3. Modelling Farm Decision Making under
Uncertainty

'Nothing is certain but death and taxes'

- Anon.

3.1 Introduction

Agricultural production takes place in a dynamic and unpredictable environment and
consequently farmers are constantly grappling with the uncertainty in the consequences
of the decisions they make. As observed by Anderson and Hazell (1994), production
risks which pervade agricultural systems can have wide-ranging economic, social and
environmental costs. The sometimes significant variation in farm incomes from one year
to the next provides an indication of the uncertainty under which farmers operate. The
main causes of such variation are the natural, economic and biological elements over
which the producer has little control, as well as imperfect knowledge of many aspects of
the farming environment, such as new production technologies. This is all aptly
recognised by Boisvert and McCarl (1990, p.1) when they state, inter alia, that:

The biological nature of crop and livesiock production, interacting with variable
weather and environmental conditions, and changing demand, as well as unpredictable
government policies, affects agricultural prices and can lead to wide year-to-year and
seasonal swings in agricultural incomes and the well being of farm decision makers.
The severity of these 'risk' responses varies from farming situation to situation, as do
decision makers' responses. Unless these 'risk' responses are adequately reflected in
planning models, the results generated in empirical analysis may bear little
resemblance to actual decisions and may be of little use either in direct decision

making or in policy analysis.
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Decision analysis is a method that allows systematic and logical accounting for risk and
uncertainty. It offers procedures by which decision makers can make reasoned, rational
choices consistent with their perceptions of the level of uncertainty involved in a given
decision problem, together with their attitude towards risk taking (Anderson et al.
1977). Various studies, including those by Smith and Capstick (1976), Harper and
Eastman (1980), Patrick and Blake (1981), and Chibnik (1990), have shown that
farmers are generally risk averse and ccnsequently consider risk to be important in

making business decisions.

This chapter deals with the application of decision analysis to agricultural production
systems. An exhaustive discourse of decision making under risk and uncertainty is
beyond the scope of this work and is lef: to such specialised texts as Anderson et al.
(1977), Keeney and Raiffa (1976), Holloway (1979), Kleindorfer, Kunreuther and
Schoemaker (1993). The discussion here will be limited to a few selected references
relevant to the various methods broached. In Section 3.2, the general issues pertaining
to the assessment and adoption of technology under risk and uncertainty in agricultural
production are briefly examined only in as far as they relate to the questions at issue in
this work. Some of the theoretical foundations of risky decision analysis are reviewed in
Section 3.3. The focus of the discussion is the conceptual background of decision
analysis based on a characterisation of risk and uncertainty in a Bayesian context.
Various decision criteria and forms of efficiency analysis as applied in decision making
under uncertainty are discussed in Section 3.4. The application of these decision criteria
in mathematical programming techniques, particularly the expected utility maxim
adopted in this work, is examined in Section 3.5. A few summary remarks are made in
Section 3.6.

3.2 Technology assessment under uncertainty

A production technique may be defined as the process by which inputs are converted to
outputs. A new technique of production is an input-output conversion process not
previously applied by the producer (Anderson and Hardaker 1979). Such new
production methods may include such options as improved crops, land and management
practices as well as the adoption of new crop and livestock varieties such as Linola. The
adoption process associated with a new production technique may be considered a

relatively riskier prospect than existing production techniques due to the lack of
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information. Adesina and Baidu-Forson (1995) have observed that, by exposing farmers
to 'new information', extension visits and farmer participation in workshops significantly

influence adoption decisions.

A given innovation generally ernbodies several important characteristics that may
influence individual adoption decisions. According to Anderson (1996), a major
consideration in the significance or otherwise of a new risk should be its statistical
relationship to the background risk. Adesina and Baidu-Forson (1995) have posited that
the choice to adopt a particular agricultural technology is the end result of a complex set

of inter-technology preference comparisons made by agricultural producers.

The attitudes of farmers towards risk, as well as their perception of risk, are significant
in the choices they make between alternative production technologies. According to Lin
and Milon (1993), consumers usually have subjective preferences for characteristics of
products and their perceptions of the attributes of a product significantly influence their
demand for it. Farmers as consumers of new technologies should thus be expected to
have their adoption decisions influenced by their subjective perceptions. Kivlin and
Fliegel (1967), Nowak (1992), Adesina and Zinnah (1993), Smith and Mandac (1995)
and Adesina and Baidu-Forson (1995) have variously concluded that farmers' subjective
assessments of new production techniques influence adoption behaviour. Bond and
Wonder (1980), Quiggin (1981), Bardsley and Harris (1987) found risk aversion to be a
prevalent attitude amongst Australian fanmers. The growing of oilseeds, as with other
crops, is a risky proposition as farmers face a variety of price, yield and resource
uncertainties. The perceived riskiness becomes more important for radically new crop

varieties about which producers have little knowledge.

Hardaker and Ghodake (1984) have shown the effect of risk attitude on the choice of
technology or farming system in semi-arid India and further provided support for the
existence of a relationship between absolu:e risk aversion and the certainty equivalent of
expected income. If the new technology is perceived by the producer as 'too costly’, then
it is unlikely to be adopted. Costly is loosely applied here not only to imply dollar value
but also riskiness in consonance with the Makeham and Malcolm (1993) assertion that
all risk (or avoidance of risk) has some associated costs. These costs are linked to the
lack of requisite skills and experience in the application of the new technology. The
process of information transfer between researchers and farmers thus takes on major
significance.
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Rogers (1983) defines the adoption process as 'the mental process through which an
individual passes from first hearing about an innovation to final adoption'. However,
Feder et al. (1982) indicate that a more precise quantification is required and so
distinguish between farm-level adoption and aggregate adoption. Aggregate adoption is
the rate of adoption associated with a district, region or country. Farm-level adoption is
defined as, 'the degree of use of a new technology in long-run equilibrium when the
farmer has full information about the new technology and its potential'. Generally, risk-
averse farmers tend to exhibit caution in adopting new farming techniques even when
trials show that the innovation is worthwhile. By virtue of their aversion to risk, such
farmers will usually have a preference for enterprises that they and neighbours have
found to be 'reliable’ through their own experience.

Plain et al. (1981), noted that a feature of 'new crops' which plays a significant role in
their adoption by farmers is the risk relative to more traditional activities. A 'new crop' is
favourable for a risk-neutral producer if its expected gross margin is higher than that of
a competing crop. A risk-averse producer is also additionally interested in the
distribution of the expected gross margin of a new crop and with the stochastic
dependence that may exist between the new crop and present activities.

The adoption of a new crop such as Linola involves certain subjective risk (imperfect
information) in that yields and prices, for instance, are more uncertain (as far as the
farmer is concerned) than for other previously cultivated crops. There are also objective
risks (variability) as the result of weather variations, disease outbreak or drought. In
consequence, new techniques of production will be adopted only if they are consonant

with the beliefs, goals and resource constraints of the individual farmer.

Applied agricultural research can only be regarded as possessing some potential value
when it results in new farming practices which farmers can be persuaded are more
stochastically efficient relative to prevailing practices. To be beneficial, new practices
proposed by agricultural researchers have to be risk-efficient options for producers. This
theme will be taken up in greater detail later in this chapter. As previously noted, risk-
efficiency of new technologies can only be properly assessed by considering their impact
on overall, not just partial, farming risk.

The assessment of new production methods by economists, in the main, should be based
on ultimate farmer goals, attitudes, objectives and preferences as well as being relevant
in terms of the farming environment. In this regard, whole-farm modelling approaches

have been widely applied to assess new production technologies since, according to
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Hardaker (1979), the approach has merit in its ability to allow simulation of farmer
behaviour under different production environments. Dillon (1976) suggests that the
whole-farm approach allows a more holistic or systematic view of technology testing
and adoption. Mathematical programming, program planning, budgeting (partial or
complete) approaches may be used in the whole-farm approach for technology
assessments. However, as indicated by Anderson and Hardaker (1979), mathematical
programming approaches in combination with some intuition are often the preferred
option.

Given the recognised dynamism and unpredictability of the farming environment, the
decision making process about the committment of scarce farm resources is important.
Much of the rest of this chapter deals with issues relating to the elements of decision
making under uncertainty. The discussion is focussed on the notion of subjective
probabilities and utility that are important aspects of the decision about whether or not

to adopt a new technology into the farming system.

3.3 Planning under uncertainty

Planning and decision making in agricultural production require some commitment to
efficiency for the attainment of desired long-run goals. Prevailing uncertainty in the
production environment, however, complicates decision making and increases the
difficulty involved in selecting a farm plan consonant with production objectives given
the uncertainty in consequences which often appear seemingly innocuous (Anderson
1996).

As earlier noted, farmers are regularly presented with situations requiring choice
between several alternatives with uncertain outcomes. Decisions need to be made
concerning production techniques and allocation of scarce resources of land, labour and
capital. While some choices are made rather habitually in ad hoc fashion, others require
in-depth evaluation of the consequences of each selected alternative because of the long-
term ramifications of these decisions for farm profitability and financial viability.

A decision problem exists when a given individual has alternative choices, each with
significant consequences or payoffs attendant to its selection. The decision of concern

in this study is the choice of a new technology (Linola) over conventional technology.
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According to Anderson et al. (1977), when uncertainty exists such a decision problem
becomes a risky one. Five basic components of decision making under uncertainty have
been specified by Nelson et al. (1978) as: 1) choices; 2) events; 3) outcomes; 4)
probability of occurrence of events; and 5) decision rule for evaluating choices. A
generalised symbolic representation of the elements of a decision problem is provided
in Table 3.1. The elements, A;,A5,...,A,, are the decision alternatives each of which is
associated with §},5,,...,S,,, states of nature. In the body of the table,
Y(A;,8;).....Y(A,.S,,), represent the payoffs - outcome of selecting a decision option -
associated with each decision option and state of nature. Based on this representation,
arriving at a decision requires a decision criterion for ordering the feasible alternatives,
A, and also some knowledge of the probabilities of occurrence, P(S;), of each possible
state of nature such that £,P(S;) = 1. However, as noted by Anderson et al. (1977), by
the nature of uncertainty, a good decision consistent with the decision maker's
expectations and preferences, does not necessarily guarantee a good outcome.

Table 3.1 : Symbolic representation of the elements of a risky decision problem

Alternatives
States of
nature A A; T A,
S, Y(A,S;) Y(A,.S;) . Y(A,S;)
S, Y(A,,S,) Y(A,,S,) oL Y(A,.S,)
S, Y(A,.S,) Y(A,.S,) S Y(A,S,)
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3.3.1 Risk, uncertainty and utility

According to Robison and Barry (1987), if an individual is able to specify the outcome
of an event with insignificant doubt, he/she faces certainty. However, if an individual
possesses insufficient knowledge to specify a unique outcome for an event, then that

individual faces uncertainty.

Makeham and Malcolm (1993) noted rhat risk is a major factor in agricultural
production in Australia since it influences the choices made by a farmer amongst
competing alternative courses of action. Proper management of risk in agricultural
production requires prior identification of prevailing sources of risk within a particular
production environment. Officer, Halter and Dillon (1967) emphasised that the explicit
recognition of the importance of risk would result in the modification of many planning
recommendations and so increase the likelthood of their adoption. As depicted in Figure
3.1, the farmer necessarily has to form predictions/expectations about the future, choose
and implement plans consistent with these expectations and stand ready to accept the

consequences of planning decisions - whether favourable or unfavourable.

According to the Chambers dictionary (1993), risk is defined in probabilistic terms as, '
..."chance" which implies a possible but not deterministic outcome'. Rowe (1977) has
defined risk as the potential for unwanted, negative consequences of an event or activity.
Wasserman and Wasserman (1979) define risk as, 'the possible occurrence of an event
that produces adverse effects on man and his environment. The degree of sk is related
to both the probability of occurrence and to the estimated outcome in terms of nature,
intensity and duration of the adverse effects'. In like fashion, Gratt (1987) proposed risk
to be 'the potential for the realisation of unwanted, adverse consequences to human life,
health, property or the environment'. And Shrader-Frechette (1985) believes risk to be ‘a
compound measure of the perceived probability and magnitude of adverse effect’. These
latter definitions, however, ignore the possibility that risk can also be a good outcome
forgone. A more circumspect Stiglitz (1974) likens risk to love - a word that defies any
precise definition. A seemingly more robust definition is that used by the Australia-New
Zealand standard that risk is, 'the chance of something happening that will have an
impact upon objectives. It is measured in rerms of consequences and likelihood'. Or the
more succinct 'uncertainty in consequences’, used by Hardaker et al. (1991).



