1. Introduction

Multilateral comparisons of price:, real output and productivity across countries at
present are of interest not only to economists and statisticians, but also to various
international organisations such as the World Bank (WB), the United Nations (UN),
European Union (EU), Food and Ag “icultural Organisation (FAO), Economic and Social
Commission Asia and the Paciic (ESCAP), and Organisation for Economic
Cooperation and Development (OEC'D). It has been a major issue that official exchange
rates are not suitable for internaticnal coraparisons of real per capita income, as the
exchange rates do not reflect the reliative purchasing power of different currencies. This
issue led Gilbert and Kravis (1954 to the measurement of purchasing power parity
(PPP) for the OECD countries and since then PPPs have been estimated and used for

real income comparison.

Much of the work to date on PPP’ computation has been under the auspice of the
International Comparison Programine (ICP) of the United Nation. The ICP aims at
obtaining internationally comparable per capita and total gross domestic product (GDP)
for different countries. It also considzrs the purchasing power differences of the national
currencies thus providing insights irto the price levels of the different countries. Based
on ICP studies, if real GDP aggre zates of different countries have to be compared,
calculation of PPPs is needed to ccnvert national GDP figures into common currency
unit. The purchasing power parities are essentially currency conversion rates that reflect
differential price levels between countries. Once they are available GDP can be
compared in real rather than in nomial term:s across countries. Most of the ICP methods
for international comparison to dat¢ depend on the concepts of PPP and international

prices.

Two of the most widely used methods for deriving PPPs through index number
formulae are the Elteto-Koves-Szilc (EKS) method and the Geary-Khamis (GK)
method. Both methods produce index numbers which are transitive and base-invariant
making them suitable for multilater il comparisons. All the ICP work to date has been
based on the GK procedure thouzh OECD and EU have opted to produce and
disseminate results based on both of these methods. The GK method has often been
criticised as a heuristic procedure with less economic theoretic foundation. Caves,
Christensen and Diewert (1982) h ghlight this issue and then advocate the use of

alternative EKS-base methods. These methods are very elegant and possess a number
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of desirable properties. This brings some econometricians to look further into the use

of econometric models following the EKS-base methods.

Many research studies on index nimbers for multilateral comparisons to date have
focused on the problem of finding 1ggregation methods with desirable and acceptable
economic theoretic properties. A small group have been concerned with the use of
econometric approach to the constriction of the Theil-Tornqvist (TT) index and other
indices. Introduction of stochastic asproach to index-number theory (e.g. Clement and
Izan 1987) and to index construciion (e.2. Selvanathan 1989) gave rise to a new
development in the context of multilateral comparison (e.g. Prasada Rao and
Selvanathan 1991, 1992a, 1992b, 1994). A major attraction of stochastic approach is
that it has the potential to provide standard errors for the price index estimates (e.g.
Frisch 1936) reflecting relative price variability.

Recent developments concerning the stochastic approach to index number for
multilateral comparisons are that of Prasada Rao and Selvanathan (1992a, 1992b,
1994). Prasada Rao and Selvanath:n (1992a) demonstrate the scope and power of the
stochastic approach to the comparis n of relative levels of prices and quantities across
different countries. They generaliced the EKS-method for applied to a set of non-
transitive indices computed using tte binary TT index. The TT index is known to be
exact and superlative (e.g. Diewert 1976). It possesses a number of useful statistical and
economic properties necessary for multilateral comparisons (e.g. Caves, Christensen and
Diewert 1982). Caves, Christensen and Diewert (1982) proposed the use of TT method
in conjunction with the EKS methoc., thus the resulting index is referred to as the CCD

index.

Following Clements and Izan (1987) work on the stochastic approach to the TT index,
and the subsequent work of Selvanathan (1989), Prasada Rao and Selvanathan (1992a)
provided the generalised CCD (GC('D) index for multilateral comparison. Econometric
models underlying the known TT index are used to derived these indices. The CCD and
GCCD indices are transitive, bas:-invariant and possess the usual least squares
properties which are best, linear and unbiased (BLU). This class of multilateral index
numbers provides a viable alternative aggregation procedure for multilateral

comparisons as well as estimates of PPP with attractive properties.



1.1 Statement of the Rese:arch Problem

In view of the importance attached to the CCD multilateral index number, it could be
suggested that direct computation of the general price relatives be accomplished
following the stochastic approach used in Prasada Rao and Selvanathan (1994). With
the use of econometric models, estimates of price relatives that are equivalent to the
purchasing power parities could ther be derived. These estimates will possess desirable

properties necessary for multilateral comparisons.

In the context of multilateral index estimation, problems seem to arise in the use of
price levels across countries. Price and quantity comparisons over space Or across
countries may somehow exhibit geoy:raphic ordering. Price levels of one country may be
positively or negatively related witl the price levels of the neighbouring country or to
distant country. According to the first law of geography (Tobler 1967, p.275) 'everything
is related to everything else, but neir things are more related than distant things.' This
phenomenon brings about the problem of spatial autocorrelation (e.g. Cliff and Ord
1972, 1973, 1981, Miron 1984, Upton and Fingleton 1985, Goodchild 1986, Griffith
1987, Odland 1988, Aten 1994). Wlen price and quantity levels of goods and services
across countries display interdependence over space, spatial autocorrelation will
therefore exist. This would make the disturbance term of any econometric model
involving price relatives across countries spatially autocorrelated. Consequently, this
would mean that the procedures uscd to date in the work of Prasada and Selvanathan,
are not efficient as they do not take into the spatial autocorrelation present in the

efficient estimation of multilateral irdices.

Aten (1994) tested for the presence of spatial autocorrelation in relative prices of goods
and services across countries based on the 1985 ICP benchmark data. Aten made used
three different measures of spatial autocorrelation, namely, the contiguity measure, the
great circle distance between capital :cities and the volume of trade between countries. It
was found that relative prices are h ghly similar among physically close countries and
spatial autocorrelation exists among: estimated residuals in the cross-country demand
analysis. With the presence of spatial autocorrelation in the price relatives, the
econometric models used in Prasada Rao and Selvanathan (1992a) to derive CCD
multilateral index numbers will leac to inefficient estimates of the multilateral indices
and the PPPs associated with these ir dices.

The present study explores the possiyilities of allowing for spatial autocorrelation in the

disturbance structure specification of the CCD multilateral index model used by Prasada



Rao and Selvanathan (1992a) thus leading to more efficient estimates of the PPPs

involved.

1.2 The Research Objectives

The main objective of the study is to derive estimates of purchasing power parity
following the stochastic approach to multilateral index number used in Prasada Rao and
Selvanathan (1992a).

The specific objectives are:

> to test the presence of sp:tial autocorrelation in the CCD multilateral model

used for PPP estimation;

> to specify a model for the (ZCD multilateral index estimation that would allow

spatial autocorrelation in the disturbiince term;

> to construct matrices for s»jatial correlation based on contiguity, geographical

distance and volume of trade;

> to provide an efficient estimation procedure for the derived stochastic

regression model that allow for spatiil autocorrelation; and,

> to examine the sensitiviy of the PPP estimators to the type of spatial
autocorrelation present (e.g. Aten 1974), naraely,
-contiguity
-geographical distanc:
-volume of trade.

1.3 Outline of the Chapters

A brief review of some concepts and methods that are currently being used for
multilateral comparison of prices i1s found in Chapter 2. In particular, this chapter
defines the concept of Purchasing Power Parity (PPP) and reviews the stochastic
formulation of the binary Theil-Toraqvist (TT) index. Chapter 3 details the stochastic
approach developed by Clements and Izan (1987) and Selvanathan (1989), and utilised



by Prasada Rao and Selvanathan (1292a) in the construction of multilateral indices. It
includes the Caves, Christensen and Diewert (CCD)'s formulation of the TT index, and

the stochastic specification of the CC'D multilateral index number.

The concept of spatial autocorrelution that will be used in conjunction with the
regression model associated with tte CCD multilateral index formula is discussed in
Chapter 4. The various tools and techniques necessary to determine the presence of
spatial autocorrelation among the d sturbance terms of the CCD model are explained.
These include several proximity measures and the Moran's [ statistic. In Chapter 5, a
generalised CCD multilateral index accounting for spatial autocorrelation is specified
and estimated. The explanation of the various data used and the empirical application of
the theoretical results in the study ¢re also summarised. Finally, Chapter 6 provides a

summary of what has been achieved. and looks at some implications for future research.



2. Review of Relevant Studies

This chapter provides a very brief review of some concepts and methods that are
currently being used for multilateral comparisons of prices. The development of index
numbers for multilateral comparisons is discussed first. Under this section, the concept
of Purchasing Power Parity (PPP) and the properties and approaches to multilateral
index number computations are presented. Particular attention is given to the Binary
Theil-Torngvist (TT) index number in Section 2.2. Lastly, Section 2.3 provides an

introduction to the stochastic approach procedure as applied to the TT index number.

2.1 Index Number for Multilateral Comparisons

Much of the standard literature on index rumbers concerns binary comparisons over
time. But these methods do not po:sess some of the very basic requirements such as
transitivity and base-invariance. This has led to considerable research, over the last three
decades, on methods specially designed for spatial, in particular, on cross-country

comparisons. The notation used in this and the subsequent chapters, is described below.

Suppose we are interested in price le vel comparisons across M countries. Let pjj and gij
(i=1,2,..,N and j=1,2,3,..,M) represe 1t the price and quantity of ith commodity in jth
country respectively. Clearly, N is the total number commodities for which the price and
quantity informations are collected. Typically, M is greater than two. The following
assumptions will be used throughout the study:

1) pij>0foralliand;;
i1) gijj 2 0 forall i and j ; and,
iii) for each i, 7;j > O for at least one j

or for each j, gij > O for at least one i.

Given the price (pij) and quantity inf>rmation (gij), we want to derive price and quantity
comparisons between all pairs o’ countries. For a pair of countries (j,k), Ikj
(,k=1,2,3,...,M) represent the requ red multilateral index number for country j with
country k as the base. Index numbe s from the multilateral comparisons, involving M

countries, can be arranged and preser ted in the form of a matrix given below:
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Various terms used in the study along with the conceptual framework underlying

various methods for international coinparisons are discussed below.
2.1.1 Purchasing Power Parity

Geary (1958) advocated the compu:ation of purchasing power parities (PPP) directly
from the price and quantity inforination and used the resulting parities to define
appropriate index numbers for diffeient pairs of countries. This framework was further
refined by Khamis (1972) where he described the many interesting mathematical and
statistical properties of this method. 'he next section will describe the initial framework
for this approach.

Let I1; represent the general price level obscrved in a country, then the price index, Ikj,

for country j with country k as a base can be defined as,

1L (2.2)
YT, '

Since Ilj's are interpreted as 'generul price levels' in the different countries, equation
(2.1) can be equivalently expressed i1 terms of 'purchasing powers' or implicit 'exchange
rates', represented by R;j (j=1,2,3,...,A!) defined as reciprocals of the general price levels.

