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ABSTRACT

This thesis includes three research topics: geochemical evolution of the Izu-Bonin-Mariana
(IBM) arc system- evidence from volcanic ashes, petrogenesis of lower crustal xenoliths from the
San Francisco volcanic field, and provenance of northwest Pacific, Plio-Pleistocene dropstones.

The IBM ashes are emphasised with the other two topics addressed in Appendices.

A systematic geochemical study of a major representative set of volcanic ash samples
recovered from DSDP Leg 60 Sites 458 and 459B and ODP Leg 125 Sites 782A, 784A, and 786A
drilled in the IBM forearc is presented. A series of analytical techniques have been used to obtain
major and /or trace element abundances plus selected Sr-Nd isotopic ratios on individual glass
shards and mineral crystal fragments, pure bulk glass separates, pure bulk homogeneous and
heterogeneous ashes, and sediment-containing bulk ashes. Notable results are 1) absence of a
consistent and monotonic increase in alkalinity from older to younger deposits; 2) a change in
comparative fertility of mantle wedge sources in the Izu-Bonin arc from relatively fertile to
refractory subsequent to backarc (Shikoku Basin) formation; 3) the absence of such an effect in the
Marianas where more extensive backarc basin spreading has occurred; 4) the appearance of
alkaline compositions in the Marianas either related to arc renaissance subsequent to initial stages
of backarc rifting, or through the tapping of a .ong-lived wedge heterogeneity centred at present in
the vicinity of IwoJima near the junction of the IBM systems; 5) the absence of any evidence of
crustal growth in IBM arc systems on the basis of consistency of major element characteristics
believed to be a function of crustal thickness; 6) indications of significant compositional controls
on the nature of arc volcanism exerted by a lithospheric filter effect; the Marianas (comparatively
fertile filter) compared with the [zu-Bonin arc (comparatively refractory lithospheric filter); 7) the
presence of high Ba/Rb (20 % 4) of arc volcanic rocks relative to the mantle value (11 £ 3),
possibly indicating sediment incorporation 1n island arc magmas; 8) the presence of uniform
875r/868r ratios from 0.7032 to 0.7040, flat HREE at 10 to 30 times chondritic abundance
patterns, and consistent geochemical relationships among IBM arc and backarc volcanic rocks and
N-MORB, indicating a common N-MORB-type mantle source beneath the Philippine Sea Plate,
and no systematic temporal and spatial geochemical changes during the development of the

Philippine Sea Plate.
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