Chapter Three:Modelling FFarm Decision Making under Uncertainty 65

’-"orm expactatzons

m

VY

Compose plan

|

; Implement plan experience
experience

”\

N

Plan outcomes

Loss - low, mediun)———

Loss - significant, extrem)

]

Bankruptcy

Profits - extreme, good,
medium, low

Figure 3.1 : Expectation, choice and outcome

Quiggin and Anderson (1990) differentiate between downside risk - expected value of
negative consequences - and pure risk - deviations in consequences (outcomes), whether
positive or negative, from their expected values, and indicate the desirability of
accounting for both risk types in farming systems. In this work, risk and uncertainty are
used interchangeably mainly for reasons of convenience. In the manner of Boisvert and
McCarl (1990), no attempt has been made to distinguish between the two concepts on
the basis of the degree of knowledge about the probability distributions (e.g., Knight
1921), nor is risk explicitly considered as a subset of uncertain events whose outcomes

affect the decision maker's well-being (Robison and Barry 1987).
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Sonka and Patrick (1984) suggested that production or technical risk is the random
variability inherent in the production process on a farm. Weather, diseases and pests are
major sources of risk in livestock and crop production that create variability in yields.
Market risk is also a major source of risk in farming since farmers are price takers.
Consequently, risk influences agricultural production mainly through yield and/or price
uncertainty (Dillon and Anderson 1990). Short-run fluctuations in input and product
prices can result in significant shortfalls in farm income. The variability of inflation and
interest rates is also a significant source of risk influencing long-run farm production
decisions. In this study, it is assumed that product price and yield risk are the main
contributors to the uncertainty of farm income. Furthermore, following the Dillon
(1977) argument that prices of controlled variable inputs are known at the time of
decision making about their levels, input prices in this work are regarded as
deterministic. Generally, the analysis of the farmers' decisions under these conditions of
price and yield uncertainty is based on the knowledge of their attitudes to and
perceptions of risk. However, in connection with a new technology, much of the risk
arises as a result of imperfect knowledge. Under conditions of imperfect knowledge,
there is no 'correct' measure of risk, and in consequence, individual perceptions or
beliefs become paramount in the analysis of the decision making process.

3.3.2 Bernoulli principle

The Bernoulli principle or expected utility theory (EU), ascribed to Daniel Bernoulli
(1738), provides a unique criterion for ranking risky alternatives by considering the
preferences - 'utility’ and 'preference’ are cften used interchangeably - and beliefs of the
decision maker. Bernoulli postulated that decision makers, rather than seeking to
maximise the expected monetary value of risky prospects, assign 'moral expectation
values' or utilities to the outcomes.

The basic utility theory as proposed by Bernoulli and later demonstrated by Ramsey
(1931) and extended by von Neumann and Morgenstern (1947) and Savage (1954), is
based on the assumption that the worth of an extra dollar is not identical to a rich and a
poor person. The behavioural axioms on which the expected utility theory rests have
been postulated in a variety of ways in the literature since the landmark works of von
Neumann and Morgenstern (1947), Friedman and Savage (1948), Savage (1954) and
Luce and Raiffa (1957). However, Dyckman et al. (1969) provide one of the more

comprehensible treatises on the subject.
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The Neumann-Morgenstern axioms are ordering, transitivity, continuity and
independence. Summarily stated, the ordering axiom requires that any decision maker
having two choices, Ay and A,, will either prefer A} to Ay, Ay to A; or will be
indifferent between them; transivity implies that for a decision maker with a third
choice of Az, if A is preferred to A,, and A, preferred to Az, then A, is preferred to
As; the postulates of continuity and independence require that if A, is preferred to A,
and A3 is any other prospect, then the individual will prefer a mix of A; and Aj3 to the
same mix of A; and Aj.

Following from the axioms, the Bernoulli principle implies that for an individual
whose preferences do not violate the reasonable axioms of ordering, transitivity,
continuity and independence, a unique utility function exists that is a reflection of the
individual's preferences for the available risky prospects (von Neumann and
Morgenstern 1947; Anderson et al. 1977; Dillon 1979). Consequently, a decision
maker should normally select between risky prospects with the aim of maximising
expected utility.

As noted by Anderson et al. (1977), the Bernoulli principle implies a unified theory of
utility (preference) and subjective probability (degree of belief). Dillon (1979) also
noted that Bernoullian choice under urcertainty implies both personal degrees of
preference and also belief. This is the basis of the subjective expected utility hypothesis
(SEU), a logical extension to the EU by Ramsey (1931), Savage (1954) and Pratt,
Raiffa and Schlaifer (1964). The essential difference between EU and the SEU is that,
with the latter, probabilities of outcomes are not necessarily objectively known. In
contrast, EU assumes knowledge of the probabilities of outcomes. The SEU hypothesis
implies that choices made under conditions of uncertainty should be governed by the
decision maker's preferences and beliefs. Therefore, a decision maker is assumed to
pursue objectives that enhance the utility obtained from each identified decision option
based on his/her perception of the risks involved.

Mathematically, the goal of SEU is the representation of preferences over options by
some numerical index of utility, U, and a probability measure, P, on the possible states
such that an option, say A, is preferred to another option, say B, only if the SEU of A
is larger than that of B. i.e,
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SEU(A)=Y P(s)U(A,) > SEUB)= Y P(s)U(B,) [3.1]

where,
P(s) = subjective probability of the state, s
A;, B; = outcome of option A, B when state s occurs

U(A;), U(B,) = utility value of outcome A, B with occurrence of state s.

The concept of utility or preference is fundamental to decision making under
uncertainty. Utility can be applied as a measure of a decision maker's rational
evaluation of the total worth of a specific outcome. Rationality describes the process by
which the decision maker selects the best possible alternative within the constraints
posed by his/her preferences and constraints, without regard to what decision making
process is used (Roumasset 1979). The notion of rationality is, therefore, a feature of
full-optimality decision models which Bernoullian models are regarded as. Rational
choice within the SEU-construct is subjective implying that the basis of rational
decisions under uncertainty are decision-maker value judgments. For this reason,
individual preference or utility functions become important. More importantly,
however, in the context of this study, are subjective probabilities or beliefs that
producers hold concerning the profitability a new oilseed crop, Linola.

Selly (1984), has observed that the behavioural axioms of the SEU are not the only set
of possible axioms for risky decision analysis. Kahneman and Tversky (1979)
developed a set of axioms for their prospect theory using the notion of probability
preference functions. They demonstrated that behaviour which appears to be
inconsistent with SEU is consistent with their theory. Quiggin (1986,1993) also
proposed an axiom-based anticipated or rank dependent utility hypothesis which is
suggested to be consistent with the transitivity axiom and the preservation of
dominance. More recently, a re-engineered normative-cum-descriptive expected utility
hypothesis has been proposed by Hertzler (1995) based not on the N-M utility function
of wealth but on consumption and time przference.

However, the question of whether the SEU or Kahneman-Tversky prospect theory or
the Quiggin anticipated utility hypothesis or Hetzler's revised EU theory will better
serve the purposes of the researcher in specifying decision rules and predicting
producer behaviour under uncertainty remains conjectural. Battalio, Kagel and
Jiranyakul (1990) have shown that no single option consistently organises choices.
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However, as noted by Buschena and Zilberman (1994), the SEU approach is an

appropriate normative tool for risk management.

Although Allais (1953), Kahneman and Tversky (1979) and Machina (1987) have at
different times shown that individuals sometimes make decisions inconsistent with the
SEU hypothesis, the construct remains the basis of most work on risky decision
analysis. Pratt (1974) argues that it is the only rational approach and, according to
Hertzler (1995), any eulogies for the SEU decision theoretic approach are premature.
Thus, since, as observed by Schoemaker (1982), Anderson (1996) and Hardaker et al.
(1991), no better operational framework for decision making under uncertainty has yet

been widely accepted, the SEU is the choice criterion elected for use in this work.

3.3.3 Calibration of uncertainty

The formulation of expectations about the probability of occurrence of uncertain events
is central to risky decision making. Anderson (1976) has observed that setting
parameters at their mean values and secking ‘correct' deterministic, risk-indifferent
solutions is feasible only under extremely restrictive and generally unacceptable
conditions. According to de Finetti (1972), the best way of describing the inexplicable,
the unpredictable and the malrepresented is through the calculus of probability.
Anderson et al. (1977), in agreement with Savage (1954), have stated the concept of
probability as being the logical relationship between a proposition and a body of
evidence and have posited further that the only types of probabilities useful in decision
analysis are subjective ones. According to Winkler (1972), the concept of subjective

probabilities is a pivotal one in statistical decision theory or Bayesian statistics.

Probability distributions are a description of the stochastic behaviour of random
variables. Subjective probabilities are beliefs held by individuals concerning an event
that reflect their perception of the uncertainty associated with the event. Anderson and
Dillon (1992) have argued that farmers' beliefs about uncertain outcomes may be
encoded as subjective probabilities implying that a probability distribution is definable
for the consequences of each available alternative. These beliefs are essential to
decision making under uncertainty in the context of the SEU hypothesis and are
applicable to both unique and repetitive events (Dillon 1971). According to Bessler
(1981, 1984), the sole normative criterion applied to these individual beliefs is that they
are coherent, meaning that they are not inconsistent or contradictory. Anderson et al.
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(1977), drawing on the concepts developed by Savage (1954), indicate that subjective
or psychological probabilities must be consistent with the axioms, rules and calculus of
probabilities. Accepting the basic axioms around which probability calculus devolves,
then the probability that a set of mutually exclusive and independent random events
occurs is the sum of their respective probabilities subject to the condition that the

probabilities do not sum greater than unity.

Generally, a decision maker's degree of belief should change as his/her experience and
knowledge increase. For this reason, it is to be expected that different decision makers
with a store of common experiences would have degrees of belief that closely
correspond (Anderson et al. 1977). Subjective probabilities can not be right or wrong
though it is to be expected that a rational decision maker would seek refinement of
his/her beliefs to account for new information and to eliminate or minimise any biases

that may arise from misrepresentations of the information available to him/her.

For the present work, the elicited subjective probability distribution of the possible
outcomes are assumed to be a measure of the uncertainty associated with the available
choice options as perceived by the studied farmers. Therefore, credible methods of
eliciting probabilities from agents involved in the development and adoption of Linola
are needed for this study. Anderson et al. (1977) and Bessler (1984) have outlined
several methods for eliciting probability judgments. These include the visual impact,
triangular distribution and judgmental fractile methods.

The visual impact or strength-of-convicticn method involves providing the subject with
a visual aid to assist with the quantification of his/her subjective beliefs about given
risky prospects. With this approach, the possible range of the uncertain event is elicited
and divided into a convenient number of mutually independent intervals to which the
subject is then invited to apportion counters according to his or her strength of
conviction. The allocations are revised urntil the subject expresses satisfaction with the
displayed distribution. The ratios of the observed class frequencies to the total number
of counters provide an indication of the probabilities of the relevant intervals. The
subject's cumulative distribution function (CDF) can consequently be plotted using this
information.

The judgmental fractile method does not employ any explicit motivational procedure
but involves direct assessments of a subject's CDF by successively obtaining equally
likely probability intervals (Raifta 1968). This is based on the assumption that the
subject can easily translate his/her true beliefs into stated beliefs using the ethically
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neutral 0.5 probabilities. The method begins with the assessment of the two extreme
fractiles at probability zero and one. Next the 0.5 fractile is determined via a 50:50
gamble that the probability of the unknown event is greater than or less than 0.5. The
procedure continues in similar fashion, by continually sub-dividing previously
determined intervals into equally likely parts for the 0.75, 0.25, 0.125, etc., fractiles.
From the resultant information, a smooth CDF can be drawn through the obtained

points.

The triangular distribution method of eliciting subjective probabilities requires less
information to estimate the probability distribution and thus is simpler to use, though
possibly less accurate. The method involves specification of the lowest possible value,
the highest possible value and the mode or most likely value. The triangular
distribution is fully defined by these three values, from which any required statistics
can be calculated. Despite recognition of the fact that the approach restricts the form of
the probability distribution somewhat, its use is still recommended (Cassidy et al. 1970;
Anderson et al. 1977; Chee Yoong 1978; Anderson and Dillon 1992). Given that the
choice of a universally appropriate technique for estimating individual probability
judgments remains inconclusive, any of the methods applied should be definite,
consistent and logical, according to Cassidy et al. (1970). Because it is logical and
consistent as well as easy to apply in the particular conditions of this study, the
triangular distribution approach was chosen for use.