The above index numbers can then b: written as

In,; = -- (2.3)

where R; =1/I1; and represents (ae amount of numeraire currency equivalent in

purchasing power to one unit of currcncy in the jth country. Thus [1j; provides a measure



of the parity between currencies of country ; and . Geary (1958) defines the purchasing
power currency j, denoted by PPP;j, i s the reciprocal of Rj. Thus

PPP, =R, ;

and
I P (2.4)
L I’PPk : ’

PPPj in (2.4) shows the number of currency units of jth country currency equivalent in
purchasing power to one unit of a r>ference or base country currency. Thus, if PPP of
Australian dollar (A$) in terms of US ($) dollar is A$1.236=US$1.00, then this means
that 1.236 Australian dollars have tt e same purchasing power as 1 US dollar. Thus the
PPP can be used as a conversion fac or that can be used in converting per capita income
into US dollars in the place of the widely used exchanged rates.

From equation (2.3), it is evident ttat if PPPj's can be determined, then the necessary
price index numbers can be computed. Basically, the problem then is of finding method
either to compute PPPs for currenc es of d:fferent countries or to derive the indices in
the matrix (2.1) from the observed drice and quantity data. The indices/formulae used
for this purpose are supposed to sat sfy a number of properties. These are discussed in
Section 2.1.2.

2.1.2 Properties of Multilateral Index Numbers

In the context of multilateral compar son of prices, an index number defined by equation
(2.2) must satisfy two crucial proper ies. Ideally, we would like these comparisons to be
internally consistent (i.e. satisfy the jroperty of transitivity), and invariant to the order in
which the countries are listed. These two requirements are very essential and necessary

in any international comparison exer:ise.

Transitivity

Internal consistency requires that a direct comparison between any two countries j and &
derived using a given formula shotld be the same as a possible indirect comparison
between country j and k through a third country /. Thus this property requires that for
any countries j, k and [,



Iy=1,xI;. (2.5)

This property guarantees that there is a unique index for a comparison between two
countries, whether such comparison was made directly or indirectly through a link
country. Thus, the condition of traisitivity 1S an operational constraint that preserves

internal consistency. When the index is in an additive form, transitivity implies

M, = 1, + 11, (2.6)

where Iy = log Ii; .

Another important result that is required for this study, comes from Prasada Rao and
Selvanathan (1994, p.146) which rcveals that any multilateral index number formula
that is internally consistent, contain: only M pieces of information. This result may be

stated as follows:

Result

An index number formula Ilkj, for <1l k and j, satisfies transitivity in log-change form if
and only if there exist M real numters m|, 13,...,%py such that Ilkj = ; - 7y, where =;

refers to log PPPj defined in equation (2.4).

This result will be useful in obtaining a transitive multilateral index number formula

from the regression models considerzd in Chapter 3.
Base-invariance or country symmetry

This property holds if the country selected as base 1s simply a numeraire. All the inter-
country comparisons must be indepzndent of the country chosen to be the numeraire
country. Base invariance guarantees that all countries are treated symmetrically in the
comparisons exercise in the sense that the order in which countries are listed or
introduced into computing has no effect on the results. Thus, the property of base
invariance requires a multilateral incex number formula to treat price and quantity data
from all the M countries symmerically. This property is also necessary in the

development of our regression mode: in Chapter 3.
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2.1.3 Two Approaches to Multilateral Index Computation

Two approaches/methodologies are available in the international comparison literature
to derive index number formulae sa isfying transitivity and base invariance. These two
index number formulae are at present widely used by international bodies. These are the
Elteto-Koves-Szulc (EKS) and the Gzary-Khamis (GK) methods.

Elteto-Koves-Szulc (EKS) Method

Elteto and Koves (1964) and Szulc (1964) advocated the EKS procedure. The EKS
method provides an ingenious techniique that preserves characteristicity and generates
transitive multilateral index number; from a system of binary index numbers based on
Fishers' index. Preserving charactert: ticity really means a transitive system that deviates
the least from a preferred binary comparison. Their preference for the Fisher index is
mainly because of the nice properties of this index number formula. Fisher index is an
ideal index, exact, as well as superlative and it satisfies tests like the time/country
reversal test and the factor reversal test (Diewert 1992). The EKS method defines a new

index formula for a comparison betw een two countries k and j as

M 1/

EKS,; = H[fﬁd -F,j] (2.7)

I=1

where F, -Fisher price index for cou ntry / relative to country k; and,

Fy; -Fisher price index for country j relative to country /.

F, - F; provides an indirect compirison between country k and j through a bridge

country /. Given this equation (2.7) is a simple unweighted geometric mean of all the
indirect comparisons between country k& and j through link country [ (I=1,2,3,..M),

utilizing the Fisher index number.

The EKS index formula given in (2.7) results in multilateral comparisons that are
transitive and deviate the least from 'he Fisher binary indices. This implies that the EKS
formula leads to multilateral index numbers which are as close as feasible to the binary
comparisons resulting from the usc of a ron-transitive binary index, but in addition

satisfies transitivity. Measurement ol closeness in the EKS index is based on the sum of
squares of deviation in logs, i.c., X, , Zﬁl(ln EKS,; —InF; )*, subject to the restriction

that (2.7) satisfies transitivity. Thus. the EKS method preserves the characteristicity of
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binary comparisons while obtainin; transitive index numbers (e.g. Dreschler 1973).
This aspect of the EKS index is aso supported by Caves, Christensen and Diewert
(1982).

Geary-Khamis(GK) Method

An alternative way of obtaining int¢ rnally consistent (transitive) multilateral indices is
the Geary-Khamis (GK) method. Tkis method developed by Geary (1958) and Khamis
(1972) is the most widely used aggregation or index number formula for international
comparisons (e.g. Kravis, et al 19¢2, Prasada Rao and Selvanathan 1994). The GK
method is presently being used by the UN and other international organisations in
various international input, output, real GDP, and productivity comparisons. Geary
(1958) provides the framework unde lying this method based on the idea of the PPP of a
currencyand international average orices of commodities, mentioned in Subsection
2.1.1. This framework was further -efined and some analytical results concerning the
existence of solution, etc. were provided in Khamis (1972). The paper described many

interesting mathematical and statistic al properties of the GK method.

The GK procedure defines PPP's directly using the observed price and quantity
information. Moreover, this mettod introduces another concept known as the
'international average price' of a coramodity, usually denoted by P, , i=1,2,...,N. These
international average prices are expressed in a common currency unit usually referred to
as a 'numeraire currency'. In multilateral comparison exercise, GK method suggests that
the observed price and quantity dati on N commodities from M countries be used to

determine:

1) M purchasing powe: parities, PPP,, PPP,, ... ,PPP,,, ; and,

i) N commodity interr ational average prices, P, P, ..., Py .

Geary (1958) and Khamis (1972) suggest an intuitively obvious set of interelated
equations to define the PPP's and the internarional prices. These equations formed the so

called Geary-Khamis system. The sy stem is defined below.

Suppose the PPP;'s are known, then the international price of the ith commodity
(i=1,2,3,...,N) is defined as
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Mz

[py-a,/PPP]

M
Z 1)
j=l

-
Il
5

i=12,...,N (2.8)

The denominator on the right hand side of the equation (2.8) is simply the total quantity
of the ith commodity in all the M co intries involved in the comparisons. The numerator
is the total value of the ith commodity over all the countries, after each country's value,
Py gy 1s converted into a common currency unit using respective PPPs. The equation

defined above is then repeated for all the cornmodities.

On the other hand, the PPP/s are letermined in the GK method using the following
equation below. For country j, PPP; is obtained by

N

ZPU "4jj

PPP =i =12, M (2.9)

J N

i=l

The numerator of the PPP equation above is the total value of all the quantities in
country j, expressed in the currency units of country j, while the denominator represents
the value of country j's commodiy bundle valued at international average prices
expressed in some selected reference country (common) currency units. Thus the ratio in

(2.9) provides a PPP for country j's c irrency.

The GK system therefore consists of the (M+N) equations, (2.8) and (2.9), in the
unknown entities PPPj's (=1,2,3,.,AM) and P/s (i=1,2,3,...,N). Further, these equations
are interdependent in that values of .”PP/'s depend upon international prices, P;'s, which
in turn depend upon the unknown pu chasing power parities, PPP's. Moreover, a simple
method using iterative procedure is esigned by Khamis (1972) to solve the GK system
for the unknown PPP;'s and P;'s. Th: procedure is found to be useful and could lead to
unique solutions ( see Prasada Rao and Selvanathan 1994, pp. 167-71).

All the ICP work to date has been bised on the GK procedure. Despite the many useful
properties of the GK system, the G procedure has often been criticised as a heuristic

procedure with no real economic the oretic foundation. Caves, Christensen and Diewert
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(1982) support this view and advccate the use of EKS-base methods. Caves, et al.
preferred an EKS-type multilateral index numbers based on other binary systems with
attractive theoretical and statistical properties, like the TT binary index. They
demonstrate the feasibility to genera:e transitive indices from a set of non-transitive TT
multilateral comparisons using the EKS technique. Such an application of the EKS
procedure on the TT binary index, results i1 the CCD index which is discussed in the
next chapter. It is deemed necessay to look first at the binary TT index and how
stochastic approach could be applied to derive the binary TT index before dealing with
the CCD index.

2.2 The Theil-Tornqvist Binary Index

This index is proposed in Torngvist(1936) and has been introduced and discussed in the
literature (e.g. Fisher 1922, Tornqv st 1936, Theil 1965, Kloek and Theil 1965). Just
like the other well known index nuriber formula, the TT index is designed to measure
changes in prices or quantities over two time periods and is, therefore essentially a
binary index. The TT index is known to be exact and superlative (Diewert 1976, Caves,
Christensen and Diewert 1982). It has been shown that this index possessed a number of
useful statistical and econometric properties necessary for multilateral comparison
(Eichorn and Voeller 1983). This formula can be applied for comparisons over regions,

firms or space.

Suppose we let (pj,qj) and (pwqi) denote two pairs of price and quantity vectors of
dimension N corresponding to two countries j and k (j,.k=1,2,...,M; k=base country). The
TT binary index in multiplicative for n is given by

N Wikj
IT D..
(multiplicative form) I, = LY s (210)
kj

i-1

N
where Wy, = J5(wy +w;); w,j=p,]q,:,-/2p,jq,j is the value share of the ith
=1

commodity in the jth country. Expre:sing equation (2.10) in logarithmic form, we obtain
its additive form given by

N
(additive form) HZI = z W;ijpikj (2 1 1)

i=1
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where, ]FIATJT = ln(],ZjT) ,and Dpy; =In(p;[py ) is the log-change in the price of the ith

commodity of country j relative o country k. Furthermore, Dp,; represents the

percentage change (inflation rate) in the price of the ith commodity. So the TT index in
its additive form provides an indication of the overall inflation rate or increase in prices.
The weights used in defining the Theil-Torngvist index are simple arithmetic means of
the budget shares of good i for count ‘ies j and k.

