FARM BUSINESS MANAGEMENT : AN HOLISTIC STOCHASTIC DECISION-MAKING MODEL

A Thesis Submitted for the Degree of Doctor of Philosophy

Alvaro A. Charry

B. Sc. (Veterinary & Animal Science) National University, Colombia
 B. Sc. (Agricultural Administration) La Salle University, Colombia
 M.Sc. (Farm Economics) National University, Colombia

Fri-31/Dec/93 Resubmission: 31 JUL 96

Department of Agricultural and Resource Economics The University of New England, Armidale N.S.W. 2351, Australia

To Emeritus Prof. Dr John L. Dillon with our eternal gratitude

CERTIFICATION

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in the thesis.

A.A. Charry

ACKNOWLEDGMENTS

John L. Dillon was instrumental in initiating this study and completing it to the stage of my initial submission. His patience in guiding me through the different stages of this research was exceptional. Through his guidance perhaps most importantly, I strengthened my commitment to farm business management and learnt to love Australia. Roderic A. Gill continued the task of supervision and reviewed my resubmission: much of what may be good in it is due to his patience and willingness to help. This research would have not been completed without the continuous encouragement of Roley Piggott.

A number of people were crucial influences along the different stages of this work. George Antony was a vital influence in learning and support. Richard Ingham's kind support in providing information for this research is appreciated. Orange Agricultural College, The University of Sydney lent an invaluable support in critical times and the College members John Chudleigh, Rob Napier, Ross Wilson, Jock Fletcher, Robbie Scott, Geoff Watson, Geoff Gurr, Ed Henry, Pat Madden and my editor Penny Marr deserve special thanks.

Marcella my wife and my children, Alf, Alexandra, Andrea, Maria, Stephanie, Nicole and Samantha have my deepest gratitude for their support and patience. It was in our prayers around the dining table where I gathered the courage to keep going and finally complete this job.

Responsibility for any errors of structure, presentation and analysis is mine.

ABSTRACT

Farm Business Management requires an holistic perspective to understand, manage and direct the purposeful use of the natural resources, and aim for individual and social rewards. A new perspective on physical and financial sustainability is a key component of the overall management strategy of the farm system.

This research attempts to integrate different schools of systems thinking in order to build a method of farm planning which, because it uses a holistic view of farm resource management, is more useful to the decision maker at the farm level.

In order to achieve this integration a case-study was used to identify the system components, using conceptual decision models (i.e. soft systems methodologies in the form of conceptual mapping) and optimal decision models (i.e. hard systems methodologies, here stochastic mathematical programming) to learn more about the operation of the system, aiming to enhance/enrich decision making by improving on-farm information processes.

Conceptual mapping was initially used to have a basic understanding of the farm system. Later stages defined system relationships and critical points from the perspective of the farmer. This exercise showed that systems analysis, while objective, cannot ignore the expectations and immediate objectives of the individual decision maker. Consideration of these facts allows the analyst to construct different levels of conceptual maps, ranging from simplistic models to higher levels of detail on specific purposes of the system.

A mathematical programming model with stochastic characteristics which capture the technical and attitudinal risks of the farm system was constructed in order to simulate farm performance. The exercise showed that stochastic mathematical programming techniques, when integrated to soft systems methodologies in farm resource management, become a valuable information tool that enable the decision maker to have a better perspective of the farm system, for short-term planning purposes and contingency situations. Quantitative techniques for planning, rather than becoming deductive tools for prescribing system behaviour, should be understood as an opportunity to identify the farm system components, dynamics and purposes more thoroughly and contribute to managing the elements within the system that generate instability and chaos through the use of accepted algorithms of risk analysis and risk management. By doing this, decision making is clearly enhanced and the value of strategic management is reinforced.

