

Sustainability of the Armidale fuelwood industry on the Northern Tablelands of New South Wales: resource yield, supply, demand and management options

Julian Wall B.Nat.Res. (Hons) (UNE)

February 1997

A thesis submitted for the degree of Doctor of Philosophy at the University of New England

Set the match. Watch how the fire begins A wince, a flicker, blue, and full of gold at the core. Spreading, it grips like teeth, draws air like breath. It has work to do, centuries of deadwood for raging through. Thats how the fire begins.

from "Bid Me Strike the Match and Blow"

Judith Wright, 1971.

Declaration

I declare that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I declare that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Acknowledgments

I wish to thank my supervisor, Dr. Nick Reid. for his direction and encouragement throughout this study.

I greatly appreciate the help of all who participated in the field. Special thanks to Jeremy Wilson, in whom I made a genuine friend. His company in the forest and persistence with the diameter tape I shall never forget. Also Bill Upjohn, senior technical officer. for great assistance in measuring and weighing trees. Many thanks to Graham Carter, Chris Chilcott, Andrew Dodds and Hugh Harris for assistance and companionship in the field.

I would like to thank Phil Fogarty and Steve Goldsmith of the Armidale Lands Office for allowing me to use aerial photographs, and Shirley Sweep for assistance in the office. Thanks also to David Curtis (Greening Australia), David Wilson (SF NSW) and Julian Pryor (DLWC) for ideas and comments throughout. My gratitude to Greg Roberts and the staff of Armidale EPA for assistance with emissions inventory, and Mike Porter at Armidale City Council for his involvement in irrigation research.

I gratefully acknowledge Beth Williams and 'Save the Bush' for financial support in mapping, and Michael Drielsma of the NSW NPWS Armidale GIS Unit for assistance in preparing my study site map.

Thankyou Dr. Dazzler Quin, Dave Anderton and Rebecca Spence for proof reading and final comments, and thanks to all staff and post-graduate students of the Department of Ecosystem Management. UNE, for creating a friendly and stimulating environment in which to pursue my goal.

A final special thanks to my closest friends :

Jo and Ray, my parents, for showing dedication to my cause. Tessa Lock, my lovely wife, thankyou for your help, love and support throughout.

Abstract

Fuelwood is a significant form of home heating in eastern Australia. Demand is increasing in response to the popularity and efficiency of modern woodheaters, yet supply around some major centres such as Adelaide and Canberra is not sustainable under current management. The industry has often been likened to a mining operation. Cutting tends to target dead timber with little thought for replacement. Extraction is usually *ad hoc*, and many roadside reserves and other public lands are degraded by unregulated cutting.

Fuelwood is the major form of domestic heating in Armidale and surrounding Northern Tablelands. Winters are cold and heating is essential. Regional consumption is 31 000 t.yr⁻¹, of which Armidale consumes 18 000 t.yr⁻¹. In the late 1970s and 1980s, fuelwood was in plentiful supply due to dieback and broadscale clearing. As dieback intensity and clearing have slowed in recent years, however, supply has become a concern. Over 80% of fuelwood is extracted from dead eucalypts on private land, none of which are actively replaced. Supply may be unsustainable in certain areas, because 60% of wood merchants and urban fuelwood collectors claim that existing supplies are being depleted, and they are forced to travel further from Armidale to harvest dead wood. The average price of delivered fuelwood (\$65 t⁻¹) is too low to ensure long-term supply by encouraging landholders and merchants to grow fuelwood commercially, and there is a general community perception that dead trees are expendable. Dead fallen logs and branches are absent from some local stands as a result of repeated visitation by private collectors. Given the structural and functional importance of dead timber in forest ecosystems, and the lack of environmental codes of conduct with respect to its removal, Armidale's fuelwood industry may be ecologically unsustainable in stands where dead wood is regularly depleted.