The TT binary index is a well-knov’n index number for binary comparisons of prices,
real output and productivity (e.g. Kloek and Theil 1965, Diewert 1976, Dreschler 1973,
Caves, Christensen and Diewert 1982, Prasada Rao and Selvanathan 1991). It is for
these reason why Prasada Rao anl Selvanathan (1991, 1992a, 1992b, 1994) have

considered the TT binary index in the multilateral CCD index for further generalization.

2.3 Stochastic Approach to Theil-Tornqvist Binary Index

The 'stochastic approach’ provides ar alternative procedure to the well known 'atomistic’
and 'functional' approaches in the construction of price and quantity index numbers
(Frisch 1936). It was Frisch (1936) who initially considered the potential of stochastic
approach to measure the central tendency from a distribution of price relatives. It is in
1981 when Clements and Izan initially made use of the stochastic approach to derive TT
binary index numbers and its asscciated standard errors for temporal comparisons,
followed by Clements and Izan (1937) where the use of stochastic approach to index
number theory to estimate the rate of inflation and its standard error was explored
rigorously. Their 1987 study views each price change as an independent observation on
the underlying rate of inflation. Selvanathan (1989) extended Clements and Izan
approach to the price indices of groups of commodities and measure the relative prices
across groups. In the context of inte national comparisons, another procedure proposed
by Summers (1973), known as the country-product dummy (CPD) method, also made
use of the stochastic approach (see Prasada Rao and Selvanathan 1994, pp.199-203).
Balk (1980) use stochastic specification to deal with seasonality. Much recently,
stochastic approach was also app.ied in the study of Freeman (1992) where he
incorporates commodity-specific effccts on the construction of GCCD multilateral index
of Prasada Rao and Selvanathan (1932a).

Under stochastic approach, each price relative is taken to be equal to the underlying
price index which measures the overall price changes between two countries, plus other

components which are random or no1-random (Prasada Rao and Selvanathan 1994). An
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advantage of the stochastic approach is that it can provide standard errors for the price
index estimates reflecting price var ability. It can be shown that these standard errors
increase with the degree of price variability. This result is consistent with the belief that
disproportionate individual price movements indicate reduced reliability in the overall

inflation rate.

More recently Prasada Rao and Sel’anathan (1991, 1992a, 1992b, 1994) have applied
the stochastic approach in the construction of multilateral index numbers. Following
Clements and Izan (1987) and Selvanathan (1989), Prasada Rao and Selvanathan
derived the TT binary index given in equztion (2.10) using stochastic approach, and

using the regression model

Dpy; =1y +wy;, i=12,..,N (2.12)

In the above model, the parameter I1.; may be interpreted as a common trend in prices of

all N commodities between the counries k and j.

The disturbances u,; are assumed to have the following properties:

(i) E(uy;)=0;
(i) V(uy) =0 /Wy, and, (2.13)
(iii) E(ugityy, ) =0, fori#i',k#k',j# j.

Applying a generalised least squares estimation procedure to the above model yields an
estimator of Il given by

N
I, =Y Wi Dpy, - (2.14)
=1

The above estimator is identical to the additive form of the Theil-Tornqvist index

defined in equation (2.11). The estimr ated variance of l—I,gr is
Var(Tl,; ) = G_. (2.15)

This variance parameter 05 may be estimated unbiasedly by



N
1_12 Ak/(Dp;k, kj)z . (216)

It is interesting to note here that if there is a significant variation in the relative

prices,Dpikj across i=1,2,3,...,N, the sampling variance of f[kj will be large.

Despite the elegant properties of tte TT binary index, it had no role in multilateral
comparison exercises as the TT index does not satisfy the transitivity requirement when
applied in the context of multilateral comparisons. The present study focuses on an
alternative multilateral index formula that would satisfy the transitivity property but
related to TT indices. Considering that Prasada Rao and Selvanathan (1992a, 1994) have
applied the stochastic approach to the case of spatial comparisons of prices in the
construction of index numbers which satisfy transitivity, this dissertation will focus on
these models. Prasada Rao and Selvanathan have derived a CCD index for multilateral
comparisons using the stochastic upproach. This CCD multilateral index has been
proven to be internally consistent in their study and may be considered a useful tool in
the estimation of PPPs. This will be 1he focus of discussion in the next chapter.



3. The Stochastic Approach to Construction of
Multilateral Index Numbers

In chapter 2 we introduced the stochastic approach and has showed how this approach
can be used to derive the Theil-Toingvist (TT) binary index number and its standard
error. But despite the elegant properties of the TT index, this index has not played any
significant role in the context of in ernational comparisons. This is mainly because it
fails to satisfy the transitivity requirement when applied in the context of multilateral
comparisons. Caves, et al. (1982) proposed a multilateral method based on a simple
averaging procedure that leads to modified TT indices that are internally consistent and
base invariant. This CCD procedure can be appropriately described as a two-step
procedure where the first step involvzs the computation of the binary TT indices and the
next step involves the modification based on the simple unweighted geometric mean
leading to transitive multilateral indices, referred to as the CCD indices. Two issues are
of interest with regards to this proce lure. First concerns the use of suitable weights that
might improve the CCD multilatera indices; and the second issue is to provide proper
justification for the application of this averaging procedure. Prasada Rao and
Selvanathan (1992a) addressed thes: issues by deriving the TT and CCD multilateral
indices using an econometric approa h or econometric modelling procedure and provide
some generalisations. These general sations and the underlying stochastic specification

form the core of this chapter.

The stochastic approaches to construction of multilateral index number to generalisation
of TT indices are outlined in this chapter. Section 3.1 establishes the CCD approach to
the construction of the multilateral index number satisfying the requirements of
‘transitivity' and 'base-invariance', proposed by Caves, Christensen and Diewert (1982).
Then, following the stochastic approach developed by Clements and Izan (1987) and
Selvanathan (1989), Section 3.2 provides an econometric model specification that
would result in the CCD multilater:1 index number, as suggested by Prasada Rao and
Selvanathan (1992a). Estimation of he parameters in the econometric model that leads
to the CCD multilateral index and their standard errors is included also in this section.
In Section 3.3, a more generalised form of this multilateral index number that uses
weights based on economic distance is presented. Section 3.4 provides the estimation of
purchasing power parities and their standard errors for M-1 countries considered in
multilateral comparison exercise. Concluding remarks summarise the discussions in this

chapter.
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3.1 The Caves,Christenser: and Diewert (CCD) Multilateral Index

As mentioned above, the TT index in Section 2.3 does not satisfy transitivity. To
overcome this problem, Caves, Christensen and Diewert (1982) suggested a simple
averaging procedure which builds on the binary TT index number leading to a
generalised TT index number that is referred to as the CCD multilateral index number.
This multilateral index formula satisfies both the properties of transitivity and country

symmetry.

The CCD multilateral index formul: in multiplicative form is a simple geometric mean
of all M indirect comparisons betwec n country j and k , derived through a bridge country
[ (I=1,2,.,M) is given by

]

(multiplicative form) CC ) [ITT ITr] . (3 1)

Taking the logarithm of both sides of equation (3.1), an additive form of the index can

be specified as

additive formy  T1;,7 =TT =TT, (3.2)

M

where I, =(1/M )Z I'ILT is a simple average of the binary TT indices of all countries
j=1

with country k as the base. Following the equation (2.6) in Section 2.1.2, it could be

shown that

Iy +11; P = (T1] = T0; )+ (1T} - 11} )
= T0; -1, (3.3)

[1¢eP,

Equations (3.2) and (3.3) established that CCD index satisfies transitivity and that it
depends on averaging procedure. Furthermore, it can be easily shown that the CCD
index satisfies base invariance or country symmetry as it is invariant to the order in

which the countries are introduced ir to the formula.
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This CCD multilateral index numbers are now widely considered for multilateral
productivity comparisons (e.g. Diewert 1992, Prasada Rao and Selvanathan 1992a,
1994). In the next section, the use ot stochastic approach to derive the form of the CCD
multilateral index number will be presented as well as the econometric modelling

procedure proposed by Prasada Rao ind Selvanathan (1992a).

3.2 Stochastic Approach to CCD Multilateral Index

Prasada Rao and Selvanathan (1992) made use of the stochastic approach in Clements
and Izan (1987), and Selvanathan (1989) to derive a multilateral log-change index
number formula that would yield inlices which are transitive and possess some useful
least squares properties. Rao and Selvanathan obtained a generalised form of an index

number for multilateral comparison; by imposing the transitivity restriction in Caves,

Christensen and Diewert(1982) that I, =IT,—1II, .

Imposing the said linear restriction to equation (2.12) in Section 2.3, the stochastic

model now becomes,
Dpy, = Hj -1I1, + g 3.4

where i=1,23,..,N, k=123, M-1,and j= k+l,..M . Where II,,II,, . . ., II},
are the parameters across different equations for different pairs of country j and k (see
Prasada Rao and Selvanathan 1992a for more details). Again the disturbance term

Uu.

. 1N the above equation assumes thz same properties as in (2.13) , that is

(i) E(u, )=0,
(ii) V(uy )=0,/Wy;; and, (3.5)
(iti) E(uy ;) =0, fori#i',k#k', j# j'.

Following Judge, et al. (1988, p.358), the generalised least squares (GLS) estimator of
the parameter vector I1= [Hl, I, ..., Hw]' may be obtained by applying ordinary

least squares (OLS) to the transformed model



20

Wi Dpyy = Wi T = W T + (3.6)

Stacking all the N observations for each pezir of country j and k and for all pairs, and

using the symmetry between Dp;; and Dp;, the transformed model (3.6) may be written
in matrix form

Y= XTI +u*, (3.7)

where Y is a NM(M-1)/2 column vector and X is a [NM(M-1)/2 x M] matrix of

observations. Il = [I'I,, In,, ..., IT 4]' is a vector of unknown parameters and u* is a

vector of transformed disturbances that are homoscedastic.

Application of the least squares to th: transformed model yields the normal equations

X'XxD = XxXv, (3.8)

where X'X = [M Iy, - lMl;w]» with I, an identity matrix of order M and t'm = (1,1,...1)
is an M-unit vector, and X'} is a column vector whose jth element is

DD I Wy, In(p; / py ). In matrix form, it could be shown that

[ ;Mm-1) -1 ... -1 ]
-1 (M-1) ... -1

X'Xyem=

| -1 -1 ce. (M-1))
and

fy -

2_, Wy In(p;; / pyj)

=l =l
X’YMxl =

M N

Y. Wi In(piyy / pij) (3.9)

=1 i=l
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Following the normal equation in ((.8) the solution of I will depend on the rank of
X'X . It can be observed that X' X is singular and rank( X' X )=M-1. This indicates the
presence of multicollinearity and inplies that the original parameter vector IT in the

equation (3.7) is not identified. In order to obtain the best linear unbiased estimator of
parameter vector II, Prasada Rao ind Selvanathan (1994, p.148) made use of the

following useful results.