ABBREVIATIONS AND ACRONYMS

AFMS	=	Australian Farm Management Society
CARM	=	Centre for Agricultural Risk Management
CRRA	=	Constant Relative Risk Aversion
DEMP		Direct Expected Utility Maximising Linear Programming
DSE	=	Dry Sheep Equivalent
E-V		Expected Mean Income-Income Variance Analysis
FBM	=	Farm Business Management
FSD	=	First Degree Stochastic Dominance
FSR	=	Farming Systems Research
GAMS	=	General Algebraic Modelling System
HDM	=	Holistic Dynamic Management
HSM	==	Holistic Stochastic Modelling
IOC	=	International Organising Committee
LP	=	Basic Linear Programming
MINOS	=	Mathematical In-core Nonlinear Optimisation System
MOTAD	=	Mean of Total Absolute Deviations
MP	=	Mathematical Programming
0 R	=	Operational Research
RINOCO	=	Risk in the Input-output Coefficients
RHS	=	Right Hand Side of the Programming Matrix
SSD	=	Second Degree Stochastic Dominance
SSM	=	Soft Systems Methodology
SWOT	=	Strengths, Weaknesses, Opportunities and Threats
UEP	=	Utility Efficient Programming

Farm Business Management : An Holistic Stochastic Decision-making Model

CONTENTS

	Chapt	er		Page
	Спарі	CI		гаде
	ABST	RACT	DGMENTS IONS AND ACRONYMS	
	ADDI	XE VIA II	IONS AND ACKONYMS	
1	INTR	ODUCT	ION	1
	1.1	Introdu		
	1.2		al Objectives	
	1.3		ch Strategy	
	1.4	Outlin	e of the Study	
2	THE	FARMIN	IG SYSTEM ENVIRONMENT	14
	2.1	Introdu	action	
	2.2	Overvi	ew of Systems Thinking	
		2.2.1	Operational research	
		2.2.2	Soft systems methodology	
		2.2.3	Holistic dynamic modelling	
	2.3	Conce	ptual Mapping	
		2.3.1	Basics of conceptual mapping	
		2.3.2	A basic farm system map	
		2.3.3	Levels of mapping of the farm system	
	2.4	Dynan	nics of the Farming System	
	2.5	Summ	ary	
3	THE	FARM B	USINESS MANAGEMENT FRAMEWORK	52
	3.1	Introdu	action	
	3.2	Famin	g Systems Research: An Overview	
	3.3	Farm I	Business Management: An Overview	
		3.3.1	The professional perspective of farming	
		3.3.2	Strategic Management in Farm Business Management	
			(a) Managing change	
			(b) Strategic decision making	
			(c) Managerial functions	
		3.3.3	Holistic dynamic planning	

3.4 Summary

4 HOLISTIC STOCHASTIC MODELLING IN FARM BUSINESS MANAGEMENT

- 4.1 Introduction
- 4.2 A Basic Understanding of Risk
 - 4.2.1 Risk definition
 - 4.2.2 Risk classification
- 4.3 Risk Analysis and Risk Management in the Context of Decision Making
- 4.4 Decision Criteria for Risk Management in Decision Programming Models
 - 4.4.1 Pratt (1964): E-V Analysis
 - 4.4.2 Fishburn (1964): Stochastic Dominance Analysis
 - 4.4.3 Cock (1968) and Rae (1971a.b): Discrete Stochastic Programming
 - 4.4.4 Hazell (1971): MOTAD Analysis
 - 4.4.5 Wicks and Guise (1978): MOTAD with RINOCO
 - 4.4.6 Tauer (1983): Target MOTAD
 - 4.4.7 Lambert and McCarl (1985): Direct Solution of Nonlinear Approximations of the Utility Function
 - 4.4.8 Okunev and Dillon (1988): Mean-Gini Criterion
 - 4.4.9 Patten, Hardaker and Pannell (1988): Utility Efficient Criterion
 - 4.4.10 Pannell (1988): Direct Expected Utility Maximising Linear Programming (DEMP)
 - 4.4.11 Pope and Just (1991): Constant Relative Risk Aversion (CRRA)
- 4.5 Holistic Stochastic Modelling (HSM) for this Farming System
 - 4.5.1 Conceptual mapping of risk in the farm system
 - 4.5.2 The holistic stochastic managing criterion of this study
- 4.6 Summary