This thesis investigates the hypothesis that ecological sustainability can be ensured within the fuelwood industry through appropriate forestry practice. The local timber resource is first estimated using a three-stage forest inventory including tree mensuration, stand inventory and regional timber assessment. The yield of eucalypt stands is assessed using tree-stump aging, tree-ring analysis and permanent growth plots. and the yield of native plantings dominated by *Acacia, Casuarina* and *Eucalyptus* is determined using volume-age analysis. Silvicultural and institutional practices best suited for managing Armidale's timber resource are reviewed, and preliminary economic analyses are undertaken to determine the financial viability of on-farm fuelwood projects.

The Armidale region contains a total of 31.7 Mt of standing fuelwood biomass, much of which is inaccessible. About 2.4 Mt within 172 km² of eucalypt forest is considered suitable for fuelwood extraction, located in relatively large stringybark-dominated stands with a growth increment ranging from 2-3 t.ha⁻¹.yr⁻¹. Armidale's entire demand could be drawn from this forest base on a sustained yield

basis. The yield of native trees in shelterbelt plantings is encouraging: up to 10 t.ha⁻¹.yr⁻¹ can be achieved after 20 years. It follows that 2500 ha of farmland dedicated to agroforestry could also sustain Armidale's fuelwood demand in the long-term, obviating extraction from native forest and woodland.

Two broad forestry practices for fuelwood production are suggested within a framework of sustainable pastoralism on the Northern Tablelands: group-selection silviculture in native forest with livestock exclusion and retention of dead timber; and agroforestry on pasture land (production shelterbelts and coppice-rotation tree plantations). Given a parallel strategy of industry regulation, including a price increase to encourage farmers to grow trees for fuelwood, these practices could ensure ecological sustainability in the fuelwood industry. On-farm timber volumes would be maintained or increased, biological conservation encouraged, and agricultural income improved.

Contents

Acknowledgments	iii
Abstract	iv
List of Tables	xii
List of Figures	XV
List of Plates	xviii
Chapter 1. Introduction	1
1.1. Fuelwood - the worldwide perspective	1
1.1.1. Background	1
1.1.2. Fuelwood scarcity	2
1.2. Fuelwood - the Australian perspective	4
1.2.1. Status	4
1.2.2. Supply and demand	4 4
1.3. Overview of thesis	5
1.3.1. Setting	5
1.3.2. Main Hypothesis	6
1.3.2. Research aims and objectives	6
1.3.3. Structure	7
Chapter 2. Fuelwood consumption and supply in the Armidale region	8
2.1. Introduction	8
2.2. Region of study	8
2.2.1. General description	8 9
2.2.2. Pastoralism and land clearing 2.2.3. New England dieback	9 10
2.2.4. Definition of the study region	10
2.2.5. The nature of fuelwood in southern New England	15
2.3. Methods	17
2.3.1. Fuelwood surveys	17
2.3.2. Domestic fuelwood consumption	18
2.3.3. Rural fuelwood consumption and supply	19
2.4. Results	20
2.4.1. Fuelwood consumption and supply in Armidale	20
2.4.2. Rural fuelwood consumption	26
2.4.3. Public attitudes towards fuelwood consumption	30
2.5. Discussion	33
2.5.1. Fuelwood consumption and supply in the Armidale region	33
2.5.2. Fuelwood and sustainability	34
2.5.3. Fuelwood scarcity and fuelwood price	36
2.5.4. Energy analysis	38
2.6. Conclusions	40