1. All linear combinations of the forra I1; —II, are estimable, following
Schmidt (1986).
2. The best linear unbiased e: timator of IT; —TII, is given by I i I %

where IT is any solution ¢f the normal equations (3.8) and the

resulting estimator is unique.
3. Since rank( X' X ) is M-1, setting ﬁM =0, then ﬁ],ﬁz, Ce fIM_1

can be solved for uniquely

Prasada Rao and Selvanathan (199:) show that using the above results, the resulting

estimators are given by

:)

Il

=

Z>
N

J
M N M N ' (3.10)
22 Wing In(py / pig )+ 22 Wiik l”‘(Pij / D)

k=1 i=I .

=~
1]
[N

and

The solution TT ; may be interpretcd essentially as a log-change index for country j

relative to base country M. Moredver, in a multiplicative form, the index may be

expressed in general, for any pair of >ountry j and k, as

1

CcCcD i T’“ 1 Apij M
Ig H H ™ H LA . (3.11)

i=1 i=1 L Pu
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Following Caves, et al. (1982), Prasada Rao and Selvanathan name the index number

formula 7 ,ijD

as the generalised TT index or CCD index due to Caves, Christensen and

Diewert. This index provides a multilateral generalisation of the TT index.

The resulting generalised TT index (3.11) clearly satisfies the transitivity and country

symmetry or base invariance proper ies. As [ ,SCD is obtained from a regression model,

the standard errors associated with it can be computed and may as well be used in any

interval estimation for the indices obtained.

Using the definition of the TT binar, index from Section 2.2 we can express

I

rec i u (Tl 3.12
=TI -] (3.12)

I=1

The above equation is identical to tkat of equation (3.1) proposed by Caves, et al. This

reveals that 1 ijCD 1s a simple geometric mean of M indirect comparison between country

k and j, where each indirect comparison is made through a link country / using binary
TT index formula. Moreover, Prasada Rao and Selvanathan (1994) noted that I,'?CD (for
k j=1,2,..,M) provides a multilater: ] index that has minimum distance from the binary

indices. That 1s, considering a problem of obtaining [,; such that

/ 2. o . :
> ,A][ln I —In I,ZJT] 1s minimam subject to the constraint I;; =1,,-1;;, then the

[j ’
generalised TT index is the solution to this problem. Similarly this has been observed in
Prasada Rao and Banerjee (1986).

rientioned in this section, the minimum distance

Among the properties of I,SCD

property is considered as the most important. As I,SCD deviates least from the binary

TT index [ ,ZJT , this would imply that if there exists any other multilateral index, it would

cCcD
Ik

deviate from I,;-T more than [,;~". 3ut this may not happen for each pair but over all

pairs of countries. Considering the 11any statistical and economic theoretic property of
the binary TT index, the CCD mu ltilateral index derived in (3.12) retains all these
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properties. This is why the dissertation considered the log-changed form of in the

IijCD
estimation of the PPP's and their star dard errors for all the (M-1) countries considered in
the study. Moreover the transformed model in (3.6) will be used as building block for
the stochastic model which will incorporates spatial autocorrelation in the disturbance

term. This model is discussed in Chupter 5.

3.3 The Generalised CCD Multilateral Index Numbers

It has been mentioned in the previous section that CCD multilateral index number is a
simple geometric mean of all the indirect comparisons between country k and j.
However, the CCD index number >ame under criticism due to this characteristic of
using the simple unweighted geome:tric mean averaging procedure (Prasada Rao and
Selvanathan 1992a, 1994). A possibility o7 a weighted version of the index could be

explored.

Intuition suggests that some indirect comparisons between two countries through a third
country would be intrinsically more reliable than others. An example is that, if k refers
to United States of America (USA) and j refers to Australia, then an indirect comparison
between USA and Australia through United Kingdom (UK) would be more reliable than
an indirect comparison through Incia. In relation with this, a differential weighting

scheme was suggested in Prasada Rao and Sclvanathan (1992a, 1994).

In Prasada Rao and Selvanathan (1992) paper, a basic regression model was postulated

with the disturbance term exhibiting a more general form of heteroscedasticity. Rao and
Selvanathan made use of the modcl (3.4) with the disturbance term u,; having the

following properties:

(i) E(”ikj) =(,
(ii) V(uy)=(0,[Wy;)8,, and (3.13)
(iii) E(ugityy, ) =0, forizi'k =k, j# .

For the variance of the disturbance term, d; uses the concept of economic distance
between country k and j. The economic distance formula was based on the real per

capita incomes associated with country j and &, and is defined as,
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E; )
In| —~ -—ln[i
L, Iy

=\t E; - 1,)-(inE, - 11, ) (3.14)

=t E, - nE,)- (1, -11,)

The term Ej pertains to the nominal per capita income in country j while Ej/I;j converts
Jjth per capita income into the currency unit of 1. The BLUE of the parameter vector I,
of this generalised CCD model can be estimated using a two step GLS procedure which
is discussed in Prasada Rao and Selvanathan (1994, p.152). Intuition suggests that

alternative specification of could be nore meaningful. This requires future research.

3.4 Estimation of Purchasing Power Parities and Standard
Errors

After the estimates of the parameter vector Il = [Hl, I, ..., II M]‘, which is given in

(3.10) are obtained using the GLS procedure, the purchasing power parities of the
currencies of countries 1 to M-1, cefined by PPP;j (j =1, 2,..., M-1) in terms of the

numeraire currency, are given by
PPP, = exp(I1;) (3.15)

What was good in the use of stoch:stic approach to derive the estimates of the ITj's is
that it can also provide standard eirors for the price index estimates reflecting price
variability. Hence, the standard errcrs for the estimated PPPj's in (3.15) may also be
obtained. These standard errors cculd be useful in assessing the reliability of the
estimated PPP for each of the M-1 countries. As the ICP of UN only published PPP's
for their 1985 PPP comparisons rest Its, the estimated standard errors of PPP's that will
be derived in the dissertation wou d also be beneficial. The question now is how to

derive these standard errors.

As the PPPj's are obtained from the estimates of the additive stochastic model in (3.7)
(which implies that the estimated parameters of (3.7) are equal to the logarithms of the

PPP's), the standard errors of the parchasing power estimates that are to be obtained
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would actually be the standard erro-s of the exponentials of the parameter estimates.
Freeman (1992) proposed two procedures for the computation of these standard errors.
These two procedures are outlined below.

Approximate Standard Errors for the PPP Estimate
This procedure provides an approximation to the actual standard errors based on a
Taylor Series expansion. Following the result in Mood, Graybill and Boes (1974,
p.181), stated as
Let x be any random variable 'vhose variance, defined by var(x), exists. Now
consider any transformation ‘unction h(.) which defines another random

variable y. If y is a function of ., that is. y = A(x), then an approximate formula

for the variance of y is given as

aﬂa}z
ox j

var(y) = var(.‘)-{
the variance of the PPP estimates in (3.15) can be approximated as

var(PPP,) = var(T1 Jlexp(T1, )]2. (3.16)
Using the above results , the corresponding standard error of Pf’Pj is given by

se(Pf)P;.) = \/var(PIA’f; = se(I:Ij )[exp(f[j )] ) (3.17)

The above estimation result is easy o apply, since the standard errors of the parameter
estimates are available from the reg ‘ession results of the stochastic procedure, and the

above formula is easy to compute.

Exact Standard Errors for the PPI’ Estimates: Assuming Normality

Following the results of Prasada Rao and Selvanathan (1992b), the exact standard errors

for the PPP estimates assuming norriality could be obtain. Suppose we assume that the
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disturbance term, u*, from model (3.7) has a normal distribution with mean zero and

variance given by 2/ wy;. Thatis,

2
Wk ~ N(o,gﬂ-} (3.18)
w

The above assumption imply that the estimates, I1;, have a sampling distribution given

by

r 2
I, - N(Hj,cﬁjj. (3.19)

Considering the fact that Pi’Pl = exp( lA’I_,), then Pi’I’j. would have a log-normal

distribution with parameters II; and ng , that is,
j

5 2
PPP, ~ A(H j cﬁ)) : (3.20)

It could be shown that the variance of Pi’Pj, given its log-normal distribution, is

exactly equal to

var(PPP;) = exp(211,+07 )[exp(c%_ ) - 1} : (3.21)

following Aitchison and Brown (19¢:6). Just like the approximate variance estimator in
(3.16), this exact variance estimato: is easy to compute. However if we consider the
expected value of Pi’PJ , it can be proven that Pi)Pj is a biased estimator for PPP,,

that 1s

o2

E(PPP) = exp| T, + ; : (3.22)
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where the bias can be computed as

2
o2
1;

bias(PPP;) = exp(T1, )| exp 1! . (3.23)

Because of its biasedness, Freeman (1992) suggested that the root mean square error
(rsme) of the estimate be considered in lieu to the standard error. By definition, the root

mean square error is given by the formula

: \/mse(Pf)I)j)

rsme( Pi)f’J )
(3.24)

= \/var(PfA’Pj)+[biaS(P13Pj)]2 :

Again, both the bias and rmse for eich PPP estimates can be calculated easily based on
the regression results of the stochastic procedure discussed in Section 3.2. The results in
this section will also be used to derived the PPP estimates and their standard errors for
the stochastic model that would incorporates spatial autocorrelation which is discussed

in Chapter 5.

3.5 Concluding remarks

This chapter has established the general framework within which, work on the
stochastic approaches to multilateral index number has extensively been undertaken. It
was shown that the stochastic appro ich can be used to obtain a class of index numbers
for multilateral spatial comparisons. The CCD indices are found to possess some useful
least squares properties, most imyportantly, they are transitive and base invariant.
Furthermore, these multilateral indices are derived using econometric models and are
shown to use the Theil-Tornqvist >inary indices as building blocks. The stochastic
approach has also lead to the estimation of the standard errors of these multilateral
indices in reference to their respective underlying econometric specification. A more
generalised form of the CCD multilateral index is also discussed, however, the present
study does not consider this issue as the development of a spatially autocorrelated

stochastic model is the main focus of the study. Models incorporating spatial
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autocorrelation are discussed in Chapter 5. Since the concept of spatial autocorrelation
is new to the econometric modellin; of multilateral index numbers, the present study
will only be limited to the CCD multilateral index model in its additive form. The latter
part of the chapter has showed :lso that the purchasing power parities and their

standard errors can be estimated usiig the GLS estimates of the parameter in the CCD
multilateral index model.
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4. Spatial Autocorrelation

All the regression models described in Chapter 3 for the TT, CCD and GCCD indices
are based on cross-sectional data ¢n commodity prices. This suggests that the price
relatives for a given commodity, for a country like India with US as base could be
similar to the price ratios observed for a neighbouring country like Pakistan or Sri Lanka
suggesting the presence of correlation in disturbances for these countries. Any analysis
of such phenomenon requires the concep. of autocorrelation across space - spatial

autocorrelation.

