"...books always speak of other books, and every story tells a story that has already been told."

-Reflections on the Name of the Rose, Umberto Eco

Grumet, R. Albrechtsen, R.S. and Hanson, A.D. 1987. Growth and yield of barley isopopulations differing in solute potential. Crop Sci. 27: 991-995

Kirk, J.T.O. and Oram, R.K. 1981 Isolation of erucic acid free lines of Brassica
Agric. Sci., 47: 51-52

Koo re e a r, P. and Janse, A.R.P., 1972. Some design criteria of thermocouple
in Water Relations Research. p. 74-83. Utah State University, Logan

Kramer, P.J., 1988. Measurement of plant water status: historical perspectives and
current concerns. Irrig. Sci. 9: 275-287

on leaf elongation and osmotic adjustment of wheat and lupin. J. Exp. Bot. 41:
217-221

Brassica species to water deficit. J. Agric. Sci., Camb., 109: 615-618

Kumar, A., and Elston, J. 1992. Ge et y t y p i c differences in leaf water relations between

photosynthesis, transpiration water-use efficiency and yield of Brassica juncea
L. Field Crops Res. 37: 95-104

Küpper, M. 1984. Carbon relations and competition between woody species in
Central European hedgerow. I. Stomatal responses, water use, and hydraulic
conductivity in the root/shoot pathway. Oecologia 64: 344-354

La dig e s, P.Y., 1975. Some aspects of tissue water relations in three populations of
Eucalyptus viminalis Labill. New Phytol. 75: 53-62

Levitt, J., 1972. Responses of Plants to Environmental Stresses. Academic Press,
New York

I and II. Academic Press, New York

(Helianthus annuus L.) cultivars. I. Effects of the timing of water application on

Plant Physiol, Pennsylvania State University.

characteristics in dry-land environments, and its control by minor genes. In:
Symposium. pp. 447-451 Kyoto

opportunities. Field Crops Res 26: 141-169

Richards, R.A., and Thurling, N., 1978. Variation between and within species of
rapeseed (Brassica campestris and B. napus) in response to drought stress. II
Growth and development under natural drought stress. Aust. J. Agric. Res. 29:
479-490

Richards, R.A. and Passioura, J.B., 1981. Seminal root morphology and water use of
wheat. II Genetic variation. Crop Sci. 21: 253-255

development and effect on water-use efficiency, gas exchange and

between layers by Artemisia tridentata roots. Oecologia 73: 486-489

Richardson, S., and McCree, K.J. 1985. Carbon balance and water relations of
sorghum exposed to salt and water stress. Plant Physiol. 79: 1015-1020

Ritchie, J.T., 1974. Atmospheric and soil water influences on the plant water

Ritchie, G.A., and Hinckley, T.M. 1975. The pressure chamber as an instrument for

Schulze, J.E., 1974. Root development of wheat at the flowering stage under different cultural practices. Agric. Rec. 1: 12-17

Slatyer, R.O., and Barrs, H.D., 1965. Modifications to the relative turgidity technique with notes on its significance as an internal index of the water status of leaves. UNESCO Arid Zone Res. 25: 331-342

Tyree, M.T., and Hammel, H.T., 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23: 267-282

Zhang, J. and Davies, W.J., 1989a. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 12: 73-81

APPENDICES

"Even a fool, when he holdeth his peace, is counted wise."

-Proverbs, 17: 28

Appendix 4.1

Growth data at peak flowering (stage 4.3) in Experiment 1 are presented in Table A4.1, while growth and yield data at maturity (stage 5.5) are presented in Table A4.2. The number of days to peak flowering and to maturity differed between the species and as such this data is confounded with phenology. Figure A4.1, shows the relationship between yield and days to maturity for Experiment 1.

Table A4.1. Dry matter, leaf area index (LAI) and specific leaf weight (SLW) at peak flowering (growth stage 4.3) for plants from Experiment 1, n=4.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>DAS to 4.3</th>
<th>Dry matter at stage 4.3 (g m⁻²)</th>
<th>LAI</th>
<th>SLW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Leaf</td>
<td>Stem & Pod</td>
</tr>
<tr>
<td>B. napus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taparro</td>
<td>112</td>
<td>1759</td>
<td>235</td>
<td>1524</td>
</tr>
<tr>
<td>Maluka</td>
<td>105</td>
<td>944</td>
<td>108</td>
<td>835</td>
</tr>
<tr>
<td>Nindoo</td>
<td>108</td>
<td>1085</td>
<td>138</td>
<td>947</td>
</tr>
<tr>
<td>Shiralee</td>
<td>105</td>
<td>1073</td>
<td>138</td>
<td>935</td>
</tr>
<tr>
<td>DW15</td>
<td>108</td>
<td>1165</td>
<td>147</td>
<td>1018</td>
</tr>
<tr>
<td>DD28</td>
<td>114</td>
<td>1308</td>
<td>218</td>
<td>1089</td>
</tr>
<tr>
<td>mean</td>
<td>1222</td>
<td>164</td>
<td>1058</td>
<td>4.09</td>
</tr>
<tr>
<td>B. juncea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI340206</td>
<td>71</td>
<td>197</td>
<td>50</td>
<td>147</td>
</tr>
<tr>
<td>PI340212</td>
<td>71</td>
<td>155</td>
<td>33</td>
<td>122</td>
</tr>
<tr>
<td>CPI61680</td>
<td><71</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CPI62005</td>
<td>71</td>
<td>290</td>
<td>75</td>
<td>215</td>
</tr>
<tr>
<td>Stoke</td>
<td>101</td>
<td>580</td>
<td>73</td>
<td>507</td>
</tr>
<tr>
<td>ZEM1</td>
<td>101</td>
<td>893</td>
<td>133</td>
<td>760</td>
</tr>
<tr>
<td>mean</td>
<td>**423 *****</td>
<td>**73 *****</td>
<td>**350 ***</td>
<td>**1.12 ***</td>
</tr>
</tbody>
</table>
Table A4.2. Dry matter, yield, harvest index and individual seed weights at maturity (growth stage 5.5) for plants from Experiment 1. n=4