Chapter 3. Fuelwood volume and weight relationships for five eucalypt	s in
southern New England	42
3.1. Introduction	42
3.2. Methods	43
3.2.1. Species notation	43
3.2.2. Tree harvesting and weighing	43
3.2.3. Disc analysis	48
3.2.4. Tree weight, volume and density calculations 3.2.5. Statistical analysis	51 54
3.2.6. Allometric relationships of New England eucalypts	55
3.2.7. Site-specific regression functions for stringybark and yellow box	59
3.2.8. Regression functions for other fuelwood species	59
3.3. Results	62
3.3.1. Disc analysis	62
3.3.2. Tree mensuration 3.3.3. Single-variate regression	66 67
3.3.4. Multi-variate regression expressions	74
3.3.5. Effect of site quality on species height and form	74
3.3.6. Site dependent single-variate expressions for stringybark and	0.0
yellow box 3.3.7. Single-variate expressions for other fuelwood species	80 83
3.4. Discussion	85
3.4.1. Dry weight of New England eucalypts	85
3.4.2. Weight comparisons with other eucalypts	91
3.5. Conclusions	92
Chapter 4. Forest inventory for fuelwood estimation I. Forest sampling	93
4.1. Introduction	93
4.2. Methods 4.2.1. Classification of cover classes	94 94
4.2.1. Classification of cover classes 4.2.2. Stand basal area, density and species composition	94 94
4.2.3. Stand biomass	100
4.3. Results	102
4.3.1. Basal area, density and stand composition	102
4.3.2. Stand biomass	108
4.4. Discussion	110
4.4.1. Interpretation of forest inventory	110
4.4.2. Comparison with other biomass literature 4.4.3. Standing energy	112 113
4.5. Conclusions	113
	1 •
Chapter 5. Forest inventory for fuelwood estimation II. Aerial photogra	•
interpretation	114
5.1. Introduction	114
5.2. Methods	114
5.2.1. Land Assessment - mapping	114
5.2.2. Assessment of vegetation cover using API 5.2.3. Regional assessment of fuelwood biomass	117 119
J.Z.J. Regional assessment of fuerweed biomass	117

5.2.3. Regional assessment of fuelwood biomass5.2.4. Statistical analyses

5.3. Results	120
5.3.1. Total cover and biomass	120
5.3.2. Inventory of dead timber	122
5.3.3. Determinants of total standing biomass	123
5.4. Discussion	125
5.4.1. Influence of land factors on fue wood biomass	125
5.4.2. Constraints to biomass availability	126
5.4.3. Ecological constraints to biomass availability	132
5.4.4. Overview	137
5.5. Conclusions	137
Charter (Crowth and wield of native forest in southern New England	120
Chapter 6. Growth and yield of native forest in southern New England	138
6.1. Introduction	138
6.2. Methods	139
6.2.1. Natural regeneration	139
6.2.2. Tree stump assessment	140
6.2.3. Tree ring analysis	144
6.2.4. Permanent growth plots	144
6.3. Results	145
6.3.1. Natural regeneration	145
6.3.2. Stump assessment	146
6.3.3. Tree ring analysis	152
6.3.4. Permanent growth plots	154
6.4. Discussion	154
6.4.1. Natural regeneration	154
6.4.2. Yield of coppice stems	155
6.4.3. DBH increment from stump and permanent plot data	155
6.4.4. Yield of forest trees	155
6.4.5. Forest MAI	157
6.4.6. Comparison with other yield statistics	159
6.5. Conclusions	162
Chapter 7. Growth and yield of native trees planted in shelterbelts and	
woodlots in southern New England	163
7.1. Introduction	163
7.2. Methods	163
7.2.1. Species selection	163
7.2.2. Site selection and description	163
7.2.3. Tree measurements	166
7.2.4. Statistical analyses	160
7.3. Results	171
7.3.1. General	171
7.3.2. Between-species comparisons	171
7.3.3. Within-species comparisons	171
7.3.4. Species diameter, height and volume curves	176
7.4. Discussion	181
7.5. Conclusions	183