The concept of spatial autocorrelition that will be used in conjunction with the
regression model associated with the CCD multilateral index formula is outlined in this
chapter. A formal definition of spatial autocorrelation and some basic notation are
introduced in Section 4.1. In Sectior 4.2, the tools and techniques for measuring spatial
autocorrelation is examined, particularly rhe spatial proximity variables which are
considered in the development of ot r stochastic model in Chapter 5. In Section 4.3, we
define a simple regression model which spatial dependence. The procedure used for the
estimation of this simple model w.th spatial autocorrelated disturbance term is also
included in this section. In Section -}.4, we discussed the Moran's I test statistic for the
presence of spatial autocorrelation among regression residuals. Concluding remarks

culminate this chapter.

4.1 The Concept of Spatial Correlation

One of the basic concerns of the geographers and statisticians in the early 60's is the
analysis of spatially located data. A number of studies have been made concerning the
statistical methods used for analysing spatial data. The technique of regression analysis
applied to models utilising geographically or mapped data is one of those which had
been often dealt with. Particular interest among geographers has been the problem of
serial correlation existing on the di: turbance terms of regression models in the spatial
context. These phenomena had led to the concept of spatial autocorrelation which is
particularly relevant to the present cissertation. "What really is spatial autocorrelation?’

is the question addressed in this section.

Suppose we consider the geographi:al distribution of some quality or phenomenon in

the countries or states of a country, then if the presence of some quality in a state of a
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country makes its presence in neigl bouring states more or less likely, we say that the
phenomenon exhibits a spatial auiocorrelation (Cliff and Ord 1973). In its most
general sense, spatial autocorrelation is concerned with the degree to which objects or
activities at some place on earth's su face are similar to other objects or activities nearby
(Goodchild 1986). This idea is reflected in the proposition of Tobler (1970) stated as:
‘everything is related to everything else, but near things are more related than distant
things." This 1s commonly referred to as the first law of geography. Similarly, Griffith
(1987) defined spatial autocorrelatio as the relationship among values of some variable
that is attributable to the manner in which the corresponding aerial units are ordered or

arranged on a planar map or surface.

Goodchild (1986) interpreted spatial autocorrelation as a descriptive index, measuring
aspects of the way things are distributed in space. As an index it provides a type of
information about spatially distribut:d phenomenon which is not available in any other
form of statistical analysis, and which can be vital to correct interpretation. If one were
forced to summarise a spatial distritution of unequal attributes in a single statistic, one
would in all likelihood choose a spatial autocorrelation index, just as one would
probably choose a measure of centr:l tendency such as mean or median to summarise a
nonspatial data set. Therefore, spatiil autocorrelation is important to both geographers
and statisticians because it reflects upon the quantity and quality of information

contained in spatial data, and ultimately ther. in the soundness of data interpretations.

We now formally define spatial aut>correlation following Cliff and Ord (1973, 1981).
Suppose we consider a study area which is exhaustively partitioned into n non
overlapping subareas (say countries). Suppose that a random variable, X, has been
measured in each of the countries, and that the value of X in the typical country k is
given by x;. X could describe either (1) a single population from which repeated
drawings are made to give the {x,}; (2) n separate populations, one for each country
(populations will usually assume tc be identically distributed); or (3) a partition of a
finite population among n countries. The choice between population models (1), (2) and
(3) for generating the sample country values depends upon the problem in hand (see
Cliff and Ord 1973 for examples of this). A basic property of spatially located data is
that the set of values, {x,}, are likely to be related over space. If {x,} displays
interdependence over space then we say thet the data are spatially autocorrelated. That
is, when every pair of countries k ard j in the study area the drawings which yield {x,}

and {x;} are not all pairwise uncorrelated.
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Most geographic data series may be interdependent because the data are influenced by
processes that connect different places, including spatial interaction and spatial diffusion
processes; or by phenomena that e:itend over space to occupy regions, countries and
areas rather than point locations. Spatial interaction illustrates the movement of goods,
people, or information over space. livents or circumstances at one place can affect the
conditions at other places if these plices interact. An example of which is the prices and
the quantities supplied in a group of spatially located markets. They may exhibit
interdependence if the markets are c/ose enough to exchange commodities. In particular,
prices at one location are likely to te dependent of prices at the other locations if they
are near enough for supplies of a commodity to be moved between them. Concerning
spatial diffusion, it deals on how frequent or intense the dispersion of a certain
phenomenon is from a set of origins. An example of which is that innovation on
computer technology may depend or distance from origin. Locations that are near to one
another are likely to have similar dis tances from an origin, and hence would experience

similar advances on computer technclogy.

Many geographic phenomena or ac ivities extend over space to occupy regions rather
than single point locations. The spice or region that is occupied may not always be
defined. Examples of which are the cultures, climates and housing markets. Rainfall
statistics are likely to be autocorrelated among nearby weather stations because they
experience almost the same weather events everyday. Prices of neighbouring houses are
likely to be autocorrelated because they may be influenced by similar conditions of
demand and supply. Interaction among places and extension of many phenomena over
space mean that events and circumstances at one country are likely to be dependent of
the conditions at nearby countries. This interdependence among countries brings pattern
and structure to geographic data, and it is the role of spatial autocorrelation statistics to
investigate hypotheses concerning the distribution of this mapped data. Some statistics
that can be used to test null hypothesis that the data values are independent of values at
other locations have been proposed in some studies (e.g. Moran 1948, Geary 1954, Sen
1976, Cliff and Ord 1973, 1981, Faining 1980, Upton and Fingleton 1985). One of
which is the Moran's [ statistics that was found to be the most powerful one (Cliff and
Ord 1973). This is discussed in the nzxt section.

Now we briefly turn to the question of presence of spatial autocorrelation in price data
across countries. Aten (1994) explored the existence of spatial autocorrelation in the
relative prices of goods and services across countries. Aten made used of the 1985 ICP
benchmark data in statistical analyszs about the price and income relationships across

countries. Aten's study introduced a ;patial component as part of the testing procedure in
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detecting the presence of spatial aut>correlation in relative prices. Such spatial element
is measured by, (1) the pairwise :xistence of common boundary; (2) the distance
between the capital cities; and by, ((}) the amount of trade between two countries. Aten
made used of the Moran's I coefficiznt to measure the strength of autocorrelation. The
study established the existence of s»atial autocorrelation among estimated residuals in
the cross-country demand analysis, thus reflecting the sensitivity of the prices to
location variables. Moreover, the presence of spatial autocorrelation in the estimated

residuals creates loss of efficiency in the model estimates.

With the above findings at hand, it is indeed necessary to incorporate the concept of
spatial autocorrelation in any econometric modelling procedure which make use of
price comparisons across countries. The principal aim of the present study is to examine
spatial autocorrelation in the context of multilateral index estimation using regression
models in Chapter 3. Price and quan ity comparisons over space or across countries may
exhibit geographic ordering (Aten 1994), that is, price levels of one country may exhibit
relationships with price levels of neighbouring country. With the price levels of goods
and services across countries isplaying interdependence over space, spatial
autocorrelation therefore exists. Herce, this would have a bearing on the efficiency of
the estimates of the multilateral ind>x formula discussed in Chapter 3. Indeed, there is
really a need to incorporate the ccncept of spatial autocorrelation in the context of
multilateral index number estimation. The rext section will examine the procedures for
measuring spatial autocorrelation among regression residuals. Moreover, it would

consider the spatial variables relevart for the present undertakings.

4.2 Measurement of Spatial Autocorrelation

In the previous section we saw that spatial data are location specific and are therefore
referenced with respect to each othe: so that spatial proximity can be measured. Spatial
autocorrelation is really concerned with a comparison of two types of information:
similarity among data attributes and similariry of location. The ways in which the former
can be measured depend on the type of data present, while the calculation of spatial

proximity depends on the locations.

In an attempt to devise a measure for spatial autocorrelation, two basic problems arise:
(1) which function of the variable should be used; and (2) how do we allow for the

degree of interaction between two lc cations. With the first problem on hand, one has to

determine the form for x,, and then choose on a functional form f(x,, x ;) to indicate
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spatial autocorrelation. There is a variety of ways to express f(x,, x;), but one of the
most commonly used form in p-actice is the squared difference form, that is,
Slx, x;)=(x; —x; )*. Another form which is common for joint-count statistics is the

product (x, —Xx)( x; —x). The latter is the one used for the Moran's [ statistics which

will be discussed in a later part of this Section.

Whatever the functional form for {x,} is finally selected, we still need to solve the
second problem. To do that, we neel to specify a measure of the spatial proximity W,
A variety of ways have been devised for measuring this spatial proximity variable. The
existence of a linkage between objects is often a measure of spatial proximity, since
nearby objects are more likely to be linked than distant ones. For area objects, a
common boundary between areas is a simple, binary indicator of geographical
proximity. Many of the early indices of spatial autocorrelation made use of these binary
weights. Some generalisations of these spatial proximity variables are given in Cliff and
Ord (1973). Some other forms can b: found in CIliff, et al. (1975), Cliff and Ord (1981),
and Upton and Fingleton (1985) as well as their applications. Concerning the present
study, it will utilise the spatial proximity variables used by Aten (1994) as Aten's work
is primarily focused on inter-country price data.

So far, the details for the measurement of spatial autocorrelation coefficient have been
established already but there is a necd to distil them to form a single statistic. Over the
years a number of different statistics have been developed, each having the ability to
provide distinctive revelations about spatial distributions. It is only recently that their
close form has been clearly defined (see Hubert, et al. 1981). This general-cross product

statistic is given by the equation

n n

r= Wi f(x, x;) 4.1)
k=l j=I

where Wy, ;; a measure of the spat al proximity of locations k and j; f(x;,x;) is a

function which measures the proxim ty of k and j on some other dimension; and # is the
number of spatial locations. The siatistic » was first proposed by Knox (1964) and
generalised by Mantel (1967). This r statistic bears a close relationship with the Moran's

I statistic that will be used in the dissertation.
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4.2.1 The Spatial Proximity Meast res

Selecting a spatial weighting functicn is the most important step in calculating a spatial
autocorrelation statistic. Odland (1¢'88) defined a spatial weighting function as a set of
rules that assign values or 'weights' o every pair of locations in a study area. The value
of an autocorrelation statistic will 1 ecessarily depend on these weights as well as the
data for the locations. Spatial proximity measures are often defined to represent the
arrangement of areas or points relative to one another in a conventional space, but it is
more general to think of it as a means of accommodating hypotheses about the relations
among places. Flexibility in defining the weights makes spatial autocorrelation statistics

a useful tool to investigating alternative hypotheses about the relations among places.

Generally, measures of spatial proximity are pairwise measures of physical distances
between geographic regions. Usually, they are presented as square matrices (W's) of nx

n dimension. Clearly » is the numbe - of regions, and in our present study, n would refer
to the number of countries. One ecample can be the distance between the centers of
countries. Thus, w;; being one element of the W matrix would represent the average
distance between the centers of country £ and j. Other forms of proximity structures
include that of the length of comrion boundaries to each country; a combination of
geographical distance and length of commorn boundaries; or a binary weighting function
where w, =1 if countries share common boundary and zero otherwise. The use of binary

weights for spatial proximity variabl :s is the one most commonly used.

