POLARIZABILITIES AND HYPERPOLARIZABILITIES FROM STUDIES OF THE TEMPERATURE DEPENDENCE OF THE KERR EFFECT IN GASES AND VAPOURS

Вy

.

EWAN WILLIAM BLANCH

BSc (Hons)

A thesis sumitted for the degree of Doctor of Philosophy of the University of New England.

May, 1996

PREFACE

This thesis describes research undertaken at the University of New England, under the supervision of Professor G.L.D. R tchie.

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submittee for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

ACKNOWLEDGEMENTS

I would like to express my gratitude to the many people whose invaluable contributions made this work possible. In particular, I wish to thank my supervisor, Professor G.L.D. Ritchie, for his guidance, encouragement and generosity; Dr M.A. Spackman for his advice and for patiently answering so many questions; and Professor A.D. Buckingham FRS for helpful discussions on the relationship between the polarizability axes for molecules with C_s symmetry.

This research would not have been possible without the expertise and continuous support of technical staff and the workshops. I would like to thank Mr I.E. Craven for his help with all matters electrical and for his generous assistance throughout; Mr B.D. Jones, Mr M.A. Beveridge, Mr L. Hodges and Mr P.C. Henry for their craftsmanship and hard work; Mrs S.A. Styles for easing the administrative headaches; and Ms C. Rowbottom, Mrs M. Costigan and Mrs J. Kenny for their help with the gas analyses and other assistance.

Mere words cannot express n y gratitude to my fellow postgraduate and postdoctoral students for their friendship, interaction and assistance with sections of this work; but thanks and best wishes to Dr J.N. Watson, Mr R.I. Keir, Dr D.W. Lamb, Mr A.J. Russell, Dr M.H. Coonan, D₁ A.S. Brown, Mr R. Stankey, Mr G. The and Dr M.R. Hesling.

Finally, I wish to thank my family and Angela Nesic for their love, encouragement and for always being there.

ABSTRACT

The Kerr effect in gases and /apours is an important source of information about polarizabilities and hyperpolarizabilities, which describe the change in the electronic charge distribution of a molecule induced by an external electric field. Significant improvements made to the apparatus used to measure the temperature dependence of the Kerr effect, that increased the signa -to-noise ratio and the range of species that could be successfully investigated, are described in this thesis.

Kerr effect measurements were performed on ammonia, methylamine, dimethylamine, trimethylamine, methylacetylene, dimethylacetylene, bromomethane, dibromomethane, tribromomethar e, tetrabromomethane, 1,2-difluorobenzene, 1,3difluorobenzene, 1,4-difluorobenzene, 1,2,3,5-tetrafluorobenzene, 1,2,4,5tetrafluorobenzene, pyridine and fluoroethane. Rayleigh light-scattering measurements were performed on 1,2-difluorobenzene and 1,3-difluorobenzene. The results from these studies were combined with other data to determine the polarizabilities, static polarizability anisotropies and the Kerr first and second hyperpolarizabilities of the molecules of interest. A procedure combining experiment and theory to obtain the polarizabilities of species with C_s symmetry in their equilibrium conformations is also described. The results are discussed in terms of the structures of the molecules, and the effects of atomic and functional-gro up substitution on the above properties are examined in detail.

TABLE OF CONTENTS

		Page	
CHAPTER	1 - INTRODUCTION AND THEORY		
1.1	Introduction	1	
1.2	Theory of the Kerr Effect	2	
1.3	The Kerr Second Vir al Coefficient	4	
1.4	Quantum Mechanical Theory	5	
1.5	The Electric Polarizability	5	
1.6	Theory of Rayleigh I ight Scattering	8	
1.7	Bond Additivity Schemes For The Polarizability	10	
1.8	Computational Metheds	10	
1.9	Molecular Hyperpola izabilities	11	
1.10	Discussion	15	
1.11	References	17	

CHAPTER 2 - EXPERIMENTAL DETAILS

2.1	Introduction	20
2.2	Kerr-Effect Apparatus	20
2.3	Modifications to the Apparatus	25
2.3.1	Gas Kerr Cell	25
2.3.2	Electrodes	27
2.3.3	Gas- and Vapour-Handling System	28
2.3.4	The Laser and Detector	29
2.4	The Principle of the Experiment	30
2.5	Error Analysis and Alignment Procedure	33
2.6	Measurement Procedu e	35
2.7	Rayleigh Light-Scattering Apparatus	38
2.8	Rayleigh Light-Scattering Measurements	40

.

	2.9	Discussion	41
	2.10	References	43
CHAF	PTER 3	3 - ELECTRIC POLARIZABILITIES AND HYPERPOLARIZA	BILITIES
		OF THE METHYLAMINES	
-	3.1	Introduction	45
	3.2	Experimental	46
ŝ	3.3	Discussion	47
3	3.4	Conclusions	72
3	3.5	References	73
CHAP	TER 4	- THE KERR EFFECT'S OF METHYLACETYLENE AND	
		DIMETHYLACETY LENE	
4	.1	Introduction	75
4	.2	Experimental	76
4	.3	Discussion	76
4	.4	Conclusions	87
4	.5	References	88
CHAPT	FER 5	- POLARIZABILITIES: AND HYPERPOLARIZABILITIES OF	THE
		BROMOMETHANES	
5.	.1	Introduction	89
5.	.2	Experimental	90
5.	.3	Discussion	95
5.	.4	Conclusions	112

113

.

References

5.5

CHAPTER 6 - ANISOTROPIC PC LARIZABILITIES OF THE FLUOROBENZENES

6.1	Introduction	115
6.2	Experimental	116
6.3	Discussion	124
6.4	Conclusions	140
6.5	References	141

CHAPTER 7 - POLARIZABILITY AND HYPERPOLARIZABILITY OF PYRIDINE

7.1	Introduction	143
7.2	Experimental	144
7.3	Discussion	144
7.4	Conclusions	153
7.5	References	154

CHAPTER 8 - KERR EFFECT, AN ISOTROPIC POLARIZABILITY AND

HYPERPOLARIZA 3ILITIES OF FLUOROETHANE

8.1	Introduction	156
8.2	Experimental	157
8.3	Discussion	157
8.4	Conclusions	167
8.5	References	168

CHAPTER 9 - CONCLUSIONS

9.1	Electric Polarizabilities	169
9.2	Kerr First Hyperpolar zabilities	171
9.3	Kerr Second Hyperpolarizabilities	172
9.4	Kerr Second Virial Coefficients	173
9.5	References	174