Chapter 8. Fuelwood management in southern New England.	
I. Native forests	184
8.1. Introduction	184
8.2. Silvicultural considerations	185
8.2.1. Background8.2.2. Clearfell vs. selection8.2.3. Coppice management8.2.4. Forest regeneration8.2.5. Seasoning and storing	185 185 188 189 190
8.3. Institutional considerations	191
 8.3.1. Background 8.3.2. Fuelwood price and royalty 8.3.3. Merchant licensing 8.3.4. Community forestry 8.3.5. A 'Fuelwood Forestry Code of Practice' 8.3.6. 'Debt-for-conservation' swaps 8.3.7. Public education 	191 192 192 193 195 195 196
8.4. Fuelwood forestry in southern New England	196
8.4.1. Production scenarios 8.4.2. A preliminary economic budget	196 200
8.5. Conclusions	205
Chapter 9. Fuelwood management in southern New England	

II. Agroforestry	206
9.1. Introduction	206
9.2. Species and site selection	207
9.2.1. Species selection9.2.2. Site selection9.2.3. Species testing	207 211 213
9.3. Tree establishment	214
9.4. Plantation silviculture	215
9.4.1. Coppice management9.4.2. Tree spacing and configuration9.4.3. Thinning and pruning9.4.4. Fertilising9.4.5. Grazing9.4.6. Harvesting	215 217 217 218 219 219
9.5. Fuelwood production from shelterbelts	220
9.5.1. Introduction9.5.2. Agricultural benefits9.5.3. Riparian benefits9.5.4. Design criteria9.5.5. A production scenario	220 220 222 222 222 224
9.6. Urban fuelwood from a coppice woodlot	226
9.6.1. Design 9.6.2. Economic evaluation	226 227
9.7. Public policy	232
9.7.1. Taxation 9.7.2. Assistance schemes	232 232
9.8. Conclusions	233

134
234
235
237
237 237
237
240
240
241 241
244
244
245
247 248
248
248
249
249
251
252
256
283
287
292
297
299
301
l 304
306
307
308
309
310
313

XV.	Biomass-DBH plots of harvested trees	317
XVI.	Height curves for <i>Eucalyptus</i> spp.	326
XVII.	Composite crown volume curves for the major fuelwood species sampled	330
XVIII.	Least square single-variable regression equations for green weight and volume variables of stringybark and yellow box	331
XIX.	Derivation of volume functions for grey box (<i>E. moluccana</i>) and red gum (<i>E. blakelyi</i>)	333
XX.	Theory of Bitterlich sampling	334
XXI.	Stand parameters for sites assessed using point-centred quarter and horizontal (Bitterlich) sampling	336
XXII.	Species composition and biomass apportionment in 21 eucalypt stand classes in the study area	339
XXIII.	Site summary data for immature trees	361
XXIV.	Juvenile and sapling count for each species at each site	363
XXV.	Mann-Whitney and Kruskal-Wallis tests explaining the effect of land tenure, cover, or tree class on the density of natural regeneration in southern New England	366
XXVI.	Summary data for sampled stumps	368
XXVII.	Measurements of DBH, height (HT) and fuelwood volume (VOL) for fuelwood species planted in southern New England	372
XXIX.	Least squares means, standard errors and a summary of AOV statistics for the diameter, height and fuelwood volume of trees of 6 species of varying form and number of stems	374
XXX.	Woodsmoke	386