In this dissertation, three spatial proximity measures are considered in the computation
of the spatial autocorrelation statisti:. These proximity measures are considered also in
the development of econometric mcdels which will incorporate spatial autocorrelation
in the disturbance term discussed in Chapter 5. The three measures used are: the
contiguity measure, the great circle distance between capital cities, and the volume of
trade between countries- measured by their exports and imports. These three measures
are used by Aten (1994) in her study to established the degree of geographic relationship
existing among prices of different commodities. Aten noted that what motivates her to
use these three spatial proximity measurss in examining the existence of spatial
autocorrelation with respect to prices are the possibility of testing hypotheses that
boundaries, distances or trade voluines capture differences in transport costs between

countries. The succeeding paragraphs would define these three measures.
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The contiguity measure

Following the definition of Hordijk [1974), any two countries are said to be contiguous
if they have a common boundary of non-zzro length or if they are spatially adjacent.
Hence, a country is considered as non-contiguous with itself. The later claim is one of
the property developed by Moran (1948). On the basis of the above definition, a
simplest proximity measure could b defined as a set of binary weights that have value
of one for countries that share a boundary and zero otherwise. In matrix form, a simple
nxn contiguity matrix is given by W where each element wy =1, (jk=1,2,.n), if
country k and country j share a common boundary and wy=0 otherwise. It could be
noted that wy=0, for j=k, as ccuntry is considered non-contiguous with itself.
Obviously, the contiguity matrix W would rhen be symmetric. It is of advantageous to
use this kind of spatial proximty measure when one is investigating spatial
autocorrelation in irregularly spaced points or for irregular areas and locations.
Furthermore, most studies which tse the Moran's I statistics utilised this proximity
measure (e.g. Cliff and Ord 1973, Hordijk 1974, Ord 1975, Sen and Soot 1977,
Brandsma and Ketellaper 1979a, Mi 'on 1984 ). In addition, the contiguity matrix is easy

to construct.
The distance measure

Another feasible alternative which will more closely reflect the quantity of inter-country
interaction is to allow proximity values to depend in some way on the geographical
distance between the countries. This can be both applicable to point data as well as area-
based data. We will call this second measure of spatial proximity as a distance matrix.
Measured in kilometres, it is definel as the shortest great circle distance between each
country's capital city. So for a distaice matrix W, wy,=0 for j=k, and w,;>0 otherwise.
This will always mean that there are no off-diagonal zeroes in the W matrix. It could be
noted that both the distance and contiguity matrices are symmetrical, with wy=w, for all
Jj and k. The distance matrix recognises the fact that, in the real world, interaction
between countries does not usualy terminate sharply beyond countries that are
immediate neighbours. A similar 1V matrix like this is used in the study of Ripley
(1977). Other kind of distance measures can be found in Cliff and Ord (1981).

The trade measure

Often a strong reason can be found for structuring the W matrix. Gatrell (1979) argues

that in some applications it may be ippropriate to base the measure of proximity on an



index of social or economic interaction rather than distance. The present study considers
a third proximity matrix that reflec:s the trade flows between countries. Each element
of the trade matrix W is calculated by using the exports or the imports between
countries. That is, w,; is the volume of exports from k to j or the volume of imports from
J to k. Obviously, wy; may not necessarily be equal to w,, hence the trade matrix will not

be symmetric (see Aten 1994).

As a summary, in the contiguity matrix, a value of one indicates countries which are
neighbours while a zero value indicates that there is no common boundary between
them. While for the distance matrix, the larger the value the greater the distance, and
hence it is the inverse of the distarce that should be used as elements of the matrix.
Lastly, in the case of the trade mat ‘ix, the higher the value indicates more exports or
imports, or both, and hence more in eraction between countries, so that the direction of
this proximity matrix is the same as that of the contiguity matrix. Both the distance and
trade matrices can be viewed as ger eralised proximity measures (Upton and Fingleton
1985, p.176). One satisfactory side effect of using generalised proximity measures is
that the distribution of the test siatistic will be more closely approximated by a
continuous function such as the no 'mal distribution (Cliff and Ord 1981, p.56). This

latter claim is discussed much furthe - in nex: section.
Normalisation of the proximity measures

The contiguity measure discussed ajove in the sense are sets of binary weights itself.
However, for the other two proxim ty measures discussed previously, the elements of
both the distance and trade matrices should be normalised so that the entries on the W
matrix can be taken as weights. This is done by dividing each row element of the W
matrix by the corresponding row tot.ils or sum, making the entries of the W lie between

zero and one, hence a new row sum of unity for the normalised proximity matrix.

As a specific example, Australia's exports from the UK are expressed as a proportion of
Australia's total exports rather thar absolute value. This allows the trade matrix to
capture trade flows in proportion to the size of countries, that is, relative columns rather
than absolute trade volumes. Similaily, for the case of the distance matrix, the distance
between Sydney and London is expiessed as a proportion of the total distance between
Sydney and all other capital cities of the countries considered in the distance matrix. All
other forms of proximity measures with the exception of the contiguity matrix should
undergo the normalisation process cefore they can be used in the context of spatial

autocorrelation analysis. One of the most important implication of this normalisation
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process is for the plausibility of th: Moran's I coefficient when computed using this
proximity measures. Normalisation >f some generalised proximity measures led also to

the natural interpretation of the said ;patial rneasure.
4.2.2 The Moran's | Statistic

Moran (1948) proposed a useful statistic to measure spatial autocorrelation. Most
studies dealing with spatial processcs referred to it as the Moran's I index. The Moran's

I statistic 1s defined by

n }: wki(xk—)?)(xj—)?)
kel =l (4.2)
Sy ¥ (x,—%)*

Moran's I =

M=

(]
o
1

where n is the number of countries; x, is the value of the attribute of interest for country

k; and, wy; is the proximity variable from our proximity measure W. The term S, is the

total of the weights in the proximity matrix W, e.i., Sy, = Z{_Z7_w,.

In Aten (1994) study, x, is chosen to be a price relative for a certain commodity in
country k. In this section we assume that the {x,} are raw data ( independently observed
values) obtained from n countries rather than residuals from a calculated regression or
trend surface. Testing for spatial antocorrelation among regression residuals presents

special problems and this is discussed in Section 4.4

It could be noted that equation (4.2) would be identical to r in (4.1) if we divide r by §,,
and by the sample variance of the observed x-values. In addition f(x,, x;) is given by

the distance between the x-values at >ountry k and j. Odland (1988) noted that Moran's /
is merely a spatial autocovariance measure standardised by two terms, namely; the
variance of the data series X;_/(», —X)>, which depends on the x, values but is

invariant with their arrangement; and, {n/S,}. The second term is a measure of
connectivity for the set of countrics and its value could change if the map of the

countries were rearranged, but will not change with changes in the x, .

If there is no spatial autocorrelaticn, the value of the Moran's [ statistic in equation
(4.2) approaches -[//(n-1)] (Upton and Fingleton 1985, p.170). This would imply that
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x, are independent of the values x of at neighbouring locations. When the values of /
exceed -[1/(n-1)], it would indicate ¢ positive spatial autocorrelation in which values of
x, tend to be similar to neighbouring values. However, when the computed value for [ is
below -[//n-1)], it would indicate a negative spatial autocorrelation in which
neighbouring values are not indepen lent but tend to be dissimilar. It could be notice that
-[1/(n-1)] approaches zero as n increases, which is the expectation for an ordinary

correlation coefficient to be zero when there is no correlation present.

When there is a maximum positive spatial autocorrelation, the value of the Moran's /
statistic approaches one. It could be noted that the Moran's I values are not restricted to
the -1 to 1 range, unlike most of thz classical correlation coefficients (Moran 1948). 1
can exceed the value 1 for certain matrices of weights W and samples of attribute values
(e.g. Cliff and Ord 1973, p.120). A more unambiguous interpretation of the Moran's /
statistic is given in Goodchild (1980, p.16). The present study shall concentrate on the
Moran's [ statistic as it was shown by CIiff and Ord (1973, 1981) that tests based on /
are consistently more powerful thai those based on any other spatial autocorrelation
statistics. The Moran's [ statistic will oe used in the measurement of spatial
autocorrelation among prices of commodities in the countries considered in the present
dissertation.

The sampling distribution of Moran's I Statistic

Cliff and Ord (1981, p.46) have slhiown that the mean and variance of the sampling

distribution of Moran's I under randomization process are given by

E(I)=-1/(n-1), (4.3)

Var(r) =MV =30 +3)S, =S 387 )~ k{n(n-1)S, ~2n8, +6S5} 1 s
- (n—1)(n--2)(n=3) S2 o @

where

n 1s the number of countries;
k is the sample kurtosis coefficient, e.i k=m,/m3, where m, is the rth
sample moment about the mean givea by m, =1X7_ (x, - )",

S, 1s the total of the weights in the W matrix, i.e.
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So =T Ziowy, (k#j);
S =3Z T wg+wy ) (k# )
S2 = Z:l (wko + M)ok)2 ; and

w,, and w,, are the row and column totals of the W matrix,

. _n wn .
Le,wy, =2 w, and w,, =2, ,w, ,respectively.

Following the results of Cliff and O d (1972) and Sen (1976), it is possible to assume /
to be approximately normally dis ributed under the null hypothesis of no spatial
autocorrelation, when n is relatively large. Normality hinges on the number of countries
under consideration, and on the ext¢nt and manner in which they are interconnected in
the W proximity matrix. With the latter reservation, it can be justified that n=20 is
sufficient enough to assume normali'y (Upten and Fingleton 1985). Cliff and Ord (1973,
p.21) assumed that a sample size of 16 is adequate to ensure the accuracy of the normal
approximation results. Moreover, Monte Carlo simulation results (Cliff and Ord 1972,

p-39) established that approximation are not satisfactory when » is small,( n<10).

4.3 Spatial Autocorrelation in a Regression Model

Spatial autocorrelation is introducec in the preceding section as a characteristic that can
be used to investigate interdepencence among spatial data or observations. Other
statistical models can also be used to investigate spatial patterns, and spatial
autocorrelation statistic can play an important role if it is used in conjunction with these
models. Regression models are widely used in geography, and spatial autocorrelation
statistics are especially important ir fitting regression models to spatial data. How to
formulate spatial autocorrelation as a parameter of a statistical model will then be a
major concern. In this section a general linear statistical model is considered and a
spatial autocorrelation parameter is specified in its disturbance term. Two estimation
procedures for the specified spatia. model are also discussed in the later part of the

section.
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4.3.1 Spatial Disturbances Modeli

Suppose we consider a general linea” model in matrix form defined as
Y=XB+u (4.5)

where Y is a (n X 1) vector of obseived sample values, X is a (n X k) matrix of known
values of explanatory variables, B is a k-dimensional vector of unknown coefficients,
and u is an unobservable (n X 1) vector of uncorrelated and identically distributed
disturbance terms. Moreover, let 27 be a non-stochastic matrix of rank k and u is
normally distributed with mean E(u =0 and variance E(uu')=®=c2¥, where ¥ is an (nx
n) known positive definite symmeiric matrix and 62 is an unknown scalar. Assume
further that the disturbances are not heteroskedastic, that is, the diagonal elements of ¥

are identical.