In as far as misconceptions and misrepresentations can lead to biases in probability
judgment (Anderson et al. 1977), they need to be taken into consideration in the
elicitation process. Tversky and Kahneman (1975) and Anderson et al. (1977) have
indicated that the main sources of biases in probability judgments by individuals are

anchoring and representativeness.

Anchoring is the phenomenon whereby events close to some initially chosen event are
overemphasised. The anchoring effect results from the difficulty experienced by most
people in moving away from sorne value, usually a mean or modal value, that first
occurs or is suggested to them during the elicitation process. Anchoring on this value
may lead to assessed probability distributions that have too small a variance according
to Anderson et al. (1977). The effect of anchoring may be reduced by encouraging the
subject to consider as starting points extreme values of the distributions as was done
with the respondents in this study.
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Generally, individuals display a tendency to base probability judgments on assessment
of the degree of similarity or representativeness of sample information to the class to
which it is correlated, i.e. particular characteristics of an event are selectively over-
emphasised. However, as noted by Anderson et al. (1977), while representativeness
may be considered a relevant clue in the forming of probability judgments, the danger
exists that undue emphasis is placed on it to the exclusion of other types of evidence.
This may lead to the neglect of prior probabilities, misconceptions of chance and
disregard of predictive accuracy. Usually, comparison of inter-related beliefs will often
bring inconsistencies to the fore which can then be corrected to reduce any bias in
elicited probability judgments.

3.3.4 Risk attitudes

One of the fundamental concepts of risky decision theory is the decision maker's attitude
to risk which may be inferred from the shape of his/her utility function. In principle, a
decision maker's utility function may be linear, concave or convex, respectively, implying
risk neutrality, risk aversion and risk preference. Whilst the possibility exists for the
same individual to have a combination of these shapes for different ranges of payoffs, in
practice, risk aversion is the norm. Simply defined, aversion to risk is a preference for
certainty over uncertainty. Generally, therefore, risk aversion implies that decision
makers faced with risky prospects will select relatively riskier alternatives only if they
have higher expected returns.

As noted by Robison et al. (1984), the magnitude of the second derivative cannot be
used for interpersonal comparisons of risk aversion because an individual's utility
function is only unique up to a positive linear transformation. Pratt (1964) and Arrow
(1974) suggested a measure for inter-personal comparisons of utility at identical wealth
levels now commonly called the Pratt-Arrow coefficient of absolute risk aversion (r).
Generally, utility is specified in terms of wealth, w, and the utility function assumed to be
monotonically increasing, i.e., U>(), reflecting a positive marginal utility for wealth. The
r, for a decision maker with initial wealth, w, is the negative ratio of the first and second
derivatives or the bending rate of his/her utility function. That is,

rq ) = - U"w)/U'w) 3.2]

A related measure of risk aversion is the relative risk aversion ( r,), given by:
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1,(w) = -wU"W)/U'(w) (3.3

from which it may be deduced that:
raw) = r,(w)/w [3.4]

Anderson (1973a) and Dillon (1979) have argued that, if a one-period utility function for
w 1s acceptable, then the use of money gain or loss instead of wealth should closely

approximate the utility function around a specified wealth position.

In contrast to the utility function, which is only unique up to a positive linear
transformation, r,; and r, are not affected by linear transformations of the utility function
and so allow inter-personal comparisons. The signs are an indication of the risk attitude
of the individual - positive for risk aversion, negative for risk preference and zero for
neutrality - and, for positive values, the magnitude of either coefficient increases with
the degree of risk aversion. These measures are commonly used in empirical work in
risky decision analysis. As noted by Robison et al. (1984), since r,; and r, are functions
of wealth, they can be employed to test hypotheses about responses of risk aversion to

changes in wealth or other objects of utility.

3.3.5 Individual preference measurements

A prerequisite for the determination of a utility-maximising farm plan is the knowledge
of the relevant farmer's utility function. As noted by Boisvert and McCarl (1990), when
preferences for risk are known and can be precisely specified as a utility function,
maximising expected utility should generate a unique and complete ordering of
alternative farm plans. However, preferences are rarely known and are difficult to

measure in applied decision analysis.

Risk attitudes may be captured via suitably elicited utility functions. The elicitation of
preference or utility functions of decision makers is usually based on a gambling
approach aimed at identifying certainty equivalents for stipulated gambles or lotteries. A
certainty equivalent is the amount exchanged with certainty that makes the decision
maker indifferent between this exchange and some specified risky prospect (Anderson et
al. 1977).
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There are several alternative approaches for eliciting individual preferences as reviewed
by Officer and Halter (1968), Anderson et al. (1977) and Bessler (1984). Utility
functions normally relate the outcomes of choice to single-valued indices of desirability
and so can be thought to represent decision-maker preferences (Robison and Barry
1987). The most commonly used methods for the elicitation of decision-maker
preference functions are the Neumann-Morgenstern (N-M) approach (von Neumann and
Morgenstern 1947), the equally likely certainty equivalent (ELCE) or the modified N-M
approach and the equally likely risky outcome (ELRO) or Ramsey method (Ramsey
1964). These methods involve time-consuming direct personal interviews applying,
sometimes, complex concepts. Consequently, in many instances of empirical work, the
approaches may not always be practical in terms of getting the subject of the interview

to understand what the 'game’ is about.

An alternative approach for the measurement of decision-maker preferences is described
by King and Robison (1981). The approach involves applying information revealed by
decision-maker choices from carefully selected outcome (payoff) distributions to
delineate lower and upper bounds on the decision maker's absolute risk aversion
function. The procedure which uses the evaluative criterion of stochastic dominance
with respect to a function (SDRF), is based on the notion that, under certain conditions,
the choice made between two narrowly defined distributions divides absolute risk
aversion space over that range into a region consistent with the choice made and another
that is not (Meyer 1977a; McCarl 1990). Wilson and Eidman (1983) conducted an
empirical test of the interval approach using swine producers in Southern Minnesota and
concluded that the approach is low cost and avoids interviewer bias.

Due to the particular circumstances of this work and financial limitations of the author,
the interval approach was chosen for use in this study. A detailed discussion of the
procedure as applied in this study is provided in the next chapter.

3.4 Decision rules

Under conditions of uncertainty, the whole gamut of possible outcomes needs to be
scrutinised and evaluated on the basis of decision-maker preferences. However,
individual preferences are typically difficult to determine. When individual preferences
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cannot be fully specified, risk efficiency analysis (REA) becomes an alternative approach
(Boisvert and McCarl 1990).

Risk efficiency analysis (REA), though based on the maxim of SEU, as previously
defined, does not require full specification of the decision-maker utility function. As a
consequence, the application of REA requires the definition of an efficiency criterion.
An efficiency criterion is a decision rule that results in the partial ordering of the choices
of decision makers whose preferences correspond to certain limitations placed on the
utility function (King and Robison 1981). For some risky prospect A to be preferred to
another risky prospect B, based on the defined efficiency criterion, prospect A must be
known to have a greater expected utility than B given the limitations imposed on the
utility function. A decision option is said to be dominated in risk-efficiency sense if
there is some other option that is superior given the restrictions imposed on risk
preference. Only those options that are not dominated are regarded as risk efficient and
it is from this set that a decision maker whose utility function meets the required

conditions will find his or her most preferred option.

A number of different risk efficiency rules have been proposed in the literature, as

discussed below.

3.4.1 Expected value-variance analysis

The easiest and most widely applied risk efficiency analysis criterion is the expected
value-variance (or mean-variance, EV) analysis first applied by Markowitz (1952) as a
criterion for portfolio selection. The EV criterion is based on the hypothesis that, when
presented with two distributions with equal means, a risk-averse decision maker will

always prefer the distribution with the lower variance.

The EV model is consistent with the expected utility hypothesis under certain restrictive
assumptions of either quadratic utility or normally distributed returns (Tobin 1958;
Tsiang 1972; Porter 1973). These restrictions have made its application in empirical
analysis contentious (Robison and Barry 1987).
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3.4.2 Stochastic efficiency

Another commonly used efficiency criterion is stochastic dominance analysis. Stochastic
dominance analysis provides a means of selecting a set of efficient alternatives, based on
the EU theory, for some specified set of utility functions. Because stochastic dominance
places few restrictions on the utility function and none on the probability distribution, it
has certain theoretical advantages over such criteria as EV (Boisvert and McCarl 1990).

Stochastic efficiency enables partial ordering of risky prospects without the need for
exact representations of decision-maker preferences. These criteria can be appraised by
how well their inherent assumptions about preferences conform with actual
preferences, their discriminatory power ard by the ease with which they can be applied
in problems involving many risky prospects.

Hadar and Russell (1969) and Hanoch and Levy (1969,1970) developed generally
applicable efficiency criteria referred to as stochastic dominance rules. These criteria
require the pairwise comparison of CDFs. For any two risky prospects F and G, G
stochastically dominates F if the expected utility under G is at least as high as that
under F for all utility functions in a specified set (King and Robison 1984).

First-degree stochastic dominance (FSD) applies to decision makers having positive
marginal utility for the attribute under corsideration, implying a preference for more to
less. In essence, the only restriction on the utility function is that the first derivative is
positive, U'(y) > 0. Since no bound is placed on the absolute risk aversion function, r,

its value may lie anywhere between positive to negative infinity,
-00 < T, < 00,

In graphical terms, a dominant CDF lies nowhere to the left and at least somewhere to
the right of a dominated CDF. For normal distributions, this can only occur with
identical variances and different means. In reality, very few distributions can be
eliminated by such a broad efficiency criterion. Especially when there are many

alternatives to be ordered, FSD may not be a satisfactory criterion.

Greater discriminatory power is obtained by the additional condition of second degree
stochastic dominance (SSD) that the szcond derivative of the utility function is
negative (U"(y) < 0) (Fishburn 1964; Hadar and Russell (1969; Hammond 1974). This
implies that the decision makers are risk averse. With normally distributed outcomes,
SSD equates to the mean-variance (EV) efficiency criterion (Anderson 1975; King and
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Robison 1984). Despite its greater discriminatory power relative to FSD, SSD still may
not significantly reduce the number of evailable options. Additionally, as King and
Robison (1981) have demonstrated, agricultural producers at times exhibit increasing

marginal utility over certain outcome ranges.

Third degree stochastic dominance (TSD) proposed by Whitmore (1970) and
Hammond (1974) imposes further restrictions on the utility function to increase the
discriminatory power of the efficiency criterion. Third degree stochastic dominance
holds for individuals whose risk aversion decreases with increasing wealth (U"'(y) > 0).
Thus, TSD implies that decision makers show a preference for positive skewness in
distributions of returns (Anderson et al. 1977). However, despite the added restrictions,
the discriminatory power of TSD in ordering risky alternatives relative to SSD is yet to
be demonstrated as significant. Anderson (1974,1975,1979) and Anderson et al. (1977)
have counselled that the added cost of TSD may not cover the marginal benefit of

identifying only a slightly smaller efficient set of plans.

3.4.3 Stochastic dominance with respect to a function

Generalised stochastic dominance or stochastic dominance with respect to a function
(SDRF) is an efficiency criterion which establishes sufficient conditions for the
distribution of outcomes defined by the cumulative distribution function F(y) to be
preferred to the outcomes defined by another cumulative distribution function G(y) by
all individuals whose absolute risk-aversion function lies between the bounds r;(y) and
ra(y) (Meyer 1977a,b; McCarl 1988; Raskin and Cochran 1986b) It is a logical
extension of SSD which can significantly reduce the number of options in the efficient
set of plans, depending on the range of risk aversion used.

The absolute risk-aversion function, as previously noted, measures the degree of
convexity or concavity of U(y), and so provides an indication of the risk attitude of the

decision maker - whether risk-preferring cr risk-averse.