List of Tables

2.1.	Geographical zones allocated to respondents of the landholder telephone survey according to telephone prefix	19
2.2.	Advertised versus delivered tonnage for 16 fuelwood loads in Armidale	22
2.3.	Principal means of fuelwood acquisition by Armidale residents	23
2.4.	Temporal distribution and frequency of firewood consumption for interior space heating by sampled and total Armidale households	24
2.5.	Number of Armidale households burning fuelwood for cooking and water heating over different periods	25
2.6.	Number of respondents as a function of gender of interviewee	27
2.7.	Number of landholders reporting firewood export in each geographical zone of the study region	29
2.8.	Impromptu comments given during landholder interview	32
3.1.	Number of discs sampled during tree mensuration	48
3.2.	Differences in timber and bark variables between stringybark and yellow box using data from all sample discs	63
3.3.	Differences in moisture content, green-density and air-dry density of the stems and branches of stringybark	63
3.4.	Differences in moisture content, green-density and air-dry density of the stems and branches of yellow box	64
3.5.	One-factor AOVs showing the effect of disc diameter on moisture content, green- density, air-dry density and timber : bark volume ratio for stringybark	64
3.6.	One-factor AOVs showing the effect of disc diameter on moisture content, green- density, air-dry density and timber to bark volume ratio for yellow box	64
3.7.	Between-species comparisons of volume and weight as a function of CNVOL	66
3.8.	Between-species comparisons of volume and weight as expressed by HT	66
3.9.	Between-species comparisons of volume and weight as expressed by DBH	67
3.10.	Least squares univariate regressions of weight and volume on DBH for stringybark and yellow box	68
3.11.	Least square multiple regression equations for weight and volume variables of stringybark and yellow box	75
3.12.	Analysis of the effect of site quality on the HT-DBH relationship of ironbark and grey box using <i>t</i> -tests (2 site quality classes)	76
3.13.	Analysis of the effect of site quality on the HT-DBH relationship of red gum, stringy- bark and yellow box using analyses of covariance (3 or more site quality classes)	76
3.14.	Multiple comparison of site quality differences in HT-DBH for stringybark	76
3.15.	Least squares regression equations derived from HT-DBH ordinates of fuelwood species in southern New England	76
3.16.	Multiple comparison of species-site quality d fferences in HT-DBH for five species	78
3.17.	Analysis of the effect of site quality on the CNVOL-DBH relationships of ironbark and red gum using <i>t</i> -tests (2 site quality classes)	78
3.18.	Analysis of the effect of site quality on the CNVOL-DBH relationships of stringybark and yellow box using analyses of cc variance (3 or more site quality classes)	78

3.19.	Multiple comparison of species-site quality differences in CNVOL-DBH for five species	79
3.20.	Least squares regression equations derived from CNVOL-DBH ordinates of fuelwood species in southern New England	79
3.21.	Statistical assessment of site quality differences in biomass-DBH relations of stem, branch and tree for stringybark and yellow box	81
3.22.	Least square single-variate regression equations for dry-weight of stringybark and yellow box	82
3.23.	Linear regression parameters for the DUB-DOB relationship in five fuelwood species across three diameter classes (DUB = a.(DOB))	83
3.24.	Dry-density and timber : bark volume ratio in five fuelwood eucalypts in southern New England	84
3.25.	Dry-weight equations for the timber and bark components of grey box, ironbark and red gum	84
3.26.	Dry-weight equations for the timber and bark components of the stem and branchwood of grey box, ironbark and red gum	85
3.27.	Fuelwood weight-table for New England eucalypts (weights in kg)	87
4.1.	Cover classes selected for woody vegetation in the Armidale region	94
4.2.	Number of sites, points and trees sampled within each cover class using point- centred quarter sampling	97
4.3.	Number of sites, points and trees sampled in closed and open forest of various species-SQ classes using the Bitterlich method	99
4.4.	Stand classes within which composite and total stand basal area and density were calculated	101
4.5.	Estimates of basal area, density and average DBH for eucalypt stands in southern New England	103
4.6.	Estimates of total standing, total fuelwood, and useful fuelwood biomass of eucalypt stands in southern New England	108
4.7.	Comparison of biomass of mixed eucalypt forests in southern New England with biomass of mixed eucalypt forests of similar basal area in eastern Australia	112
5.1.	Major geological groups in the study region	115
5.2.	Categories used for elevation, slope, position on slope, terrain element and aspect	116
5.3.	Categories used for distance variables	116
5.4.	Categories used for land province and land tenure	117
5.5.	Estimated values of standing fuelwood biomass (t.ha ⁻¹) in native eucalypt stands of different cover class and site quality in southern New England	120
5.6.	Number of photo-cells and estimated land area according to land tenure and cover class	121
5.7.	Estimated fuelwood biomass (Mt) in the study region according to land tenure and cover class	121
5.8.	AOV statistics generated from a general linear model of dependent variable 'fuelwood biomass' $(t.ha^{-1})$ on 15 independent variables	123
5.9.	Independent categories contributing to spatial variation in standing fuelwood biomass in southern New England (air-dry t.ha ⁻¹)	124
5.10.	Biophysical characteristics of land provinces (LPs) in the study region	127
5.11.	Land tenure and distance measures of land provinces in the study region	128
5.12.	Forest cover and biomass of land provinces in the study region	129