Following Judge, et al. (1988, pp.327-32), the generalised least squares estimator (GLS)
of B is given by

f}:(k"P"X)_lX"P‘IY, (4.6)
where its covariance matrix is defined as
~ Py _ _l
Cov(B) = (x¥'x)". 4.7)

The Gauss-Markov Theorem asserts that 3 is a best linear unbiased estimator of P (see

Judge, et al. 1988, p.203). An untiased estimator of ©? can be obtained using the

formula

52 _(Y=XB) ¥ (Y- XP)
n—k '

(4.8)

The most popular form of autocorr:lation ased in econometric literature and one that
has proved to be useful in many af plications, is the first-order autoregressive process

which leads to a specific form for ¥ and ®. The presence of autocorrelation among
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regression residuals leads to biased zstimate of the residual variance 62 and inefficient
estimates of the regression coefficicnts 3 when the method of ordinary least squares
(OLS) is used. On the other hand, if there (s no autocorrelation and GLS procedure is
used, our estimates of  will be inefficient. It is therefore important to test for the
presence of autocorrelation. Testing for the presence of spatial autocorrelation among

regression residuals is discussed in the succeeding subsection.

Spatial autocorrelation in regressicn residuals has two closely related implications.
Odland (1988, pp. 48-9) stated them as follows.

1. Spatial autocorrelation in tke residuals indicates that the model is incorrect or, at
least, incomplete. A complete and correct model would explain all of the systematic
spatial organisation in the dJata and leave residuals that displayed no spatial
organisation at all. The model needs o be corrected in order to provide a suitable

explanation of how phenomena are organised in space.

2. Spatial autocorrelation in the residuals indicates that the regression model fails to
fulfill an important independe1ce condition. Consequently, it will not be a reliable
basis for making statistical inf¢ rences and inferences based on the model are likely to
be mistaken. The model needs to be corrected before it can be a reliable basis for

testing hypotheses.

Based on the above implications, if ‘he regression residuals are spatially autocorrelated,
then the model given in (4.5) may be misspecified. An additional variable related to
location or proximity variables reeds to be incorporated in the model. Spatial
autocorrelation in the error structures means that the error at each location depends on

the error at the other locations.

When regression errors possessed geographic ordering, the first-order Markovian

scheme can be specified for the error structure of model (4.5) given by

n
u; :przjui tv, i=123..,n (4.9)
J

where the {w;} are the spatial weights defined in Subsection 4.2.1, p is a scalar
parameter and v; 1s another error term. Mcst of the studies on spatial autocorrelation

have assumed the above specificati>n for linear statistical models (e.g. Hordijk 1974,
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Aurora and Brown 1977, Cliff and Ord 1973, 1981, Miron 1984, Upton and Fingleton
1985, Griffith 1987).

In matrix form, (4.9) can be written as

u=pWu+v 4.10)
or
u=(1-pw)'v 4.11)
where
u is an n X n vector of distarbance terms;
p is a scalar parameter;
Wis an n X n matrix of proximity weights; and,

v 1s a column vector of disturbances.

Equation (4.11) explicitly shows the marginal direct and indirect effects of v on u (see

Miron 1984, p.214). We further assume that E(v)=0 and E(wv')= cf, I, where is the

n-?*

variance cf is the variance of v,, a fth element of v, for all 1's.

In general, the proximity matrix W can be defined in any fashion, depending on the
researcher or upon the study in hanc. It is important to stress that care must be used in
the choice of W to avoid spurious co relation (Cliff and Ord 1973, p.12). That is why in
the present study, three different se:s of proximity weights will be utilised. A general
rule must be observed for the elements of these W matrix. This rule as previously
mentioned in Subsection 4.2.1, is su:h that W matrix should be normalised for each row
summing to unity, that is, Zw; =1. This has the effect of making W asymmetrical and
usefully restrains p within the rar.ge -1 to 1 when it is estimated. However, the
magnitude of p would depend on the W matrix and sometimes gives a value outside this
range. Moreover, Odland (1988) stressed that such normalisation is really necessary for
p not to imply a spatial trend in each of the element in u. The parameter p, just like the

Moran's I measures spatial associatic n in the residuals.

Following the assumption that v ~ N (0, 651,, ) and assuming (I - pW) is positive definite,

the sampling properties of u in model (4.5) if it suffer from spatial autocorrelation is
given by



E(u) =0,
E(uw')=(I—d>W) " E(w' )(I-pW')™!
5 , | (4.12)
=0, (I-pW')I-pW)]
=cl ¥
where
Wl = [(T-pW' )(I—-pW)]. (4.13)

Equations (4.5), (4.10) and (4.12) sumrmarise the specification of the spatial
disturbances model. The empirical task now is to estimate p, B, 62 and the standard

errors of these estimates which is discussed :n Subsection 4.3.3.
4.3.2 Testing Regression Residuiils for $patial Autocorrelation

Cliff and Ord (1981) developed a te: t statistic based on the Moran's [ statistic defined in
Section 4.2.2 to investigate the prcsence of spatial autocorrelation in the disturbance
term of any linear model for spatial data. The method for testing its significance is also

suggested by these authors. This is d scussed below.

Consider a linear regression model for spatial data given by (4.5) with the assumption of
normality and independence in its er ‘or term. Under the null hypothesis of non-existence
of spatial autocorrelation, ordinary least squares (OLS) estimation would result to an
unbiased estimator for § given by

b=(X'X)'X'Y (4.14)
where the sample vector of residual 1s estimated using

u=Y--bX. (4.15)
With spatially located data, autocorrelated errors are common, and so it is very
important to be able to test whether the assumption that E(uu')=62¥'=c62I has been
satisfied. A test statistic that would measure spatial autocorrelation among regression

residuals as well as one that can be used in testing the significance using distribution

theory is needed.
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Following Cliff and Ord (1972), tte test statistic /, designed to test the presence of
spatial autocorrelation among the residuals of model (4.5) is formulated as

u'Wu

(=227
Sy u'u

(4.16)

Clearly, all the terms used in the above test statistics have been defined previously. Cliff
and Ord evaluated the moments of ', under the assumption of normality following the
Pitmans-Koopman Theorem (Pitnans 1937 and Koopman 1942). The derived

expression for the mean of / is give1by

—n -trace(A)
(n - k) ‘ SO

E(I)=

4.17)

where A=( X' X )" X'WX, is ak x < matrix and the variance of I is expressed as

2
n

Si(n—k)n—-k+2)

2[trace(A) ]2

Var(Il) =
ar(I) —

S, +-2trace( A* )~ trace(B) — , (4.18)
1

where

B=4X'X)"'X'C*x

] (4.19)
C=—(W+W');

and both B and C are k X k matrices.

In relation to the present study, Cliff and Ord provide an alternative distribution of /
under the assumption of randomizaiion (sec also Haggett, et al. 1977, p.358). That is,
for any distribution of X we conside - the position of the observed value of / in the set of
values obtained if / is evaluated for :very possible spatial arrangement of the {x;} in the
country system. There are n perrtatior. (n/) of such values. In effect, we are
determining if the observed pattern of {x;} values, as judge by I is in any sense unusual

in the set of all possible patterns that the {x;} could have formed. As a result, the
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distribution of I under the null hypotaesis of no spatial autocorrelation for the n/ random
permutations would be identical with that of equations (4.3) and (4.4) for E(I) and
Var(l) respectively (see Cliff and Ord 1972, for proof to this statement). The same
distribution of / is applied in the stucy of Aten (1994).

Cliff and Ord (1981, Section 8.5) have shown that I is asymptotically normally
distributed as n — oo, under the null hypothesis of no spatial autocorrelation, provided
that in the proximity matrix, W, no definite set of countries dominates the study area.
Sen (1976) has also proven that the Jarge-sample size distribution of the test statistic 7 is
asymptotically normal. Monte Carlo results in Cliff and Ord (1973) suggest that the
normal approximation is indeed satis factory for n >10, in fact, in one of their example, a
sample of size 16 can be assumed to ensure asymptotic normality. However, serious
inferential error is really unlikely uniess n < 20.

Hence, for large samples, a test of significance for the I statistic may be carried out

using the (approximately) standard normal deviate given by

7= —ED)

= ~ 0,1 4.2
Ty~ NOD (420

where the mean, E(I), and varianc:, Var(i), under the null hypothesis of no spatial
autocorrelation, might be any one of those given in equations (4.3), (4.4), (4.17) and
(4.18), depending upon the data or problem in hand. The null hypothesis is rejected
whenever the observed value of Z° falls in the critical region. This implies that at 5
percent level of significance, we would reject the null hypothesis if |z*| > 1.96 and
conclude that there is a sufficient evidence for the existence of spatial autocorrelation

among regression residuals.

As a summary, test procedures for spatial autocorrelation, just like the above, should
always be applied to the residuals whenever a regression model is fitted to spatial data.
Test results can then be very helpfil in the development of an adequate model which
incorporates spatial autocorrelation in the disturbance model. The above test procedures
can easily be applied in the present study which would consider large number of sample

observations in the modelling procec ure as shown in Chapter 5.
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4.3.3 Estimation of the Spatial Model Parameters

A regression model with spatial y autocorrelated error is introduced earlier in
Subsection 4.3.1 with the assumptions on the disturbance terms given by equations

(4.12) and (4.13). An efficient estination procedure is now designed to estimate the

following parameters p B, 62 of the spatial disturbances model.

If p is known, an efficient estimator of B and 62 can be obtained using either the GLS
or Maximum Likelihood estimaticn (ML) procedures since the OLS procedure is
inefficient. The GLS estimates for B and 67 can be computed using the equations (4.6)
and (4.8) respectively. However, in practice, p is unknown and it has to be estimated

along with B and o2 .

Following Miron 1984, all the unknown parameters of the spatial disturbances model
can be jointly estimated using siinultaneous estimation procedure. Ord (1975) and
Doreian (1980) has provided an ML method for the spatial disturbances model and this
would be the initial step for the simultaneous procedure designed by Miron. The
maximum likelihood approach to fitiing this spatial model calls for a likelihood function
equivalent to the likelihood functior of a normal general linear statistical model given
in Judge, et al. (1988, p.223).

