 1986, p. 197). Imaginative specification
of the model can be used to over:ome the problem of linearity as demonstrated by
Pomerada (1978) in formulating irrigation production functions using a modified
separable LP model. The increasec. availability of computer hardware and software in
recent years has overcome the protlem of cost and availability of adequate computing

facilities and software.

The use of LP in a decision-suppor. role with farmer groups has resulted in benefits to
farmers in their decision making processes and for modellers in respecification of the
model, as demonstrated by use of th: Purdue Top Farmer Cropping Model “B” (McCarl,
Candler, Doster and Robbins 1977) This improved the applicability of LP at the farm

level and its cost effectiveness.

There have been several modifications made to the traditional LP model to make it more

realistic. The need to allow for real world dynamics, uncertainty, variability and the

multiplicity of decision-makers objcctives have led to the development of models such

as:

e parametric LP (variable price jrogramming and variable resource programming
discussed by Throsby (1962, 120-1));

e multiperiod LP (MLP);

e stochastic LP (Separable LP, Maiginal Risk Constrained LP, and MOTAD); and

e multiple-objective LP (Goal Programming).

Makeham and Malcolm (1993, p. 3:39) consider these approaches to be ‘not operational

or economical enough to be tools for farm management’. The MLP model, however,

does have application to the problein being investigated here as investment in longterm

activities such as grapes and redclav’ production need to be considered in developing an

optimal farm plan.
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3.5 Long term planning

3.5.1 Development planning

By definition, the planning proces; is a longterm one. Decisions made in one time
period are often the result of past dicisions and experiences, together with expectations
about future farm performance. One of the differences between the choice of alternative
farm plans over time and that in the short-term is the greater flexibility in available farm

resources. They can no longer be ccnsidered fixed.

In long-term planning the problem becomes one of choosing between alternative plans
which will maximise the utility function of the management team over the planning
period. Dent et al. (1986, p. 171) describe the problem as being one of development
planning. Reinvestment which leads to modification of the resource structure of the
farm depends upon surplus cash flow to the business from previous years following
withdrawls for consumption expenditure and taxation. This surplus cash can be used to
modify the resource base and act vity mix. Choices have to be made as to what
investments are made and at wha time, consistent with the long-term goals of the
farming business. Consideration 1ilso needs to be given to the acceptable level of

financial borrowings in order to imrlement long-term plans.

As with short-term planning, there are a nurnber of possible modelling approaches to aid
farm managers in the longterm investment decision. Traditionally these approaches
have focussed upon the discounted cash flow budgeting (DCF) techniques of net present
value (NPV), the internal rate o’ returrr (IRR) and benefit-cost ratios (B:C) for

evaluating alternative investment projects (Makeham and Malcolm 1993, p. 316-22).

These investment choice criteria should be used with caution as they are only as
accurate as the information used to develop the project cash flows in the first place. The
risks associated with the key variatles used in drawing up the project cash flows need
also to be considered. Stamp and ’eacock (1972) recommend the use of Monte Carlo
simulation of these key variables to zether with decision tree analysis to assist managers

choose between alternative investment projects.
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3.5.2 Multiperiod Linear Prograniming

Rae (1970, p. 39) considers traditional investment decision tools based on DCF as

inapplicable when choosing between possible investment projects if they:

e are interdependent so that conplementary and competitive relationships exist
between them;

e complement each other with respact to cash supplies;

e have multiple uses.

MLP can be used to overcome thes: problems. The use of MLP to develop an optimal
farm plan over time is more complex than that for static LP. In the static LP model, the
plan with the highest gross margin tefore allowance for fixed costs such as consumption
expenditure, debt servicing and tax.tion is generally the optimal one (Dent et al. 1986,
p- 172). As aresult fixed costs are generallv ignored in model development. With long-
term planning these costs must be ncluded as they affect the cash flows from year to
year and hence the opportunity to ex pand the resource base. MLP models must:

e include inventories of materials :nd morey to be transferred from one time period to

the next;
e allow for purchase of capital iten s and short-term resources; and

e account for income tax, debt servicing ard consumption expenditure.