In effect, the upper () and lower (r;) bounds on a decision maker's absolute risk
aversion function define an interval which represents decision-maker preferences (King
and Robison 1981). Thus, a lower and upper bound may be defined for r, such that,

r; <ra<r2
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As noted by King and Robison (1981), the less flexible efficiency criteria such as
FSD and SSD can be regarded as special cases of SDRF. Stochastic dominance with
respect to a function is therefore an efficiency criterion that allows greater flexibility
in the representation of individual preferences. Meyer (1977a) has developed a
solution procedure that requires the identification of a utility function, U, that

minimises
17, [G(y)- F(y)] U(y)dy [3.5]

subject to

ri(y) <-U"(y)IU(y) <rp(y) [3.6]

If, for a certain class of decision makers, the minimum difference of the above
expression is positive then the distribution F(y) is unanimously preferred to G(y),
implying that the expected utility of F(y) is greater than that of G(y) for all decision
makers in that class. If the minimum is zero, a decision maker within the specified
group may be indifferent between the two distributions which, consequently, cannot
be ordered. If the minimum difference is negative, however, then F(y) cannot be
unanimously preferred to G(y). To test for preference in this instance, expression 3.5

above is reversed thus:
1=, [F(y) - G(y)] U'(y)dy 13.7)

A positive minimum difference would then mean that G(y) is preferred to F(y). If the
minima of both equations 3.5 and 3.7 are non-positive then neither distribution is
unanimously preferred by the decision makers under consideration (Raskin and
Cochran 1986). In such an instance, the SDRF criterion cannot then be used to order

these two alternatives.

King and Robison (1984) have observed that the generality of an efficiency criterion
and its discriminatory power are linked. Specific restrictions placed on utility functions
define a class of decision makers for whom the specified decision rule applies. In
general, increasing the discriminatory power of a decision criterion by imposing greater
restrictions on the utility function also tends effectively to decrease the number of
decision makers to which the rule is applicable. This obvious trade-off between
discriminatory power and generality needs to be considered in selecting a range for a
given decision setting. At one extreme is FSD which places little restriction on

decision-maker preferences and consequzntly has low discriminatory power despite
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wide applicability. In contrast, SDRF, which is more discriminating, imposes greater
restrictions on decision-maker preferences and consequently may have less general
application although more useful results are likely to be obtained. Various agricultural
applications of SDRF include for example, Kramer and Pope (1981), King and
Robison (1981), Pederson (1984) and Harris and Mapp (1986).

The discriminatory power of SDRF is dependent on the values specified for r; and ry as
demonstrated by King and Robison (1981) and Bardsley and Harris (1987). Thus,
application of SDRF for an individual requires specific information concerning the
lower and upper bounds of a decision-maker's absolute risk aversion function. King
and Robison (1981) have suggested a protocol for eliciting r; and rp that uses
information revealed through a series of choices between carefully selected
distributions. The preference interval measurement procedure as used in this study is
later detailed in Chapter 4.

There are other efficiency criteria that have been applied in mathematical programming
models other than those consistent with the EU maxim. The most widely applied of
these generally ad hoc criteria include safety-first analysis (Roy 1952, Kataoka 1963,
Low 1974), expected gain-confidence limi: analysis (Baumol 1963) and the maximin and
minimax analysis (Hazell and Norton 1986).

3.5 Mathematical programming in farm planning

Economic production theory is mainly concerned with the maximisation of benefits or
the minimisation of costs. Any problem entailing the maximisation or minimisation of
some numerical function of one or more variables (or functions) subject to certain
specified constraints is an optimisation problem. Optimisation is a term that Hadley
(1962) suggested is applicable to this class of constrained problems in production
theory. For unconstrained maximisation problems where the objective is the
determination of the ‘best’ point on the firm's production function, differential calculus
can be applied.

Since the technique of linear programming was first proposed late in the fourth decade
of this century, there has been interest in a group of optimisation problems called
programming problems which are not amenable to methods of differential calculus. Such
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problems may occur in government, military tactical planning, agriculture, commerce

and industry.

In economics, programming problems are usually concerned with the efficient allocation
of scarce resources for some productive endeavour. Mathematical programming
involves the use of mathematical models in an attempt to solve such problems regarding
the optimal allocation of scarce resources between competing ends whilst allowing
assumptions about behaviour to be built into the model in the assumed objective
function and constraints. The mathematical expressions characterising a given model
may be linear or non-linear in form and may have continuous or discrete variables. When
the variables in the model are assumed known with certainty, it is considered a
deterministic model, but when the variables are subject to random variation then the
model is stochastic.

While mathematical computations cannot fully represent the complexities of the real
world - being only abstractions thereof - they can, however, be of some value in the
decision making process associated with the general realm of production economics by
providing indications of the potential ramifications of the feasible options that may be
available to the decision maker. The identification of optimal decisions requires that the
decision maker pursues well-defined goals in carrying out activities. An optimal decision
is one that the decision maker thinks best fulfils the decision maker's set of goals. The
use of mathematical programming as a basis for solving a decision problem means that,
as a first step, relevant variables need to be identified that are proxies for the decision
maker's explicit goals and for which his/her preferences may be recognised.

3.5.1 Linear programming

Although the origins of mathematical programming date back to the theories of linear
and non-linear equations, George Dantzig is usually credited with developing the linear
programming (LP) technique - a procedure by which a single economic (efficient)
optimum can be identified amongst numerous feasible alternatives - whilst working on
problems of military logistics during the second world war. Dorfman et al. (1958, p.4)
have described the technique as a flexible and powerful tool for economic decision
analysis and have found many significant applications in the area.

A wide range of real decision problems, including agricultural ones, have been shown in
the literature to be amenable to solutions by LP techniques (e.g., Heady and Candler
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1958; Charnes and Cooper 1961; Davis 1967; Little and Wooten 1972; Gaither 1975;
Craig et al. 1979; Boisvert and McCarl 1990; Jeffrey, Gibson and Faminow 1992).

The basic LP formulation allows the selection from an array of alternatives of that
alternative (or alternatives) which is both feasible and achieves explicit decision
objectives. It involves the maximisation ¢r minimisation of a linear objective function
subject to a set of linear resource constraints and non-negativity restrictions on the

variables.

The basic LP formulation may be represented by,

n

max  z= j%C/"‘j (3.8]
subject to
i;, ajjxj < bj (i=1,..,m) [3.9]
=
xj20 G=1,...n)

where ajj , bj and ¢j are known constants and Xj is the activity level.

In whole-farm planning, the LP approach allows the systematic effects of different
resource allocation prescriptions to be determined. According to Barnard and Nix
(1979), full utilisation of major resources in a solution and low marginal value products
implies that an apparently sound balance has been achieved between the different

resources with regard to the available opportunities.

Computerisation means large and complex models are solvable without having recourse
to questionable simplifications of underlying input and output relationships and minimal
risk of computational errors. LP computer routines today include sensitivity analysis
which provides answers concerning the stability of the solution. Methods of sensitivity

analysis include ranging and parametric programming.

Linear programming is, however, restricted in its application as a result of the limitations
posed by the underlying assumptions of the technique as may be gleaned from texts on
the subject including Heady (1954), Dantzig (1963), Beneke and Winterboer (1973),
Barnard and Nix (1979), Gass (1984), Luenberger (1984) and Winston (1991). These

are summarised as:
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a) The assumption of constant linear input-output relationships. The
linearity assumption clearly distorts what obtains in the real world given that
estimated production functions are rarely linear; it violates the basic
economic axiom of diminishing returns.

b) The assumption that all resources and activities are additive and
divisible often raises problems in situations of joint costs or lumpy inputs.
The additivity assumption usually presents few problems when the activities
under scrutiny are related in a competitive or supplementary fashion.
Problems may however arise when the relationship is complementary.

¢) With the single-valued coefficients of LP, the technique is usually
applied without taking risk and uncertainty into consideration though it is
possible to take consider stochastic objective function values by using their
expected values. It is also possible to include linear risk constraints, as in the
MOTAD formulation, discussed below.

These assumptions are not only relevant to LP but to much of planning as a whole. It is
consequently necessary to examine ways in which the modelling process can be
modified to allow a fair representation of a given planning scenario. Thus, despite
restrictive assumptions of linearity, divisibility, finiteness, additivity and single-valued
expectations, LP remains a popular mathematical programming technique (Anderson et
al. 1977).

Duloy and Norton (1975) and Anderson (1975) have noted that lumpy resources
commonly found in agricultural production can be handled via integer programming
and that separable programming algorithms or linear approximation via segmentation
can be used to handle non-linearities. Several models, as discussed below, have also
been proposed to allow incorporation of risk and uncertainty in linear programming

formulations.

3.5.2 Non-linear programming

The assumption of linear relationships is, in many cases, an appropriate assumption for
the range of values considered for a given problem. However, for some problems, the
relationships between the variables of interest are non-linear and hence the true
impression of the structure and interplay of the system under consideration can only be

obtained by the construction of non-linear functional forms to represent the system.
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Non-linear programming problems occur in a wide variety of disciplines including
agricultural production. Non-linearities can arise in production functions, cost curves
and almost all facets of problem formulation.

Mathematical algorithms for the solution of non-linear programming (NLP) problems
which typically use specialised iterative procedures, have a more recent history than LP.
The development of non-linear algorithms has followed the development of the
computer which is required to handle the very heavy computational burden required to

solve non-linear models of any size.
The general form of this class of problems may be written as:
maximise/minimise z= f{x,,x,, ..., X,) [3.10]

subject to

8ilxp.x, .., xy) (£,=,0r2) b;, fori=12,..m
and

X2 0, forj=1.2,..n
Expressed in this fashion, the problem is the maximisation/minimisation of a linear or
non-linear objective function, f, comprising n decision variables which are subject to m
linear or non-linear constraints, g; (<, =, or 2)b; , and all decision variables, x;, are
usually restricted to be non-negative. However, several algorithms such as in
GAMS/MINOS-5 (Murtagh and Saunders 1977) allow a free definition of variables

allowing them to take on positive or negative values.

A class of NLP problems, which has been studied most extensively and is being widely
used in whole-farm planning, is that in which the constraints are linear and the objective
function is non-linear. A common form of this type of programming problem is quadratic
programming which is specified as a quadratic objective function with linear inequality
constraints. The quadratic formulation, which closely approximates more general
formulations of expected utility problems (Levy and Markowitz 1979), arises from
portfolio selection and constrained regression problems.

The portfolio model provides an appealing framework for analysing optimal enterprise
combinations in agricultural production. The aim of portfolio analysis is to define the

allocation of resources across an array of choice possibilities that maximises the decision
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maker's utility (Anderson et al. 1977). The approach is founded in micro-finance theory
as discussed, for example, by Tobin (1958), Markowitz (1959) and Sharpe (1970). Its
usefulness in decision analysis has been variously demonstrated by Tsiang (1972),
Robison and Brake (1979), and Levy and Markowitz (1979). However, some limitations
of the quadratic programming formulation are discussed later in this section.

For the present study, the problem has been formulated as a single-period, non-linear
programming problem which is non-linear in objective function with linear inequality
constraints akin to a portfolio selection problem.

3.5.3 Risk in programming models

Hardaker et al. (1991) have noted that the modelling of any risky farming system must
commence with a proper understanding of the impacts of uncertainty on the system.
Given that risk influences agricultural production largely through yield and/or price
uncertainty (Boisvert and McCarl 1990; Dillon and Anderson 1990), activity net
revenues in any programming model are, consequently, never known with certainty. By
implication, total net farm revenue is uncertain. Accounting for this uncertainty
requires specialised MP models.

Models incorporating stochasticity in the coefficients of the objective function have been
classified by Hardaker et al. (1991) as risk programming models. Ordinarily in LP
formulations, the parameters c;, a;;, and b; (expressions 3.8, 3.9) are assumed to be
known with certainty. In risk programming, this assumption is relaxed and subsets of the
¢;'s, a;j's and by’s are treated in probabilistic terms. As a consequence, the outcome from
any choice of the decision variable becomes a random variable as it depends on the
values taken by the parameters. Thus, if it is assumed that the set of x;'s constitute a
farm plan, then the decision involves a choice between the resultant x's for the most
desirable probability distribution of net returns or some other measure of well-being

(Boisvert and McCarl 1990).

The analysis of risk at the farm level has seen the advancement of many different
approaches, a number of which have been described by Anderson et al. (1977),
Hardaker et al. (1991) and in several other relevant texts. These models apply different
forms of mathematical programming to obtain a risk-efficient set of farm plans or an
optimal farm plan for a specified level of some particular measure of risk aversion. These
various approaches may be regarded as alternative specifications of the Markowitz
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portfolio theory. Many of them entail more readily computable linear approaches to

accounting for risk.