As the v are multivariate normal ( i.:., v ~ N(O, 031,1 ) ), the joint likelihood function of

v is given by

1 —v'y
L=— ex . 4.21
(2n)Tor [ 262 } (4.2h

v

However, v is not observed. The problem now is that the errors {u;} are not
independent, but are interrelated. The relationship between u and v is given by equation
(4.11), thatis, v=(1—-pW)u, where Q =(1--pW). Substituting this relation to equation

(4.21) we obtained a likelihood func ion of u«

L=|Q) : (4.22)

L p[A—(Qu)'(Qu)]
onyter | 200 |
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where |Q] is the Jacobian of the trarsformation between v and u. Taking the logarithms

of equation (4.22), we obtain the log -likelihood function
log L=—(n/2)In(21) ~(n/2)inc +In|Q - (1/(262)[w' Q' Qu]  (4.23)

Finally, as the Y are observed, rath:r than u, the final log-likelihood function for the

spatial disturbances model can be wiitten us.ng (4.15)
log L=—(n/2)In(21)—(n/2)InG? +InQ —(1/(203))[(Y— XB)QQY-XB)| (4.24)

Equation (4.24) above is a standarc. result for the log-likelihood function of a spatial
model as demonstrated in the work of Hepple (1976), Ord (1975), Cliff and Ord (1981),
and Ripley (1981). Ord (1975) simplified the maximisation of the above log-likelihood
function by establishing that

1 =[: —pW|=[T(1-p,), (4.25)
=1

where is A, the ith eigenvalue of W. Hence

Q| = In|I —pW|= izn(l —-pX,), (4.26)

i=1

Taking the partial derivative of log I with respect to B and 62 , gives

a(lgg Lo L axoar+axoaxs] (4.27)
Lol
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and

{
a(gcisz) _ —;Z—2+5—4[(Y—XB)'Q'Q(Y"XB)] (4.28)

v 14 v

Setting both equation (4.27) and (4.28) to zero yields

B=[x'Qox|'x'QQy; (4.29)

and

52 :;“I-[(Y—XB)'Q’Q(Y—XB)] (4.30)

The above expression is identical with the equations (4.6) and (4.8) respectively
provided that equation (4.13) is trte. Assuming p is known, estimates of 6 can be
readily obtained from (4.29) and with Bestglmated, equation (4.30) provides 6%. Both

estimators depend on p. This paran eter can be estimated using the ML procedure too
since the log-likelihood function( log L ) in (4.24) involves p as part of it.

Hence, an estimate of p can be obta ned by simultaneously maximising equation (4.24)

with respect to p as well as with rzspect to B and 0'5 . Miron (1984) suggests that a

possible scheme to achieve this is to substitute the quantities (4.29), (4.30), and (4.26)
Vo

for B, o2, and In|Q| respectively in the log-likelihood function (4.24), yielding a

concentrated log-likelihood functior, log L*, given by
log L*=—(n/2)[1+In"21)] - (n/2)InG} + Y, In(1— pA, ). (4.31)
i=1

Maximising log L* with respect to [» generates the following first-order condition:
n S A

_?[—zt'ﬂu-—u'ﬂ’ﬁ:up]—zm

v 1=l

=0, (4.32)

where u=(Y-XB).
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As n gets larger, the term in the b-acket cn the left of the equation (4.31) comes to
dominates (see Miron 1984). Hence, Miron suggested that when n is large, a ML
estimator of p is obtained using

u' Q

(Qu)
(uQQu)

(4.33)

n

p

The above result confirms the convergence of GLS and ML estimators at large sample

sizes.

To be able to derive the previousl’ mentioned ML estimators for B, ¢ and p, the

following step procedures is recomn ended:

1. Set an initial estimate of p and cal. it p,

. Using the proximity matri:. W, construct the Q = (1—p,W ) matrix

. Estimate 3 using equation (4.29)

2

3

4. Estimate 03 using equation (4.30)

5. Derive an estimate of « using the result in step 3.

6. Numerically solve equaticn (4.32) for the estimate of p and call it p,.
Note that for large samples we may use equation (4.33)

7. Compare p, with p,. If they have an approximately identical value, the

procedure then stop, otherwise, we set p, = p, , proceed again to step 2

and continue the process.

The iterative process is terminated vhen p converges to a certain value. The results of

which are the final estimates of thc: parameters for the spatial disturbances model. It
would of course necessary to check the local versus global nature of the option. This
culminates the simultaneous estim:tion procedure recommended by Miron using the
method of maximum likelihood for spatial disturbances model proposed by Ord (1975)
and Doreian (1980).

It is mentioned earlier that this simultaneous estimation procedure can also be done
through GLS rather than ML approach. For the least squares procedure, the main

objective is to minimise the expressiin



50

[(x-2p)@(y-xB)|, (4.34)

where @' = [(I—pW)’(I—pW)} Maximising the expression (4.34) with respect to 3

and p yields the following estimator: :

B= (X'(D“X)"X'@“Y (4.35)
n (4'Qu)

=— 4.36
P (u Q'Qu) ( )

The above estimator can be solved iteratively using the same seven-step procedure
mentioned earlier for the ML approach. In addition, the above estimators are identical to
equations (4.6) and (4.33) for large :.amples.

Following Ord (1975) and Doreian ( 1980), the asymptotic variance-covariance matrix of

the parameter estimates under the M _ approach, is given by

n/2 52 tr(B) 0’
V(32 p, B)=62 |52 u(B) &' (r(B'B)-) 0 . 437)
0 0 G2 X'Q'QX

where

o= - i }‘21 /(l_p}‘i)zy
i=1

B=wQ!

0 1is a column vector of zeros.

~

In the case of the least squares estimation, the covariance matrix for § is given by

VB)= 62 (xd'x)"! (4.38)
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where 63 can be estimated using ecuation (4.8), and ¥~ replaced by ®~'. However,
Griffith (1987) disclosed that there i; no closed form for the asymptotic estimator of the
standard error for both the parametzr estimates of (A')'f and p in the GLS approach.

Griffith also asserted that the inabil ty to determine such closed form solutions for the
latter parameter estimates reiteratcs the notion that difficulties lying dormant in
conventional statistical analysis emerge during the analysis of geographically mapped
data. These sorts of problems have e 1couraged some spatial analysts to do nothing more
than test for the presence of spatial autocorrelation among regression residuals. Much
more, the standard error matrix (4.37) for the parameter estimates derived using ML
approach highly depend on the proximity matrix, particularly on its eigenvalues. Upton
and Fingleton (1985, p.300) claimed that calculating this variance-covariance matrix
appears to be a formidable task, particularly on large W matrices. Numerical extraction
of the eigenvalues may find to be difficult and matrix inversion of large matrices is
considerably a computer burden (O-d 1975). But these computational difficulties may
not be of same relevance in the modcrn day computing.

4.3.4 Goodness-of-fit Test and Evaluation of the Spatial Parameter Estimates

Given the specification of the spztial disturbances model, it is desirable to assess
whether p is truly non-zero and to perform usual inference procedures on [.

Assessment of the desired spatial model can also be made through comparisons of the
standard error estimates for 63 . Likewise, an overall measure of goodness-of-fit may be

adapted for linear spatial models.

Examining equations (4.5) and (4.10), it is evident that the effect of spatial
autocorrelation is that u is linked via p (usually positive in magnitudes) and the
proximity matrix W to u for contiguous countries, so that the residual sum of squares
is a downwardly biased estimate cf the error sum of squares (Upton and Fingleton
1985). Ignoring this bias in the resid 1al variance estimate, one would then come up with
inflated values of the conventional ., F, and r? statistics. The following alternative test
approaches have been suggested b7 Upton and Fingleton as substitutes for the said

conventional test statistics.
The r*2 statistic

If the specified spatial disturbances model is a good fit to the geographically ordered

data, then the estimate for &2

ob:ained using either equation (4.8) or (4.30) will be
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comparatively small when comparzd to the total variability of Y. Doreian (1981)

proposed a useful summarising quar.tity exoressed as

[i(x -Y)? /ﬁ}&ﬁ
i=1 /
n /
[Zm ~7)? /n:|

=1 /

r* =

(4.39)

The quantity r*2 is simply the samp e proportion of the variation in Y that is explained

by the spatial disturbances model. This quantity is identical to r?> of the classical
statistical approach when G? is es imated using OLS. A relatively high value for r*2

would mean that the spatial disturbances model has been quite successful in explaining
the original variability in the sample. Doreian derived equation (4.39) as the square of
the observed correlation between Y «ind 1? hence, just like r2, this could be thought as a

good measure of fit for the specified spatial disturbances model.
The ratio test

It is mentioned earlier that the #-test is, strictly speaking, invalidated by the presence of
spatial dependence. An equivalent test was suggested by Upton and Fingleton (1985)
which relies on the asymptotic normrality and independence of the estimators defined in
Section 4.3.3. The procedure involvzs comparing the value of the ratio of an estimate,

0, to its estimated standard error, s.e.(é), with the appropriate critical value from a

standard normal ( N(0,1)) distributio 1. The test statistic is given by

A

Estimated Ratio =

= 4.40
s.e.(9) ( )

which is then compared to N(0,1). This would mean that if the estimated ratio lies
outside the approximate 95 percen two-sided critical values of +1.96, it would be
evident that 6 deviates significantly from its expectation ( i.e., zero under the null

hypothesis ) at 5 percent level of sig nificance. The fact that the spatially autocorrelated
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error model incorporates a location effect into its error structure, it has a profound effect

upon the apparent significance of the explanatory variables, X.
The Likelihood Ratio Test

So far, attention has been focused on testing the significance of individual parameter
estimates. An alternative approach to test the significance of these sets of parameter
estimates can be accomplished through the well known likelihood ratio test (LR).
Likelihood ratio test can assess tte significance of either an individual parameter
estimate or sets of parameter estimates. This test is necessary also in determining the

adequacy of any fitted model.

Basically, one compares a pair of nested mcdels, the second of which is identical to the
first apart from the j ( j 21) restrictions that have been placed on the parameters of the
first model. This pair of models is tsually termed as restricted and unrestricted models
respectively. In this case, the proporned spatial disturbance model can be considered as
the unrestricted model while the original model without the spatial variable can be

regarded as the restricted one.

In practice, the LR test considers the log-likelihood function of both the restricted
(log(Lg)) and unrestricted (log(L,)) models. Under the null hypothesis that the
restriction is true, that is, the spatial parameter p is not significantly different to zero,

the test statistic is defined by
LR =--2 [log(Lg)—log(Ly)] (4.41)

The above test statistic is asymptotically distributed as xi , j being the number of

restrictions. Rejection of the null 1ypothesis would mean that the proposed spatial

disturbances model seems appropriate or adzquate for the geographically-located data.

Comparing two spatial disturbances models would mean, looking at which form of W
(proximity measures) would really yive the best fit for the spatial data. As LR cannot
accommodate this case, a simple procedure can be done to compare the two spatial
models. An intuitive way is to look at their corresponding value of the log-likelihood
function. An estimated parameter fcr which log L given by equation (4.24) is large is
more likely to be the true value for the parameter than for which log L is small (Judge,
et al. 1988, p.223). Hence, a spatial disturbances model that has relatively large value of

log L would then have the better proximity measure, W, to capture the effect of v on u.
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This would be the criteria to be able to detect the sensitivity of the spatial model on the

location variables.

4.4 Concluding remarks

This chapter has essentially focuscd on the conceptual framework associated with
spatial autocorrelation, its measuiement and then the treatment of specification,
estimation and hypothesis testing - spatial autocorrelated within a standard regression
framework. Several proximity measures have been defined to account for this spatial
phenomena.  The next chapter will apply this framework, with appropriate
modifications, to the regression niodels that result in the TT and CCD indices.
Conceptually, spatial autocorrelation plays a role only in the case of the model for the
CCD index.