5.13.	Occurrence of inferior species in accessible stands on private property and state forest in the study region	132
6.1.	Number of sites and plots within which eucalypt and acacia regeneration was sampled on private land, state forest and travelling stock reserve of varying forest cover	139
6.2.	Age class (AC) and assumed mean age (AMA) for sampled stumps	140
6.3.	Influence of site-factors on stump density in southern New England	147
6.4.	Statistical parameters for analysis of variance of four coppice parameters according to fuelwood species	148
6.5.	DBH-age data from harvested stringybark and yellow box	153
6.6.	Growth increments in young trees for five eucalypt species	154
7.1.	Summary information on shelterbelt plantations monitored in the study region	165
7.2.	Number of plantings of each species and species group within each major geological typ	e 170
7.3.	Between-species comparisons of four growth variables at each site using single factor AOV and Tukey's test	172
7.4.	Between-species comparisons of four growth variables using single factor AOV and Tukey's test (includes <i>Eucalyptus youmanii</i>)	174
7.5.	Number of stems and form factors for sampled trees in each species	175
7.6.	Analyses of covariance of DBH-age, HT-age and VOL-age ² (transformed) in four species groups as influenced by geology	177
8.1.	Assumptions used for economic appraisal of options for fuelwood silviculture	202
9.1.	Summary of Armidale's rainfall, evaporation and temperature records	208
9.2.	Frost-tolerant species producing high-quality fuelwood	209
9.3.	Shelterbelt planting requirement for A. dealbata, C. cunninghamiana and E. sideroxylon under a scenario of on-farm self sustainability in firewood	225
9.4.	Costs associated with tree establishment on the Northern Tablelands	226
9.5.	Silvicultural schedule for a 9 ha fuelwood coppice plantation	228
9.6.	Mean annual increments used for different stages of plantation harvesting	229
10.1.	Calculation of the WLR for an irrigated fuelwood plantation in Armidale	241
10.2.	Maximum hourly rates for spray irrigation in millimetres	243
10.3.	Calculation of mean daily irrigation rate (Qm) and return period (R_T) for each month	244
10.4.	Loading of Armidale wastewater constituents across a proposed 235.5 ha fuelwood plantation	246
10.5.	Critical loading of Armidale wastewater in December	246