Most risk programming models tend to focus on the stochasticity of objective function
parameters and are the easiest to formulate in an MP context. In other risk programming
models it is possible to handle risk by including uncertainty in the technical coefficients
and/or the RHS wvalues. Typically, applications that attempt to accommodate
stochasticity in all three types of parameters are much more difficult both to formulate
and solve and to relate to well-known decision criteria (Boisvert and McCarl 1990).

Stochastic programming (SP) is a generic name applied to mathematical programming
approaches proposed to deal with risk in the resource constraints (Anderson et al.
1977). According to Hadley (1962), SP models may be sequential or non-sequential in
nature. Sequential models attempt to account for the fact that related decisions are made
at different points in time implying that risk is embedded. Decisions made at a later stage
may be influenced both by earlier decisions and by stochastic parameters. Generally,
sequential problems are not amenable to solution by mathematical programming
methods though Anderson et al. (1977) have shown the use of discrete stochastic
programming in handling such problems. In non-sequential models, risk is assumed to be
non-embedded and all decisions are made at the same point in time. As Anderson et al.
(1977) and Hardaker et al. (1991) have observed, the biological nature of agricultural
production processes implies that most farm planning problems are largely of the

sequential type.

Discrete stochastic programming (Cocks 1968; Rae 1971a,b) formulations approximate
a sequential stochastic model and are the more usually applied approach. Such
formulations attempt an explicit specification of the likely events and decision options in

their proper time and sequence.

Linear risk programming models

With the strong assumption of a linear utility function - implying the decision maker is
risk-indifferent - in linear risk programring models, the expected profit equals the
expected utility and, consequently, maximisation of expected profit leads to the
maximisation of expected utility (Anderson et al. 1977). However, according to
Anderson et al., decision makers are typically not indifferent to risk, hence other

programming approaches that take account of the decision maker's attitude to risk are
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necessary. Such models include quadratic risk programming (QRP), which is the more
commonly used non-linear risk model, and stochastic programming which may be

linear or non-linear.

The most widely used of the linear risk programming models is the MOTAD approach
suggested by Hazell (1971). It entails minimising risk which is defined as the absolute
deviations from the mean net income (revenue) subject to imposed constraints on
expected income and other resources. By re-solving the model for parametric variations
in expected income, an expected-minimum-absolute-deviation efficient set is obtained.
MOTAD has found wide and varied application in risky decision analysis (e.g., Hazell
1971; Thomson and Hazell 1972; Hazell and Scandizzo 1974; Brink and McCarl 1978;
Mapp et al. 1979; Persaud and Mapp 1980; Watts, Held and Helmers 1984). As Hazell
(1971) explains, MOTAD is justified theoretically as an approximation to quadratic
programming.

Target-MOTAD is an extension of the standard MOTAD model proposed by Tauer
(1983). The Target-MOTAD forrnulation, which, like MOTAD, involves defining risk
constraints based on observations across several states of nature, generates expected
value-deviation (E,D) -efficient set of solutions for some explicitly specified target level
of the objective function. As demonstrated by Tauer (1983), the optimal solutions are
second-degree stochastically dominant and so are stochastically efficient solutions for
risk-averse decision makers following the SEU construct. Watts, Held and Helmers
(1984) in their comparison of MOTAD and Target-MOTAD conclude that the latter
approach provides a more appropriate framework for risk analysis in agricultural

production. Both methods however, generate solutions which are only SSD, not SDRF.

The mean-Gini programming (M-G) approach proposed by Yitzhaki (1982) is another
risk programming method that combines the advantages of second-degree stochastic
efficiency analysis and those of mean-variance analysis without the limitations of either
approach. Okunev and Dillon (1988) have illustrated the use of the mean-Gini
formulation in farm planning. According to Hardaker et al. (1991), because mean-Gini
efficient sets are always SSD, the programming approach is superior to QRP and
MOTAD. However, the mean-Gini approach could be computationally cuambersome and
results only in SSD portfolios, not in efficient strategies for a precisely defined class of

utility functions or absolute risk aversion interval (Buccola and Subaei 1984).
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Quadratic risk programming

Quadratic risk programming is a method of risk programming that has been widely
applied in whole farm planning since it was first developed by Freund (1956). A QRP
formulation can be used to generate an efficient set of solutions in expected value-
variance space which are SSD only wirth the restrictive assumption either that the
decision maker's utility function is quadratic or that the distribution of net income is
normal (Hanoch and Levy 1970). The QRP formulation, which usually minimises the
variance for uncertain payoffs, may also be employed to maximise expected utility by
assuming a negative exponential utility function and also that total net revenue is
normally distributed (Freund 1956). A key component of the QRP formulation is the
variance-covariance matrix. As noted by Markowitz (1959), if enterprise diversification
is to be an efficient hedge against production risk, covariances assume major
importance. Activity combinations having negatively covariate gross margins will usually
result in a less variable aggregate return than the return from more specialised strategies
(Hazell and Norton 1986).

Although QRP has been more commonly applied in the area of investment portfolio
analysis, the approach has also seen wide application in risky decision analysis in
agricultural production since its application in the area was demonstrated by Freund
(1956). However, the assumptions underlying the approach - quadratic utility function
and normally distributed net returns - have remained contentious (Rudd 1981; Moriarty
et al. 1981; Ritchken 1985; Lambert and McCarl 1985; Patten et al. 1988).

Utility-efficient programming

Utility-efficient programming (UEP) risk programming formulation proposed by Patten,
Hardaker and Pannell (1988) is a variant of discrete stochastic programming (DSP) that
can be applied to the case where uncertainty is confined to the activity returns. The
approach, which is an extension of the Lambert and McCarl (1985) approach, arrives at
utility efficient, SDRF portfolios without the need for any restrictive assumptions that
have been the subject of controversy in other risk programming techniques such as QRP.

In decision theory, the maximisation of expected utility has been noted by Dillon and
Anderson (1990, p. 117) as being 'normatively coherent and logical as a basis for risky
choice'. The Lambert and McCarl (1985) proposed direct expected utility maximising
non-linear program (DEMP) maintains consistency with the traditional basis of risky
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decision analysis - expected utility theory - and is free of some of the limitations of risk
analysis based on mean-variance analysis. Their formulation may be summarised as

follows:
maximise E(U) =p' U(2) [3.11]
subject to
Ax <b
Cx-Iz=uf
and x20

where U(.)= a monotonic, concave utility function;

p = vector of state probabilities;

z = vector of activity net revenues per unit;
A = matrix of technical coefficients;

x = vector of activity levels;

b = vector of resource stocks;

C = matrix of activity net revenues;
I = an identity matrix;

u = vector of ones; and

f  =fixed costs.

The use of a monotonic and concave utility function means that such non-linear
algorithms as MINOS (Murtagh and Sanders 1977) can find a global optimum. The
Duloy and Norton (1975) method of linear segmentation can also be used to obtain
solutions to the formulation.

By reformulating the Lambert-McCarl DEMP for parametric objective programming,
Patten et al. (1988) proposed an approach they termed utility-efficient programming
(UEP). Their formulation enables the generation of risk-efficient plans with less than
complete information about decision-maker preferences. The UEP formulation leads to
'utility-efficient' farm plans as the parameter, A, is varied. By noting the optimal solution
for each change of basis corresponding to a particular value of A, the full set of risk-
efficient solutions can be derived by interpolation. This set represents the efficient plan
at every level of risk aversion in the selected range. No plan outside the generated
utility-efficient set is preferred by the decision maker whose preferences have been
represented.



Chapter Three:Modelling Farm Decision Making under Uncertainty 89

Though Patten et al. indicated that the UEP formulation is amenable to the use of
different types of utility functions, they emphasise the 'sumex' separable function not
only because of its desirable property of decreasing absolute risk aversion but also the
ease with which this functional form may be solved by linear segmentation. Hardaker et
al. (1991) have demonstrated that the use of a non-separable negative exponential utility

function of parametric form
U=exp[-{1-Mr] + A1y }z], 0 <A =1, parametric [3.12]

produced similar results to the sumex formulation. In the above formulation, r; and rp
are the respective upper and lower bounds of the coefficient of absolute risk aversion,
Ty i is the farm net revenue for the kzh state and A is a non-negative variable parameter

which may be interpreted as a measure of risk aversion.

Ogisi, Hardaker and Torkamani (1994) have demonstrated that the utility-efficient
programming formulation using a negative exponential utility function produces risk-
efficient farm plans which are SDRF. The implied conclusion drawn is that with UEP,
the functional form of the utility function used in the formulation is unimportant, in
agreement with Meyer (1977a, b) with respect to SDRF. The mathematical relationship
between the use of SDRF as an evaluative criterion and UEP remains to be proven,

however.

In the light of the hitherto noted advantages of the UEP formulation and its consistency
with both the SEU hypothesis and the notions of stochastic efficiency, the approach has
been adopted for use in this work.

3.6 Concluding remarks

It has been argued in this chapter that the SEU hypothesis provides a relevant basis for
the analysis of the uncertainties of decision making in agricultural production, such as
the adoption of a new crop like Linola. The adoption of this criterion implies that the
analysis should necessarily be based on the decision makers' preferences for risky
outcomes, as indicated by their utility functions, and on their beliefs about the chances
of occurrence of those outcomes, encoded through subjective probabilities.
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Because of the practical difficulties that accompany attempts at eliciting individual
utility functions with confidence, methods of stochastic efficiency have been developed
and are judged to be relevant for this study. In particular, SDRF appears to be an
appropriate criterion since the range of strategies in the efficient set can be limited by
imposing plausible limits on the value of the absolute risk aversion coefficient.

Because Linola needs to be evaluated in a whole-farm context, mathematical
programming is considered to be the most appropriate form of model for this study. In
particular, the approach of utility-efficient programming combines the advantages of
constrained optimisation in a whole-farm context with the concept of SDRF. This
method has therefore been adopted for the analysis that follows.



4. Data Collection, Collation and Analysis

'Things are not always what they seem'’

- Anon

4.1 Introduction

Some of the theoretical concepts that form the basis of the modelling of case farms in
the study area have been discussed in previous chapters. Empirical application of the
outlined approaches requires comprehensive data sets from the farms under
consideration and the general locality in which the farming operations take place. The
collection, collation and preliminary analysis of these data are described in this chapter.
The types of data collected are reported and the rationale established for the approaches
taken for the computations of some of the technical coefficients.

Data used in this work were obtained from both primary and secondary sources. The
data for each study farm was obtained via questionnaires designed to be easily
understood by the farmers. The first farm visits took place early in 1994 and a second
follow-up visit for the purpose of verifying the respective farm models and to cross-

check some of the applied data took place early in 1995, about a year later.

Certain farm-specific data could not be obtained by the author due to a lack of research
resources. For these data, district averages were obtained from the Victorian
Department of Agriculture (VDA) and the Victorian Farmers Federation (VFF) and
were assumed to be applicable to all the case farms used in this study. This assumption
was considered reasonable since the case farms are located in the same agroclimatic

zone.
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Crop yields and prices used in each of the models were unique to each farm as they were
based on farmer expectations obtained through the scaling procedure described later in
Section 4.5. In essence, detrended yield and price data used for each farm model were
subjectively adjusted to reflect the expectations of each farmer (as explained in Section
4.5 below). It was assumed that the five case farms in this study cultivated similar crop
varieties as recommended for the district by the VDA (Carter 1991).

All the necessary plant and field machinery are assumed available on each of the case
farms except for headers which are assumed hired on contract. Excess harvesting
capacity in the district has generally reduced the trend towards individual ownership of
combines as the cost of maintenance have been thought by farmers to exceed the value
of the insurance provided for losses due to untimely harvesting of crops (Wightman, B.

1994, pers. comm.)

The rationalisation of the choice of the case study approach for this work is provided in
Section 4.2. Section 4.3 is a description of the study area and the case farms. The
sources of primary and secondary data, methods of analysis and the treatment of missing
data are discussed in Section 4.4. The discourse in Section 4.5 covers the elicitation of
the subjective probabilities of the farmers and others involved in the study. The approach
used for the measurement of individual preference intervals is described and rationalised
in Section 4.6. Results obtained from the implementation of the preference measurement

procedure are also presented.