5 THE ANALYTICAL STRUCTURE OF THE WHOLE-FARM MODEL

139

- 5.1 Introduction
- 5.2 Mathematical Programming: An Overview
 - 5.2.1 Basics of linear programming
 - 5.2.2 Extensions of the basic linear programming model
 - 5.2.3 A soft systems criticism of mathematical programming
- 5.3 The Optimal Stochastic Planning Model of this Study
 - 5.3.1 The mathematical structure of the farm model
 - 5.3.2 The operational structure of the farm model
 - (a) The programming matrix
 - (b) Data collection area
 - (c) The risk components of the programming matrix
 - (d) The scenarios of the programming model

- 5.4 A Demonstrative Deterministic and Stochastic Farm Model
 - 5.4.1 A deterministic scenario
 - 5.4.2 A stochastic scenario
- 5.5 Summary

HOLISTIC STOCHASTIC MODELLING: 6 AN ON-FARM DECISION-MAKING APPLICATION

- 6.1 Introduction
- 6.2 Deterministic and Stochastic Optimal On-farm Planning Scenarios
 - 6.2.1 The deterministic scenarios
 - 6.2.2 The stochastic scenarios
 - 6.2.3 A comparative analysis

6.3 Conclusions

- **Specific Conclusions** 6.3.1
- General Conclusions 6.3.2

6.4 **General Discussion**

- 6.4.1 The farming systems research approach
- 6.4.2 Integrating farming systems analyses
- The strategic management framework 6.4.3
- 6.4.4 The interaction between farmer and analyst

7 **IMPLICATIONS AND LIMITATIONS**

193

169

7.1	Introduction	
7.2	Review of the Study	
	7.2.1 The basic problem statement7.2.2 The role of HSM in FBM	
7.3	Applicability of Results	
7.4	Implications for Future Research	
7.5	The Learning Exercise of this Research	
Appendix 5.1	The Data Collection Area	201
Appendix 5.2	Probability Density Functions of the Random Variables	208
• •	Sustainability Management of Ecosystem Resources within the Holistic Stochastic Modelling Framework	216
Appendix 5.4	A Demonstrative Deterministic and Stochastic Farm Model219	
Appendix 6.1	The Farm Planning Scenarios	241
REFERENCES		259

REFERENCES

LIST OF FIGURES

1.1	The Change of Paradigm in Decision Making for Farming Systems Management	7
1.2	The Conceptual Map of this Research	12
2.1	The Farm Management System: A Hard Systems Description	21
2.2	A SSM Rich Picture of the Farming System	25
2.3	Holistic Dynamic Modelling in Farm Business Management	28
2.4	Description of Conceptual Mapping in Managerial Decision Making	33
2.5	Farmer's Micro-perspective of the Farm System	35
2.6	Farmers's Wider Perspective About the Farm System	37
2.7	Second Level of Resolution of the Conceptual Map of the Farming System: Resources Proposition	39
2.8	Second Level of Resolution of the Conceptual Map of the Farming System: Production Activities Proposition	41
2.9	Second Level of Resolution of the Conceptual Map of the Farming System: Socio-economic Structure Proposition	42
2.10	Second Level of Resolution of the Conceptual Map of the Farming System: The Farm Management System Proposition	44
2.11	Second Level of Resolution of the Conceptual Map of the Farming System: Rewards Proposition	45
3.1	A Systematic Definition of Farm Business Management	61
3.2	Strategic Management After Stacey (1993)	64
3.3	Conceptual Mapping of Successful Decision Making	67
3.4	Instability, Surprise (i.e. Risk) in Decision Making	68
3.5	The Operational Farm Model	70
3.6	The Functions of the Farm Business Management Process	72
3.7	Conceptual Map of Holistic Dynamic Planning	77
4.1	Sources of Risk and Uncertainty in the Farm System	84
4.2	Integration Between Certainty, Risk and Uncertainty	86
4.3	Third Level of Resolution of Conceptual Mapping	