List of Figures

2.1.	Armidale fuelwood catchment showing main vegetation types and field survey sites	12
2.2.	Northern Tablelands of NSW	13
2.3.	Distribution of shires and zones in the study region	14
2.4.	Land tenure in the study region	16
2.5.	Number and proportion of Armidale households using various forms of energy as their main source for interior space heating, cooking, and water heating in 1991	21
2.6.	Number of residents burning wood for space heating, cooking and water heating each month	25
2.7.	Proportion of Armidale dwellings of varying construction period in which fuelwood was the main source of energy for space heating, cooking and water heating	26
2.8.	Proportion of each species consumed by rural and domestic households	28
2.9.	Proportion of fuelwood of different species relinquished by rural landholders for commercial and non-commercial purposes	30
3.1.	Canopy measurements required for calculation of CNAREA and CNVOL	46
3.2.	Measurements for stem and branch sections weighed at site A	48
3.3.	Distribution of site-quality classes in the study region	57
3.4.	Standard DUB-DOB plot for fuelwood eucalypts	60
3.5.	Air-dry density of timber and bark in stringybark and yellow box discs of different diameters	65
3.6.	Relationship between green-weight of fuelwood biomass and tree DBH in stringybark and yellow box	69
3.7.	Relationship between air-dry weight of fuelwood biomass and DBH in stringybark and yellow box	69
3.8.	Relationship between volume of fuelwood biomass and tree DBH in stringybark and yellow box	70
3.9.	Distribution of dry-weight in the stem and branches of stringybark and yellow box	71
3.10.	Dry-weight of branchwood expressed as a ratio of the air-dry weight of stemwood for stringybark and yellow box over a range of tree sizes	71
3.11.	Distribution of dry-weight in the timber and bark of stringybark and yellow box	72
3.12.	Dry-weight of timber expressed as a ratio of the dry-weight of bark for stringybark and yellow box over a range of tree sizes	73
3.13.	Overlay of weight-DBH points for dead trees (Appendix XIV) on timber dry-weight curves (Figure 3.7) for stringybark and yellow box	74
3.14.	Height curves for fuelwood species in southern New England	77
3.15.	Composite crown volume curves for sampled fuelwood species	79
3.16.	Adjustment of a single-variate expression in stringybark	81
3.17.	Dry-weight curves for fuelwood eucalypts in southern New England	86
3.18.	Distribution of dry-weight in the stem and branches of five fuelwood eucalypts in southern New England (SQ7)	89
3.19.	Distribution of air-dry weight in the timber and bark of five fuelwood eucalypts in southern New England (SQ7)	90

3.20.	Dry-weight curves for stringybarks of southern New England and Victoria, and blackbutts of Fraser Island	91
4.1.	Aerial crown cover for tree cover classes in southern New England	94
4.2.	Distances measured using the point-centred quarter method	95
4.3.	A 200 x 20 m transect (public forest sites)	97
4.4.	Dependence of tree tallying (based on stem DBH) on critical angle (ϕ)	98
4.5.	The effect of forest type, tree association and site quality on basal area of stands in southern New England	103
4.6.	The effect of forest type, tree association and site quality on density of stands in southern New England	104
4.7.	The effect of forest type, tree association and site quality on the average DBH of stands in southern New England	104
4.8.	Contribution of useful fuelwood, other fuelwood and other biomass to total standing woody biomass in eucalypt stands in southern New England	109
4.9.	Influence of basal area on total biomass (TB) and useful fuelwood biomass (UFB) in native eucalypt stands in southern New England	111
4.10.	Influence of stand density on total biomass (TB) and useful fuelwood biomass (UFB) in native eucalypt stands in southern New England	111
5.1.	Distribution of land provinces in the study region	118
5.2.	Photo-grid used for remote sampling of New England eucalypt stands	119
5.3.	Effect of land tenure on standing fuelwood biomass in the study region	122
5.4.	Effect of terrain, accessibility, site quality, and distance factors on standing fuelwood biomass in the study region	125
5.5.	Accessibility of fuelwood biomass in stands of varying cover and land tenure in the study region	131
5.6.	Relative contribution to fuelwood biomass of inferior and preferred fuelwood species in accessible stands of varying cover on private land and state forest	133
5.7.	Exemption of fuelwood biomass on the basis of cover class, patch size, proximity to watercourses and tree species	136
6.1.	Influence of tree cover and land tenure on natural regeneration	146
6.2.	Effect of position on slope, dominant species, cover class and stand density on stump density in southern New England	147
6.3.	Proportion of coppice stumps sampled for each species	148
6.4.	Height distribution of coppice stumps for all fuelwood species sampled	150
6.5.	Diameter (underbark) distribution of coppice stumps for all species but red gum	150
6.6.	Diameter (underbark) distribution of coppice stumps for red gum	150
6.7.	Diameter curves for the coppice stems of five firewood species in southern New England	151
6.8.	MAI curves for coppice stems of five firewood species in southern New England (SQ6-7)	152
6.9.	Diameter curves for three eucalypt groups in native forest in southern New England	153
6.10.	Dry-weight MAI curves for three eucalypt groups in southern New England	158
6.11.	Dry-weight CAI curves for three eucalypt groups in southern New England	158
6.12.	Stand density and annual weight increment for trees of varying DBH in stringybark closed forest	160