4.2 Representative versus case study approach

In the whole-farm modelling approach, there are two main options in the type of data
that is collected for use in the farm model. These are either the representative farm or
the case study farm option. A representative or typical farm, which is not usually an
identifiable real farm, is generally formulated to represent both the average or typical
situation of farms in the study area. Thus, it is usually constructed to be of median
(mean) size and to have the typical relative resource endowments of the group of real
farms it is supposed to represent. For this reason, the results obtained for the
'representative’ farm will not apply to any specific farm but may be applicable to some
group of farms, on average. When the modelling process requires incorporation of
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individual beliefs and preferences, the average or median individual may be difficult to
define. Serious questions exist as to whether a 'typical' farm can effectively reflect the
differences in the managerial abilities, tenural arrangements, capital availability, and
personal bias and goals of individual farmers. In recognition of the fact that each farm
represents a unique case, the case study approach was elected for use in this study.

A case study farm is one that is studied in sufficient detail to understand many of the
cause and effect relationships that exist on the farm. It has the advantage of reflecting
actual circumstances of a particular farm, not some amalgam of the circumstances of
many farms. Conclusions may be extrapolated to the target farm population provided
that sufficient information is available about the population in terms of those features
revealed by the case study to be important. Barlow, Jayasuriya and Price (1983) have
noted that some degree of generalisation for case study farms may be justified if farms
are chosen to represent particular production environments. The case study approach
allows direct incorporation of decision maker beliefs and preferences in the models

developed to mirror the production decisions taken on the specified farm.

In the current study, Linola is being grown on a trial basis by farmers in the Barwon
district. Since farmer beliefs and preferences influence their decision to adopt new
production techniques, these may be easily incorporated in the models which become
unique for the particular case farms. This further validated use of the case study
approach in this study.

4.3 Study location and choice of case farms

The case study farms are located in the Barwon Statistical District (hereafter called
Barwon) of Victoria, all within a 120 km radius of the Shire's main city of Geelong. The
location of the Barwon statistical division is shown in Figure 4.1.

Located in the Western District, Barwon comprises fourteen Statistical Local Areas
(SLA) including the shires of Colac, Winchelsea, Leigh and Barrabool, where the farms
used in this study are located. These shires have a combined population of about 22 620
(ABS 1992).

The climate in the area is mainly humid, remperate. Most of the area has mean annual

rainfall exceeding 600 mm (Bureau of Meteorology, 1995). A summary of the average
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annual distribution of rainfall in Victoria is shown in Figure 4.2. The major topographical
determinant of the Victorian climate is the Great Dividing Range which acts as a barrier
to the moist south-east and south-west winds and this, combined with its coastal
proximity, causes the south of the State to receive more rain than the north (ABS 1994).
The expanse of ocean that borders south Victoria exerts a moderating influence on the
winter climate between the months of May to August and, in consequence, snowfalls are
rare on areas under an elevation of 600 m. Generally, summery temperatures occur
between the months of November to February. The rainy period is mainly between
March and August, though rains may occur year-round.

The soils are mainly basaltic ranging from yellow and brown podzolic and solodic
(Walker et al. 1983) to alluvial soils. The top soil is usually shallow, 10-30 cm, overlying
heavy clay subsoil. Most of the soils are generally considered good though they may be
acidic and deficient in nitrogen, copper, sulphur and phosphates and prone to
waterlogging as a result of the thick, plastic clayey subsoils with low permeability
(Wightman, B. 1994, pers. comm.).

Land use in the district varies widely from grazing in the drier inland range-lands to cash
cropping in the more humid coastal locations to industrial and urban uses in the major
cities. The predominant agricultural activity in Barwon, however, is crop production
with a significant level of combined crop and livestock production as shown in Table
4.1.

According to the 1994 ABS survey, the Victorian average farm/establishment size was
349 ha (down from 393 ha the previous year) compared to the Barwon average of 239
ha (down from 286 ha in 1993).

The total sheep and lamb population in the district was reported to be 1.3 million. Cattle
numbered about 225 000 and pigs just under 7000 in 1993/94 (ABS 1995).

The general pattern of land usage in Barwon is provided in Table 4.2. It can be observed
that, although wheat is the main crop grown in Victoria (33.8 per cent of total land use),
in Barwon, barley is the major crop, accouanting for about 35 per cent of total cropped
land. The area sown to wheat in Victoria (FFigure 4.3) declined by over 50 per cent in the
six-year period between 1986/87 (1.36 rnillion ha) to 1991/92 (0.6 million ha, ABS
1994) and then increased again between 1993 and 1995. In contrast, the area sown to
barley has shown a rising trend over the same period from little over 440 000 ha to
900 000 ha. Oilseeds account for close to 9 per cent of arable land usage in the Barwon
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district with linseed constituting about 4 per cent of the total. Over 95 per cent of the
total Victorian production of linseed is grown in the Barwon area, making it an area with
reasonable potential for the adoption of Linola given the similar agronomic requirements
of both crops as previously discussed in Chapter 2.

Rotation practices have become popular with the increasing awareness by farmers of the
effects of intensive cropping practices on the chemical properties, physical structure and
future productivity of the soils. Also, when crops such as oilseeds are introduced into
crop rotations, the build-up of soil-borne diseases is interrupted, hence these crops are

commonly described as 'disease break' crops.

There has been a general transition away from using aggressive soil tillage implements
such as the mould board plough to the disc, chisel and scarifier ploughs, and herbicides
are being substituted for mechanical weed control (Bluett, C., 1994, pers. comm.). In
recognition of the fact that their production systems must be both sustainable and
profitable, various methods of conservation farming are becoming popular in the area.
Direct drilling (zero-tillage) is also gaining in popularity despite claimed benefits of deep
tillage (Ghadim et al. 1991). Although no known studies of the influence of zero-tillage
on crop performance have been reported for the Barwon area, studies in northern New
South Wales have indicated significant yield increases (Martin and Felton 1985; Collett
1984) due to improved soil structure and more active earthworm populations.

The choice of farms used as case studies was not governed by any statistical
considerations but by opportunism in that relatively few farmers have taken up growing
Linola, which is the focus of this work. The only consideration given to the selection of
the study farms was that each had grown linseed over at least four seasons, not
necessarily successively, at some stage previously and had grown Linola on a trial basis
for at least two seasons. A list of the only eight farms that had grown the crop on a trial
basis in the Barwon District of Victoria was obtained from the Victorian Department of
Agriculture and Seedex (CSIRO's commercial arm) and all were originally interviewed
but three were dropped because of recurrent inconsistencies in their responses to the
section of the questionnaire on preference interval estimation (described later in this
chapter) and also because they had grown the crop for only the previous growing
season. The statistical divisions of Victoria, including the study area of Barwon, are as
shown in Figure 4.1.
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4.3.1 Case farm one

Case farm number one is located in the shire of Winchelsea and is family-operated by
two brothers, one full-time and the other part-time. The full-time farm operator, who is
under 40 years old and sees farming as both a way of life and a business, attained a year
11 education before joining the family business of farming. The farmer has a wife and

two children, both of whom are under ten years old.

The total farm area i1s some 1300 ha of which 900 ha is arable. The non-arable 400 ha is
under natural pasture. Of the 900 ha of arable land, 520 ha is cropped and the remaining

380 ha sown to improved pasture.

The topography is mainly undulating land varying from light friable loam to heavy clay
soils that sometimes require the application of gypsum to improve friability and the

stability of the clays.

The main crops grown include wheat, triticale, barley, linseed, Linola, and clover which
is used for hay. Wethers are run for wool and first-cross lambs produced for the fat-lamb
market. The total stock of sheep is usually kept at about 6500.

The farmer also keeps about 520 (000 broilers on an 'all-inputs-supplied’ contract basis in
which case only the farmers' labour and management are required inputs into the

enterprise.

According to the farmer, the level of the cropping enterprises varies each year depending
on price expectations based on the information about the previous season. At times, the
farmer places limits other than rotational constraints on the production of certain crops
because of the risk of crop failure.

Two permanent farm hands are employed with casual labour employed as needed during
the year, particularly at harvest and shearing time. Some off-farm contract work is done
for other farmers (land preparation, harvesting, hay baling) and the shire (highway grass
verge mowing). A summary of some of the performance indicators for this farm is
presented in Appendix Table A10.1.
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Table 4.1 : Agricultural land use in Victoria, 1993/94

Proportion of total

Proportion of

Enterprise Sown area area cropped area
ha ha %
Cereals: 1 652 000 12.70 71.30
Wheat 783 895 6.02 33.83
Barley 639 493 491 27.51
Oats 185 840 1.43 8.02
Triticale 32 000 0.25 1.38
Rye 13 000 0.10 0.56
Oilseeds: (66 000) (0.51) (2.85)
Canola (rapeseed) 29 050 0.22 1.25
Linseed 1290 0.01 0.06
Safflower 290710 0.23 1.28
Sunflower 1 390 0.01 0.07
Legumes 421 000 3.23 18.17
Other crops 153 958 1.18 6.64
Total cropped area 2317 000 17.80 100.00
Pasture - native 2124 000 16.32
Pasture - sown 6 122 000 47.03
Other usage? 2 454 000 18.85
Total land area 13 017 000 100.00

4 Includes vegetables, fruits and nuts, and grapes.

Source: ABS (1995).
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Table 4.2 : Average land use in Barwon district, Victoria, 1993/94

Proportion of total Proportion of
Enterprise Sown area area cropped area
ha ha %
Cereals: (21 373) (4.65) (64.58)
Wheat 2613 0.57 7.89
Barley 11 636 2.53 35.16
Triticale 2 305 0.50 6.96
Oats 4766 1.04 14.40
Other4 53 0.01 0.16
Legumes 1 595 0.35 4.82
Oilseeds: (2 869) (0.62) (8.67)
Linseed? 1273 0.28 3.85
Canola 1083 0.24 3.27
Sunflower 513 0.10 1.55
Other crops 7258 1.58 21.93
Total cropped area 33095 7.20 100.00
Pasture - native 81 000 17.62
Pasture - sown 270753 58.89
Other usage® 74 900 16.29
Total land area 459 748 100.00

4 Mainly ryegrass seed.
b Including Linola.
¢ Includes vegetables, fruits and nuts, and grapes.

Source: ABS (1995).
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4.3.2 Case farm two

Case farm number two is a family-operated farm of 750 ha located in the shire of Leigh,
with an owner-estimated walk-in, walk-out value of $1.2 million. Of the total arable area
of 500 ha, 227 ha is cropped and 186 ha sown to improved pasture. The operator is a
43-year-old graduate diploma holder who inherited the farm from his father 20 years
ago.

The topography is mainly flat land ranging from basaltic loam to clay. There are
scattered areas of rocky outcrops suited to little but running sheep.

The main crops grown, mainly by direct drilling, include wheat, barley, sunflower,
linseed, grain oats and recently, Linola. All crops are sold at harvest and may be
contracted mid-season. Some of the oats may be fed to stock if and when necessary.
Sown pasture, which is cut for hay, is mainly clover, sometimes mixed with phalaris.
Chemical application is usually done by contract and up to 60 per cent of crop harvest
(100 per cent for sunflower) is also usually done by contract.

Wethers are run for wool based on a self-replacing Merino flock and cross-bred lambs
are produced for the fat lamb market. At the time of the last visit to the property in April
1995, there were 3200 sheep on the farm.

One permanent farm hand is employed on the farm. Main casual labour employment is
for shearing in September/October and April/May. The main performance indicators for
case farm two are provided in Appendix Table A10.2.

4.3.3 Case farm three

Case farm number three is a 960 ha farrm located in the shire of Leigh. It is owner-
operated full time and comprises 787 ha of arable land and 173 ha of non-arable land
planted to natural pasture. The 37-year old operator, who inherited the property about
21 years ago, was educated to year 12 and has a wife and three children who sometimes
help with farm work. The property, currently valued at over $2 million, has been in the
family for over a hundred years. The only change through the years has been the

acquisition of more land.
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The soil on the farm ranges from sandy loam to heavy clay which gets waterlogged in

very wet years.

The favoured crops include wheat, barley, triticale, Canola, lupins, field peas, linseed
and, recently, Linola. However, the operator indicated that crop rotations are not set and
may change from year to year depending on price expectations. Linola and linseed are
grown because they tolerate water-logged soils or 'wet feet'. Sown pasture consists
mainly of sub- and white clover.

Low-maintenance wethers are bought in annually for wool production and sold for meat.
No self-replacing flock is maintained. The decision to purchase wethers each year is

based on the expected change-over price differential.

A part-time farm hand is employed, for four days of each week.