The MLP model can be written as:

n n n
maximise Z = ZcﬂXﬂ +)c,X ;2+...+2Cﬂ.Xﬂ (3.12)
j=1 =1 j=1
subject to
n
>a,X, <b,, i=k+l k+2,...m
j=1 ‘
n n
2apX+anX, <b,
j=1 j=1

n n n
Zan;l + EaijTXj2+"'+,LaijTXjT <b,
j=1 j=1 i=1

X, >0, j=12, ..., n

j
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t=1,2,...,T
where
= the objective function
X;; = the level at which activity X; is initiated in period ¢
ciy= the forecast gross margin per unit of activity X; initiated in period ¢
aj; = the quantity of the ith resouice required to produce one unit of the activity X; in
period ¢
b*i,z the amount of the ith resource available in period ¢
n = the number of possible activ ties
m = the number of resources

The objective function (3.12) shows that maximisation is to be applied to the present
value of gross margins for each activity summed over the planning period. Restraints
are specified in each time period. 'The resources available in any time period, must be
allocated to activities initiated within that period, and those initiated in any prior time

period.

The objective function for a MLF model can be specified in many different ways.
Examples reported by Rae (1970, p. 39) include:
e maximising the present value of future income over some planning period.
e maximising income at the end o " the planning period (and including a bank activity

which reinvests surplus cash throaghout the life of the project).
e maximising the net worth of the tarm business over the planning period.
He proposes that multi-dimension:l objectives be included in programming models
based upon the utility function reprzsented in (3.13). This utility function has a linear
combination of appropriately-weighted objectives and those that must be satisfied in all
solutions:

U-=f(G,,...o0G,|IL,... L) (3.13)

where
o ...0, are weights applied to the odjectives Gy ...G,

L, ...L, are a compulsory set of objcctives

Pearse (1973 p. 61) listed the following features necessary for an ideal MLP model:
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1. sources of external finance should be made available, used and secured under
realistic conditions
2. the time of committing funds t> a secondary development expenditure should be
flexible
3. provision must be made for the following demands upon income:
e variable and fixed farm costs
e minimum family consum >tion expenditure
® income tax payments
e principal repayments
e personal requirements for savings: and
e capital expenditure.
4. the risk associated with alternatiy e plans must be incorporated within the model, or at
least evaluated.
Practical considerations of matrix size may however limit the development of such an

ideal MLP model for all investment probleras.

There are a number of reported difficulties in the literature in relation to the

specification and use of MLP modzls. The first of these relates to difficulties in the

prediction of activity performance 'n the future. Two causes for this are suggested by

Dent et al. (1986, p. 189):

e the use of performance figures ‘Ttom existing activities to estimate those for future
activities operating at a different scale; and

o future technological advances an1 changing economic conditions affecting yields and
prices for products and resources

This problem is not unique to MLP 1inalysis; it occurs with all planning procedures.

Secondly, the size of the MLP tabl:au is dependent upon the number of activities and
constraints considered, and the planning horizon adopted. The length of the planning
horizon is important as each additicnal year adds substantially to the final tableau. It is
possible for the tableau to become¢ unmanageable because of its size. The time for

development also increases. This increases the likelihood of problems such as
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infeasibility, unboundedness and cegeneracy, often as a result of simple errors of

omission or inconsistencies within tie MLP tableau (Dent et al. 1986, p. 191).

The problem of large matrix size and available computing facilities was raised as an
issue with MLP analysis by Gunn and Hardaker (1967, p. 277). They also discussed the
problem of non-linearity in a long-tzrm planning context. It was felt both these factors
limited the usefulness of MLP in actually solving long-term planning problems. More
recently, Makeham and Malcolm (1993, p. 359), while acknowledging that MLP results
in better decisions about the first period of” a plan (compared with static LP analysis),
they consider the marginal gain to ompare unfavourably with the marginal cost of its

use.

3.6 The application of Lin2ar Programming models

The literature contains many examples of farm level LP models used to determine
optimum activity mixes and evalua e alternative farming systems. These include work
by Musgrave and Bird (1966); Ric<ards and McConnell (1967); Powell and Hardaker
(1968) and Wrigley and Sturgess (1969) among others. These studies used single year
multi-period models, containing transfer activities designed to shift resources between
different time periods within the same yeer. They used a “hypothetical” or *typical”
farm as the basis of the model. Several different approaches have been used in
specifying the input-output coefficients of a “typical” or “hypothetical” farm:

e data from published surveys (Musgrave and Bird 1966)

e use of actual data from a case stuly farm (Rickards and McConnell 1967)

e normalisation of data from an actual farm (Powell and Hardaker 1968)

o field studies of farms within a study area (Wrigley and Sturgess 1969)

In the Powell and Hardaker (1968) study the model developed was further modified
following discussions with farmers within the study area. For any model to be relevant
at a farm level, the input of the farn manager is important. This has been demonstrated
with the Purdue Top Farmer Cropping Model B in the United States (McCarl et al.
1977).