6.13.	Stand density and annual weight increment for trees of varying DBH in stringybark open forest	160
6.14.	Stand density and annual weight increment for trees of varying age in stringybark closed forest	161
6.15.	Stand density and annual weight increment for trees of varying age in stringybark open forest	161
7.1.	Measurements of the base and canopy angles	166
7.2.	Influence of number of stems and tree form on VOL in 60-89 month <i>E. caliginosa</i> grown in plantations in southern New England	176
7.3.	Diameter and height curves for Acacia dealbata planted in southern New England	178
7.4.	Diameter and height curves for casuarina planted in southern New England	178
7.5.	Diameter and height curves for box-ironbark planted in southern New England	179
7.6.	Diameter and height curves for stringybark planted in southern New England	179
7.7.	Fuelwood volume curves for trees planted in southern New England	180
8.1.	Effect of type of operation on NPV and breakeven age for a fuelwood forestry project on private land (discount rate = 7%, fuelwood price = $\$85 t^{-1}$)	204
8.2.	Effect of fuelwood royalty and price on NPV and breakeven age for three types of fuelwood forestry project on private land (discount rate = 7%)	204
9.1.	Hypothetical design for a riparian fuelwood planting in southern New England	224
9.2.	An 8-row farm timberbelt providing on-farm fuelwood and shelter	225
9.3.	Effect of discount rate on NPV and breakeven age in a private fuelwood plantation	230
9.4.	Effect of fuelwood price, haulage capacity and travel distance on NPV and breakeven age (using 7% discount rate)	231
10.1.	Location of Armidale's sewage treatment facility in the Macleay River Catchment	236
10.2.	Sample WATLOAD output showing relative annual WRL for effluent-irrigated trees and pasture	242

List of Plates

3.1.	Weighing a stem section of <i>E. melliodora</i> at site A	47
3.2.	Preparing a large E. melliodora stem for weighing at site A	47
3.3.	Weighing small branches of E. caliginosa at site B	47
3.4.	Storage of <i>E. laevopinea</i> discs at site A	49
3.5.	Residual crownwood of felled stringybark	90
3.6.	Residual crownwood of felled ironbark	90
4.1.	Paddock of scattered trees dominated by Eucalyptus caliginosa (near site 99)	105
4.2.	Eucalypt woodland dominated by E. caliginosa (near site 45)	105
4.3.	Stringybark open forest dominated by E. caliginosa (Avondale State Forest - site 99)	106
4.4.	Closed forest dominated by E. laevopinea-E. andrewsii (Boorolong State Forest - site 6	0)106
4.5.	Open forest dominated by E. melliodora and E. blakelyi (site 27)	107
4.6.	Open forest dominated by E. viminalis (site 92)	107
6.1.	Cut stump surfaces of various species and age-classes	142
6.2.	Coppicing E. sideroxylon at site 20	149
6.3.	Coppicing E. caliginosa at site 98	149
7.1.	Form factors for 6-year E. laevopinea (site P5).	168
8.1.	Vigorous coppice regeneration in Eucalyptus caliginosa open forest (site 41).	189
9.1.	Area of severe dieback on the Uralla-Kentucky plains (near site 86)	211
9.2.	Part of Winterbourne State Forest (site 121)	213
9.3.	4-year E. leucoxylon coppice plantation for fuelwood production, western Victoria	216
9.4.	7-year mixed native shelterbelt site P5	219