Wheat is usually sold privately (i.e., not through the Wheat Board) but barley is sold
directly to the Barley Board. Oilseeds are sold mid-season or at harvest to crushers, but
linseed may be sold as bird seed to agents. Sometimes oilseeds may be grown on fixed-
tonnage, fixed-price contracts. General performance indicators for this property are
given in Appendix Table A10.3.

4.3.4 Case farm four

The property identified as case farm number four is an owner-operated farm of 862 ha
(650 ha of which is leased) located in the shire of Barrabool. Of the 862 ha comprising
the farm, 800 ha is arable and 62 ha non-arable. The non-arable area is planted to natural
pasture. About 72 per cent of the arable area is sown to pasture (mainly lucerne which is
cut for hay) leaving 220 ha for cropping.

The soils on the farm vary from light sandy soil to medium to heavy loam. Rainfall is
close to the district average but winters are wet in normal years.

The property owner, aged 45, attained a year 11 (matriculation) education and has a
wife and three children. The wife is actively involved in the farming operation as book-
keeper and all three children help out on the farm when they are able to.
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The crops of choice grown on the farm include Canola, linseed, Linola, barley (feed or
malting), field peas, turnips and canary seed. Linola was not grown in the 1994/95
season because of the withdrawal of the growing contract by Seedex. Turnips are mainly
fed to sheep.

Land preparation is moving towards minimum tillage options. Some crops such as barley
and turnips are direct drilled. For the heavier soils some level of conventional cultivation
still takes place, viz. disc ploughing, scarifying and harrowing.

Both cattle and sheep are run on the farm. Sheep activities include merino breeding,
wethers and fat lamb production based on ‘comeback' ewes crossed to Border Leicester
or Dorset Horn rams. The Sheep flock is self-replacing. As at April 1995, the farm had
4500 sheep including 1650 breeding ewes. Beef cattle enterprises include vealer
production using mainly Herefords, Angus, Limousin, Belgian Blue and crosses to
maintain a 200-cow breeding herd. Sometimes replacement heifers are bought in.
According to the operator, the difference in the price of vealers and fatteners is not
sufficient to warrant the extra effort and time of keeping fatteners except on the odd
occasion. Main performance indicators for the farm are provided in Appendix Table
A10.4.

Off-farm activity includes contract haymaking for neighbours up to a maximum of 200 h
annually. Verge mowing for the shire council may sometimes be an option but this is not
a regular activity.

Crop sales are mainly after harvest to the various pertinent commodity boards. Barley is
sold to the Barley Board and linseed to Southern Grains. However, Canola and canary
seed may be forward contracted on the basis of fixed tonnage for a fixed price. Sheep
and cattle are sold either through the saleyards or directly on the property through the
computer-aided livestock marketing (CALM) system. Sometimes, fat lambs may be

forward contracted for the export market.

4.3.5 Case farm five

Case farm number five is located in Colac shire. At 1800 ha total area, currently valued
at $3.2 million, the farm is bigger than the district average and is fully owned by the
operator. The 36-year old operator's highest educational achievement is a farm
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management diploma. The family size is four with two children who are under ten years
old.

Rainfall average on the property between 1992 and 1994 was about 575 mm.

The topography is mostly flat to slightly undulating land with soil types ranging from
alluvium silt to light clay. Of the 1800 ha of farm land, only 206 ha is arable. Of the
remaining 1594 ha, 74 ha is unusable fenland and the rest is under natural pasture.

Ninety-six ha of the arable land is sown to improved pasture.

The crops of choice on this farm include wheat, barley, forage oats, triticale, lucerne,
Canola and Linola. Linola was not grown in the 1994/95 season because of the
withdrawal of the growing contract by Seedex. Sown pasture is mainly medic, sub-
clover and luceme. Lucerne is usually cut twice - first cut for silage and second cut for

hay.

Sheep and cattle are raised as a self-replacing flock and herd respectively. Wethers are
raised for wool and breeding ewes to maintain the flock size. Cattle activities include
weaner production, steers, heifers and vealers from a breeding herd of 150 cows. The
average stocking rate on the property is about 9.8 DSE/ha.

Cereals are direct drilled but oilseeds are more traditionally sown, i.e., land is ploughed
(disc plough) and scarified.

The farmer employs one full-time permanent farm hand and casual labour is employed as
required through the year, especially at harvest and shearing times. About 200 h each
year is expended on off-farm work such as hay-baling. Canola windrowing is usually
contracted.

Crop harvesting is usually contracted and crops are normally sold on the open market.
Most of the harvested barley is sold to local dairy farmers, and ewes and wethers are
sold for export on the property. Wool is generally sold at auctions or to brokers. Cattle
are sold on the property or through the saleyard at Colac. Fatteners are mainly sold for
export. The main performance indicators for case farm five are as provided in Appendix
Table A10.5.
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44 Data collection and analysis

Most of the data used in this work were collected between March 1994 and April 1995
from the case-study farms previously described. Prior to visiting the case-study farms,
the author conducted interviews with various VDA and VFF staff in Geelong, Colac and

Ballarat to become familiar with the area.

Care was exercised in the collection and collation of the large volume of data required
for the whole-farm modelling approach adopted for this study. The data requirements

were farm-specific and general, as further explained below.

Farm-specific data on the resource base, technical coefficients and production/personal
objectives for each case study farm were obtained by administering a questionnaire
(Appendix Al) designed to be simple and comprehensible to the farmers. The
questionnaire, which had been pre-tested on three farmers in the New England area, was
personally administered by the author in all cases. The sessions which averaged three
hours, were usually broken into segments to avoid boredom. The respondent farm
operators were generally cooperative and helpful during the interviews which were also
recorded on tape. As a rule, data were extracted from the questionnaire onto a laptop
computer on the day of the interview.

Information was obtained for both crop and livestock activities. To enable subjective
scaling of the data as later described, information was obtained on farmer price and yield
expectations based on the triangular distribution. Information was also obtained on
farmer attitude toward and perception of risk. As a consequence, probability
distributions for crop yields and prices used in each of the models were unique to each
farm as they reflect the subjective expectations of each farmer. Given the Fischer (1985)
and Roling (1988) propositions that educational achievement affects the manner in
which information concerning a new technique is processed, data were also collected on
the amount of schooling received by each of the respondents. All farmers had had at
least 11 years of formal schooling and been in agricultural production for at least 10
years. The average age of the respondents was 40.2 years.

The general sensitivity of the issue of taxes informed the decision of the author to use
pre-tax farm income as the modelling basis. Information was not collected on family
assets outside the farm such as shares, bonds and short- or long-term bank deposits. As
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a consequence, it was assumed that it is the changing wealth status of the producer as

per farm returns that influences the production decisions made on each of the case farms.

Data were also collected about sources and uses of credit for each farm. The main
sources of credit were the various financial institutions including credit unions and
savings/trading banks. Other sources of credit include pastoral and non-pastoral finance
companies, assurance societies as well as government sources. The types of credit
available include negotiable leases, fixed-term loans which are usually mortgagee-
secured, bank overdrafts and government assistance. It was found that the five farmers
studied in this work generally imposed Lmits on their borrowing on the basis of the
estimated walk-in, walk-out values of their properties. While each agreed that these
limits could be exceeded in dire times, they indicated that such recourse had not been
necessary in the last 5-7 years despite the downturn in the rural economy. Too,
information was obtained about carry-over funds from the end of one season to the start
of the next.

Information was collected on the availability and use of labour on each farm. On the
basis of information obtained from the individual farmers, effective available labour was
computed as the total labour available (operator, family, permanent employed, part-time)
less vacations, periods of ill health and miscellaneous family time allowance. For the
operator, periods of field day attendances and other miscellaneous extra-farm activitites
were also deducted to arrive at the total available labour. An eight-hour working day

over a six-day week was assumed.

Household labour available for farm activities is both a function of non-farm
committments, including leisure and schooling, and the composition of each household.
The mean household size was 4.4. Since there are other competing uses of family
'labour’ such as schooling, off-farm work and leisure, the use of family time was assigned
to the periods when labour was in short supply - planting and harvest. The amount of
family labour, apart from operator labour, available for farm work was computed taking
into consideration the family size, age distribution and competing demands for family
time outside the farm. Children under 10 years were assumed to provide no labour
towards farm operations. Also wives who worked full-time off-farm were assumed to
provide no on-farm labour. No attempt has been made to treat family labour not used for
farm activity as representing forgone earnings or expenditure (Becker 1965).

An inventory of physical assets on each of the case farms was obtained via the
questionnaires, as were estimates of maintenance costs.
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Farm-specific data were cross checked for accuracy and correctness during the follow-
up visit about a year after the first visit to the farms. On this occasion, a reduced form of
the previous questionnaire was administered and the responses checked with the
previous ones for consistency. Generally, the respondents were consistent in their replies
about technical data. The few inconsistent responses were clarified in consultation with
the farmers. Mainly, these were a result of apparent memory lapses that were sorted out
on further discussion with the respondent.

General and specific data on Linola were mainly obtained from CSIRO and the Victorian
Department of Agriculture (VDA), Geelong. A CSIRO researcher and an extension
officer with the VDA, Ballarat, were interviewed to obtain information about their
perceptions concerning the new technology. These perceptions were incorporated in the
models for each case farm. Time series data on prices, yields and costs of the major farm
inputs including fertilisers and chemicals were mainly obtained from ABS, ABARE,
VDA and the Victorian Farmers Federation (VFF) publications between 1970 and 1994
and transformed into subjectively adjusted values in the manner described later in
Section 4.5. It is recognised that the aggregation of yields across farms in a district may
tend to reduce variability due to imperfect correlations, but these problems are not easily
overcome. Annual mean rainfall and mean annual ambient temperature data for the
district were obtained from the Bureau of Meteorology, Melbourne. Data on feed and
energy requirements for livestock, sheep and cattle, in Livestock Months (LSM), were
obtained mainly from Rickards and Passmore (1977). Forage production estimates in
LSMs were also obtained from Rickards and Passmore. Prices of the various classes of
livestock were obtained from the farmers and cross-checked with those obtained from
the Colac and Geelong saleyards in the years for which this was an option.

Since no data were available to enable the researcher to assign probabilities to the years
for which historical activity net revenue data were obtained recourse was had to the
'principle of insufficient reason' in assuming that the subjectively scaled activity revenue
sets based on the twenty-five production years (1970-1994) of data were equally likely

states of nature.

Preliminary analysis of the data was done using EXCEL and MINITAB which are both
amenable to the handling of a large volume of data. The database was set up following
the approach suggested by Friedrich (1977). Most data fields within the worksheets
were cross linked by formulae to minimise data entry and re-entry errors. Careful
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'eyeballing’ was carried out to ascertain the integrity and logical consistency of all
analysed data.

Detrending (linear) of historical price and yield data prior to their correction was carried
out using MINITAB following Karmel and Polasek (1977). Detrending was necesssary
to eliminate the effect of technological change and inflation.

Individual farm gross margin budgets for crop and livestock activities (Appendices11-
15) were computed and analysed on EXCEL spreadsheets using the subjectively
adjusted data (Appendices 3-8) for each farm. As noted earlier in Section 4.3, direct
drilling is gaining in popularity in the district. In consequence, the crop activity budgets
were constructed on the basis of reduced land preparation. Although all the case study
farmers owned tractors and land preparation equipment, harvesting was mostly
contracted. This was accordingly reflected in the activity budgets. With livestock
activities, the only contracted work included in the activity budgets was the shearing of
sheep.

4.4.1 Missing data

Being a new crop, no historical data were available for Linola. Relevant yield and
technical coefficient data for the crop were generated based on linseed data given their
agronomic and biological similarities. As indicated by CSIRO (1994), Linola varieties,
Wallaga and Eyre, have yields 5-10 percent better than their parent linseed cultivars.
Consequently, for each data point, relevant historical linseed yield data were inflated by
7.5 per cent for the years between 1970 and 1990. This was also considered a way
around the problem of using time series that may be low for a crop due to the
inexperience of the growers with the crop.

Linola price data were obtained by assuming a positive unitary correlation between
Canola and Linola prices. This assumption is based on the results presented in Table 2.7.
As discussed in Chapter 2, the demand for most oilseeds is a derived demand driven by
the demand for the various oils. Linola oil is identical in composition to sunflower oil for
which it would be a potentially perfect substitute. From Table 2.7, the highest price
correlation is between Canola and sunflower prices. Given the apparent high
substitutability of Linola and sunflower oils, it was assumed that the same level of
correlation would exist between Canola ard Linola oil prices. A correlation of +0.9 was
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thought to be close enough to assume unitary correlation between Linola and Canola
prices between 1970 and 1990.