40

Linear programming has also been 1 sed in « number of economic and agronomic studies
related to irrigation. At a regiona level it has been used to determine the short run
responsiveness to changes in water price of the demand for irrigation water in the
Murrumbidgee Valley (Briggs Clak, Menz, Collins and Firth 1986) and the Murray
Valley (Chewings and Pascoe 1988:. At a farm level, LP has been used to optimise the
on-farm allocation of water acros: a large number of crops and paddocks within the
limits of available water and labour (Trava, Heermann and Labadie 1977). The
economic implications of allocating; irrigation amongst alternative crops with differing
response functions to irrigation water was examined by Pomereda (1978), who
approximated the response functior s by use of linear segments which enabled optimal

crop selection and irrigation strategizs to be determined.

Bryant, Buffier and Verdich (1984 used an LP model to evaluate the profitability of
planting decision rules by irrigator; experiencing a limited supply of irrigation water.
This study examined the impact of ¢ pplying a planting decision rule for cotton on a farm

with varying resource constraints over a 21 year period.

Poulter, Hall and Greer (1993) presented a bioeconomic model which used recursive
MLP to study representative farms within the West Berriquin Irrigation District. This
model examined the profitability of types of irrigated and non-irrigated farms over a 20
year period, allowing for the effect of increasing salinity and waterlogging resulting
from irrigation accessions to groundwater. The model enabled the likely impact of
installing drainage on each farm an1 increasing the delivery cost of water to farmers to

be assessed.

There are several examples of MLP models developed to determine optimal investment
plans (Throsby 1962; Jensen, 1968: Rae 1970; Pearse 1973; Hansen and Krause 1989;
Mallawaarachchi, Hall and Phillips 1992). In outlining the concept of dynamic MLP
modelling, Throsby (1962) used an :xample of an area of unimproved land on an actual
farm. The objective of the manag:r was the optimal allocation of this land between
wheat, improved pasture and unimproved pasture over a four year planning cycle. This

paper examined in detail some of the important constraints that need to be included
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when evaluating an investment projosal. The model was again used in evaluating the

profitability of sown pasture development by Jensen (1968) and Pearse (1973).

Rae (1970) applied MLP to horticu tural crops. He studied the replacement of areas of
annual horticultural crops with perennials in a six year planning period. This study
accounted for the existence a multi-dimensional objective function by farm managers.
Of particular interest was the allcwance made within the model for different, and

sometimes conflicting, management objectives.

More recently, MLP was used to dctermine the optimum cereal/grazing mix for mixed
farms within South Australia by Hansen and Krause (1989). Their model allowed crop
and pasture rotations to be developed endogenously, enabling the identification of the

most profitable mix of livestock and cropping activities in a medium term farm plan.

Mallawaarachchi et al. (1992) developed a MLLP model which examined the adoption of
water saving technology within a Z0 year planning horizon. The model used average
farm data for a “typical” farm growing only oranges and grapes. It included activities
for investment in drip irrigation, the replanting of new varieties and off-farm
investment, as well as constraints related to capital investment, taxation and

consumption expenditure.

There have been several approaches to dealing with uncertainty in the use of LP models.
Nuthall and Moffatt (1975) used deterministic LP analysis to develop a payoff matrix
of alternative farm plans to aid planning under risk at the farm level. Other approaches
have included Target MOTAD models, such as that used by Prevatt et al. (1992) in
evaluating the adoption of drip irr gation on vegetable farms, and discrete stochastic
programming models, such as MUL AS, which has been used to identify optimal tactical
adjustments to climate for wheat-st eep farms in Western Australia (Kingwell, Pannell
and Robinson 1993). The inclusion of risk into MLP analysis increases the complexity
of finding an optimal solution according tc Hansen and Krause (1989). In their study
risk was included by formulating a series of alternative plans containing varied input

coefficients. This allowed a subjective assessment of the optimal plan’s sensitivity to



variations in these coefficients. A similar approach was used by Mallawaarachchi et al.

(1992).