	for Farm Resources: Purpose of Risk Identification	92
4.4	Third Level of Resolution of Conceptual Mapping for Farm Enterprises: Purpose of Risk Identification	92
4.5	Third Level of Resolution of Conceptual Mapping for the Farm Business Manager: Purpose of Risk Identification92	
4.6	Conceptual Map of Risk Analysis and Management	96
4.7	Risk Analysis and Risk Management in Organisational Management	98
4.8	Operational Risk Management in the Farm System	99
4.9	E-V Frontier for Stochastic Farm Planning	103
4.10	Stochastic Dominance in Stochastic Farm Planning	108
4.11	MOTAD in Stochastic Farm Planning	113
4.12	A Conceptual Map of Risk in the Farm System	130
4.13	Domains of Risk Analysis in Holistic Stochastic Modelling (HSM)	137
5.1	Directional Diagram of the Mathematical Programming Model of the Case-study Farm	144
5.2	The Stochastic Farm Environment	150
5.3	Diagram of the Stochastic Programming Model	153
5.4	The Operational Structure of the Analytical Process	161
5.5	Management of Technical Risk in the Input-output Set of the Programming Matrix	162
5.6	Deterministic and Stochastic Demonstrative Farm Plans	167
6.1	Deterministic and Stochastic Whole-farm Plans	179
6.2	Conceptual Map of Research Achievements	192

LIST OF TABLES

Chapter 5 Table 5.1 Parameterisation of the Deterministic Model	165
Chapter 5 Table 5.2 Parameterisation of the Stochastic Model	165
Appendix 5.1 Table 5.1 Data Collection Area 1 - Beef Enterprise	202
Appendix 5.1 Table 5.2 Data Collection Area 2 - Meat Enterprise	204
Appendix 5.1 Table 5.3 Data Collection Area 3 - Wool Enterprise	206
Appendix 5.2 Table 5.1 Density Function for Calving Rate of Breeding Cows	209
Appendix 5.2 Table 5.2 Density Function for Calving Rate of First Calf Heifers	209
Appendix 5.2Table 5.3Density Function for Stocking Rate	210
Appendix 5.2 Table 5.4 Density Function for Sale-price of Steers	210
Appendix 5.2 Table 5.5 Density Function for Sale-price of Culled Cows	211
Appendix 5.2 Table 5.6 Density Function for Lambing Rate of 1X-breeding Ewes	211
Appendix 5.2 Table 5.7 Density Function for Lambing Rate of 2X-breeding Ewes	212
Appendix 5.2 Table 5.8 Density Function for 1X-prime Lamb Prices	212
Appendix 5.2 Table 5.9 Density Function for 2X-prime Lamb Prices	213
Appendix 5.2 Table 5.10 Density Function for Lambing Rate of Merino Ewes	213
Appendix 5.2 Table 5.11 Density Function for Sale-price of A-type Wool	214
Appendix 5.2 Table 5.12 Density Function for Sale-price of B-type Wool	214

Appendix 5.2 Density Functio	Table 5.13 n for Land Prices	215
	Table 5.14 n for Sustainability Effect of purces on Stocking Rate	215
-		
Appendix 5.4	Programming Matrix DM1	222
Appendix 5.4	Programming Matrix HSM1	226
Appendix 5.4	Programming Matrix HSM2	231
Appendix 5.4	Programming Matrix HSM3	236
Chapter 6 Deterministic D	Table 6.1 ecision Making Farm Plans	172
Chapter 6 Stochastic Decis	Table 6.2 sion Making Farm Plans	175
Chapter 6 Parameterisation	Table 6.3 n of the Deterministic Farm Plan	178
Chapter 7 Parameterisation	Table 6.4 n of the Stochastic Farm Plan	178