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>DAS to 5.5</th>
<th>Dry matter at stage 5.5 (g m(^{-2}))</th>
<th>Harvest index (%)</th>
<th>Seed weight (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Seed yield</td>
<td>Stem & hulls</td>
</tr>
<tr>
<td>B. napus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taparoo</td>
<td>151</td>
<td>1369</td>
<td>336</td>
<td>1033</td>
</tr>
<tr>
<td>Maluka</td>
<td>146</td>
<td>1413</td>
<td>398</td>
<td>1015</td>
</tr>
<tr>
<td>Nindoo</td>
<td>151</td>
<td>1498</td>
<td>367</td>
<td>1131</td>
</tr>
<tr>
<td>Shiralee</td>
<td>146</td>
<td>1432</td>
<td>389</td>
<td>1042</td>
</tr>
<tr>
<td>DW15</td>
<td>151</td>
<td>1788</td>
<td>473</td>
<td>1315</td>
</tr>
<tr>
<td>DD28</td>
<td>151</td>
<td>1663</td>
<td>250</td>
<td>1413</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>1527</td>
<td>369</td>
<td>1158</td>
</tr>
</tbody>
</table>

B. juncea

PI340206	120	290	74	216	26	2.72		
PI340212	120	269	42	227	15	1.94		
CPI61680	120	835	172	663	19	2.67		
CPI62005	120	643	155	487	24	3.90		
Stoke	137	858	167	691	20	2.72		
ZEM1	137	1075	254	820	24	2.97		
mean		**662 *****	**144 *****	**517 *****	**21 ns**	**2.82 ***		

* P<0.05, *** P<0.001

Figure A4.1. Relationship between seed yield and days to maturity in Experiment 1.
\(y=-921+8.56x, (r^2=0.74, P<0.005)\), mustard closed symbols, canola open.
Appendix 6.1

Table A6.1. Analysis of variance for somatal frequency

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicates</td>
<td>8</td>
<td>2053.94</td>
<td>256.74</td>
<td>5.08</td>
</tr>
<tr>
<td>Main Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>1</td>
<td>5170.10</td>
<td>5170.10</td>
<td>9.05</td>
</tr>
<tr>
<td>Deficit</td>
<td>1</td>
<td>63.12</td>
<td>63.12</td>
<td>0.11</td>
</tr>
<tr>
<td>Species x Deficit</td>
<td>1</td>
<td>1108.13</td>
<td>1108.13</td>
<td>1.94</td>
</tr>
<tr>
<td>Residual (a)</td>
<td>24</td>
<td>13704.50</td>
<td>571.02</td>
<td>11.29</td>
</tr>
<tr>
<td>Sub Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>1</td>
<td>28067.71</td>
<td>28067.71</td>
<td>198.82</td>
</tr>
<tr>
<td>Surface x Species</td>
<td>1</td>
<td>2319.09</td>
<td>2319.09</td>
<td>16.43</td>
</tr>
<tr>
<td>Surface x Deficit</td>
<td>1</td>
<td>6.08</td>
<td>6.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Surface x Deficit x Species</td>
<td>1</td>
<td>1.54</td>
<td>1.54</td>
<td>0.01</td>
</tr>
<tr>
<td>Residual (b)</td>
<td>32</td>
<td>4517.47</td>
<td>141.17</td>
<td></td>
</tr>
<tr>
<td>Sub-Sub Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>2</td>
<td>1815.73</td>
<td>907.86</td>
<td>17.95</td>
</tr>
<tr>
<td>Position x Species</td>
<td>2</td>
<td>631.19</td>
<td>315.59</td>
<td>6.24</td>
</tr>
<tr>
<td>Position x Deficit</td>
<td>2</td>
<td>89.74</td>
<td>44.87</td>
<td>0.89</td>
</tr>
<tr>
<td>Surface x Position</td>
<td>2</td>
<td>196.01</td>
<td>98.00</td>
<td>1.94</td>
</tr>
<tr>
<td>Position x Species x Deficit</td>
<td>2</td>
<td>85.17</td>
<td>42.59</td>
<td>0.842</td>
</tr>
<tr>
<td>Surface x Position x Species</td>
<td>2</td>
<td>430.85</td>
<td>215.42</td>
<td>4.26</td>
</tr>
<tr>
<td>Surface x Position x Deficit</td>
<td>2</td>
<td>184.07</td>
<td>92.03</td>
<td>1.82</td>
</tr>
<tr>
<td>Surface x Position x Species x Deficit</td>
<td>2</td>
<td>66.92</td>
<td>33.46</td>
<td>0.66</td>
</tr>
<tr>
<td>Deficit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual (c)</td>
<td>125</td>
<td>6323.59</td>
<td>50.59</td>
<td>(3)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>141</td>
</tr>
</tbody>
</table>
Appendix 8.1

Figure A8.1. Relationship between leaf photosynthesis and a) leaf water potential and b) leaf turgor pressure (open symbols canola, closed mustard; circles Experiment 3, triangles Experiment 4 and squares Experiment 5).