Data for triticale were not available prior to 1975 as the crop was not commercially
grown in Australia before that year. To obtain yield data for the years between 1970-74,
an ordinary least squares regression was run using yield data (3-year moving average)
between 1975-94 with precipitation (district 3-year moving average) and mean ambient
air temperature (3-year moving average) for the same period, as independent variables
(Johnson and Finley 1963; Shaw 1964; Chmielewski 1995). As previously indicated,
mean annual precipitation and mean annual temperature data were obtained from the
Bureau of Meteorology. The resulting relationship was then used to extrapolate triticale

yields for 1970-74. The estimated relationship is given by:

TY =0.299 + 0.0037P - 0.2297A (SE =0.1687, R? = 0.8497) [4.1]

where TY is the predicted triticale yield tetween 1970 and 1974, P is the mean annual

precipitation and A is the mean annual temperature.

Relevant price data for 1970-74 were similarly obtained by regressing triticale price on
wheat and barley prices. The estimated OLS price relationship is given by:

TP =21.01 + 0.3308WP + 0.3957BP (SE = 8.0479, R? = 0.8736) [4.2]

where TP is the predicted price per tonne of triticale for the years 1970-1974, WP is the
price per tonne of wheat and BP is the price of barley per tonne.

In light of the time and financial limitations of the author which restricted the time spent
on each farm, it was not possible to obtain all the necessary technical coefficients from
each of the farms. In these instances, the information was obtained from the VDA
extension officer who has dealt with these farmers for several years and also maintains
trial plots for varying crops on the farms. His estimates were therefore considered
reliable for the purposes of this work. On occasion, recourse was made by the author to
informed subjective guestimates' for technical coefficients after consultation with the
farmers and VDA extension workers.
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4.5 Elicitation and assessment of subjective probabilities

For the elicitation of individual subjective probabilities for yields and prices, the
triangular distribution was used. The farmers were simply requested to indicate the
lowest, mode or most likely and the highest values for each uncertain quantity. As noted
by Anderson et al. (1977), the cumulative distribution function (CDF) of the triangular
distribution is of the form:

F(x) = (x-a)2/[(b-a)(m-a)] fora <x <m [4.3]
and
F(x) = 1-(b-x)2/(b-a)(b-m) for m <x <b [4.4]

where x = value of risky prospect;

a = lowest possible value of x;

b = the highest possible value of x;
and  m = the most likely value (mode) of x.

By equating F(x) with a pseudo-random uvniform variate, u, over the interval of zero to
unity, the expression given by 4.4 can be solved for a corresponding triangular variate, x.
ie.

x=a+ [u(b-a)(m-a)]o'5 fora <x <m [4.5]
and

x = b - [(1-u)(b-a)(b-m)]*= for m <x <b [4.6]
where a, b and m are as previously defined.

Crop yields and prices may be expected to be stochastically dependent implying the
requirement of their joint distributions. However, as recognised Anderson et al. (1977),
the elicitation of the multivariate distribution of crop yields and prices from farmers is
intrinsically difficult. Consequently, recourse had to be made to the use of subjectively
adjusted historical data following Lin, Dean and Moore (1974).

Generally, input-output relationships were based on agronomic, physical and biological
data obtained for each farm in so far as that was possible. As earlier mentioned, the time
series data on crop yields and prices were obtained from various ABS and ABARE
publications and the Victorian Farmers Federation year books for the period, 1970-
1994. To eliminate the effect of technological change and inflation, the data were

detrended and then scaled to have similar means and standard deviations as those elicited
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from the farmers using the triangular distribution. The following relationship was
employed in transforming the historical time series data:
Ysjk =M 5t [(Ydjk - Mdj)/Sde]SDsj [4.71

where Y = subjectively transformed yield or price for crop j in state k;

M;; = mean of subjective distribution for crop j;

Y 4j = detrended data crop j and state ;

M 4; = mean of detrended data for cropj;

SD dj= standard deviation of detrended data for crop j; and

SD;; = standard deviation of the subjectively transformed distribution for crop j.

This adjustment procedure preserves the nature of the correlations and the inherent
stochastic dependency of the original historical data. Since no information was available
to enable the researcher to assign varying probabilities to the data for the years
considered in this work, recourse was made to the 'principle of insufficient reason’
(Halter and Dean 1971) in assuming that the 25 production years (1970-1994) of data
used in this work were equally likely states of nature after subjective scaling. Examples
of the detrended and transformed data series are presented in Appendices 4-8. All initial
data analysis and budget computations were done on EXCEL spreadsheets.

4.6 Individual preference measurements

King and Robison (1981a,b) have advanced an operational procedure for eliciting
decision maker risk attitudes based on the SDRF criterion developed by Meyer (1975,
1977a,b) as discussed in Chapter 3.

The interval approach to measuring decision maker preferences allows the estimation
of the lower and upper bounds of a decision maker's absolute risk aversion function
which is a prerequisite for SDRF analysis. Unless otherwise stated, references in this
section will be to King and Robison (1981a), a summary of which is presented.
According to King and Robison, the approach, '...uses information revealed by a series
of choices between carefully selected distributions to establish lower and upper bounds
on an individual's absolute risk aversion function'. The procedure is based on the fact

that, under certain conditions, choosing between two distributions defined over a
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relatively narrow range of outcomes divides absolute risk aversion space (-eo to oo )
over that range into two regions - one region which is consistent with the choice made
and the other not. The properties of the two distributions thus define the consistent and
inconsistent regions (Meyer 1977a,b). Thus, by providing a decision maker with a
series of choices between carefully selected pairs of distributions, it is possible to
identify the region in absolute risk aversion space that is consistent with the decision
maker's indicated preferences. Each choice made by the decision maker allows
narrowing of the absolute risk aversion range. The 'choice-narrowing' process continues

until a desired accuracy level is achieved.

The range of absolute risk aversion is determined at four levels of the performance
variable, pre-tax net income. By making interval measurements in the region of several
outcome levels and linearly interpolating between known values, lower and upper
bound risk aversion functions can be constructed over a wider range of outcomes.

Implementation of the interval approach requires:

1) specification of a measurement scale which determines the degree of precision with
which preference measurements can be made;

2) generation of sample distributions and identification of the boundary intervals for
the paired distributions using a customised computer program;

3) formulation and administration of a questionnaire; and

4) using respondent interval preferences to order selected alternatives.

Following the above steps, the starting point for the procedure was the careful
specification of a measurement scale that serves as a set of reference levels of absolute
risk aversion on which preference measurement was based. The number of reference
levels on the measurement scale depends on the number of comparisons the decision
maker will be requested to make. Generally, if N choices are to be made in measuring
the absolute risk aversion for a specified output level, the measurement scale should
comprise as least 2V reference levels. If, as in this instance, the decision maker is
required to choose between two distributions, then the measurement scale should

comprise four absolute risk aversion levels.

The next step is the generation of the sample probability distributions that will serve as
the basis for the choices intended to reveal the decision makers' preferences. The
pseudo-random distributions are generated using a simulation model (INTID - as listed
by King and Robison) for a specific distributional form, e.g. normal, beta and gamma.
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King and Robison assume a normal distribution which can be simulated by supplying

values for the mean and standard deviation.

The program, INTID, generates a sample of hundreds of sampled values based on
indicated parameter values. These sampled values are then grouped into sets of
observations or elements considered to be equally likely outcomes. So as not to unduly
complicate the choice process, six elements were used in this study as recommended by
King and Robison though-a smaller or larger number of elements can be used. Using
six elements facilitates the explanation of the choice situation to the respondents, since
the probability of occurrence of any one element of each distribution may be equated to
the probability of obtaining a specified number of dots on rolling a die. As a rule, the
distributions are defined over a narrow range of outcome levels since the decision
maker's absolute risk aversion can then be assumed to be constant over that range. The
four net farm income levels selected for this work are $5000, $14 000, $23 000 and $32
000, based on abstractions from ABS (1993) statistics of expected pre-tax net farm
income in the Barwon district between 1990 and 1993. According to the survey, 12.5
per cent of producers earned $5000 or less over the period, 25 per cent below $14 000,
50 per cent below $23 000 and 75 per cent below $32 000. These were therefore
considered feasible average earnings for the farmers in the study.

Following the ordering of the pairs of distributions for various upper and lower bounds
of the absolute risk aversion function, a questioning procedure is then designed to elicit
the respondent’s preference interval. The questionnaire is in the form of a programmed
learning text in which the respondent is guided through a hierarchy of pairwise
comparisons designed to continually increase the precision of interval measurement.
The questioning procedure allows the elicitation of the decision maker's absolute risk
aversion range at some specified level of income. Details of the mechanics of the
procedure are provided by King and Robison (1981a,b). In the current study, practice
sessions were conducted until the respondents showed some understanding of what was
required. This was done in recognition of the Hogarth (1975) observation that farmers
generally lack expertise with regard to the expression of opinions in probabilistic terms.

Based on the ABS (1993) survey results reported above, the four income levels of
$5000, $14 000, $23 000 and $32 000 were chosen for this study. Direct interval
measurements were made in the neighbourhood of these income levels and the
formulated distributions are provided in Appendix AZ2.
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4.6.1 Preference interval results

The object of the measurement was carefully explained to each farmer by using the
analogy that each of the six elements of a given distribution may be seen as the numbers
that turn up on the toss of a die. This was easily comprehended and the farmers were
then requested to make their choices between the derived distributions. A summary of
the results of the farmer preference interval measurements are given in Table 4.3. The
choices made in each income group enabled narrowing of the preference interval for
each farmer. The results reported in Table 4.3 indicate the risk attitude of the five
respondent farmers to be varying levels of aversion to risk from slight to moderate. For
farm one for instance, the elicited preference range indicates that for this farmer, the
marginal utility or satisfaction from an additional dollar is decreasing at the rate of
between 0.01 to 0.001 per cent for each dollar increase in net farm return. For farm five,
the elicited infinite upper bound on the farmer’s risk aversion implies that at higher
income levels the farmer is more risk averse than at lower income levels. As noted by
Love and Robison (1984), this may be expected as individuals are usually willing to take
added risk at low income levels given the small magnitude of the absolute dollar
amounts as well as the variability of the paired distributions. These elicited intervals
(Table 4.3) were used as the lower and upper bounds of farmers' preferences in the
programming models constructed for this study.

To serve as a check of the derived preference ranges, the non-negative certainty
equivalent approach suggested by McCarl and Bessler (1989) was used to determine an
upper bound of risk aversion for each respondent farmer. The approach suggests that an
upper bound for the absolute risk aversion coefficient for an individual can be established
such that certainty equivalent disregarding wealth is non-negative. Based on the
approach, the upper bound is computed using the following expression:

r, < 2*E(NR)/c2(NR)

where E(NR) is the expected net revenue and 02(NR) is the corresponding variance of
the most common farm portfolio which was taken to be the observed farm plan for the
case farms. The determined upper bounds which are above the elicited upper ranges, are
given in Table 4.4. It is to be noted that the upper bounds of r, determined using the
non-negative certainty equivalent approach were generally higher than the elicited values
shown in Table 4.3.
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Table 4.3 : Elicited producer preferences for pre-tax net incomes between
$5000 and $32 000 using the interval approach?

Preference
interval
Respondent Section Upper, r, Lower, r,
Case farmer one 1 0.0001 0.00001
2 0.0001 0.00001
3 0.0001 0.00001
4 0.0001 0.00001
Case farmer two 1 0.0001 0.00001
2 0.0001 0.00001
3 0.0005 0.0001
4 0.0005 0.0001
Case farmer three 1 0.0001 0.00001
2 0.0001 0.00001
3 0.0001 0.00001
4 0.0001 0.00001
Case farmer four 1 0.0006 0.0001
2 0.0006 0.0001
3 0.0001 0.00001
4 0.0001 0.00001
Case farmer five 1 0.0001 0.00003
2 0.0001 0.00003
3 0.0001 0.00003
4 oo 0.0003

@ Based on responses to Appendix A2.
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Table 4.4 : Upper bounds on farmer risk-aversion coefficients using the
non-negative certainty equivalent approach

Case farm Upper bound forr,
One 0.000325
Two 0.000610

Three 0.000107
Four 0.000434

Five 0.000299






