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CHAPTER 4: METHODS

4.1 Introduction

The purpose of this chapter is to provide a detailed discussion of the econometric
methods and models used to examine the relationship between medical care utilisation
(MCU) and the level of obesity (BMI) for a sample of the Australian population using
individual-level data from the 1995 National Health Survey (NHS). In this chapter the
following areas are discussed: (i) structure of the model; (ii) measurement and

estimation issues; (iii) variable selection; and (iv) model selection.

4.2 Structure of the Model

The structure of the econometric models used in this project is based on the supposition
that there is a causal relationship between M.CU, BMI, and obesity-related risk factors
(RF) such as type 2 diabetes mellitus, hyper:ension, coronary heart disease (CHD),
elevated cholesterol levels, depression, and nusculoskeletal pain. By definition,
causality is implied when “the occurrence o~ one event is reason enough to expect the
production of another” (Heise, 1975, pp. 11-12). The existing research presented in the
previous chapters suggests that there is a causal relationship between MCU, the level of
obesity, and obesity-related risk factors. In particular, the medical literature has
demonstrated that obesity leads to a number of serious medical conditions (Pi-Sunyer,

1993; 1996; Sjostrom, 1993).

Taking into account this causal relationship. it is expected that individuals with

relatively higher levels of BMI will, in turn, have higher MCU. It is postulated that the
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relationship runs from BMI to RF to MCU, termed “causal ordering” (Simon, 1987, p.
50). This relationship between MCU, BMI, and RF is the partial effect. However, this

raises the issue of whether obesity also has an independent impact on MCU.

In this project, it is hypothesised that BMI has zero independent effect. The various
relationships are illustrated in Figure 4.1. The partial effect suggested by the medical
literature is comprised of @ and b. The total effect is ¢. The working hypotheses are

that @ and b (hence a + b) are significant; and that ¢ is insignificant.

Figure 4.1: The total and partial effect of BMI or. MCU

Risk Factors (RF)

BMI > Medical Care Utilisation (MCU)

4.2.1 Recursive Models

In the field of econometrics, it is well known that because of interdependence between
the stochastic error term and the explanatory variables, the method of ordinary least
squares (OLS) is generally inappropriate fo- the estimation of a system of simultaneous
equations (Green ,1993; Gujarati, 1995; Kenedy, 1992). If OLS is applied in this
scenario, the estimators may be biased and nconsistent (Green, 1993; Gujarati, 1995;
Kennedy, 1992). Moreover, the bias does rot disappear with a relatively large sample
size. However, there is a situation in which OLS can be applied even within the context
of multiple equation models. This is the case of the recursive model, which 1s
sometimes referred to as the ‘triangular’ or ‘causal’ model (Green, 1993; Gujarati,

1995).
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To examine this relationship, consider the following three-equation system presented

below:

Y = Bio + Xy + Xy + € 4.1)
Yoo = Boo + Bai¥u + @ X + 0Xo + &y 4.2)
Yse = Bso + BsiYi + BeYo + @uXi + @0Xo + € (4.3)

where the Ys are the dependent variables, the Xs are the independent (or explanatory)

variables, and the error terms (&s) are not correlated.

The first equation in this system contains orly independent variables on the right-hand
side. Since, by assumption, these independent variables are not correlated with the error
term (&;,), this equation satisfies the critical assumption in OLS; that is, there is no
correlation between the explanatory variables (X;; and X»;) and the error term (&;,).
Therefore, in this situation, OLS can be applied to the first equation to obtain unbiased

estimates.

Consider the second equation, which contains the dependent variable Y, as an
explanatory variable with the X variables. In this instance, OLS can be applied to the
second equation provided that Y;, and &, are not correlated. This is the case because &,
which affects Y, is (by assumption) not correlated with &,. Therefore, the variable Y/,
can be thought of as being ‘predetermined’ (n so far as the variable Y, is concerned.

Therefore, OLS estimation techniques can te applied to the second equation. This
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argument can be extended to the third equation because the variables Y, and Y, are not

correlated with the error term €3, and so on.

Therefore, in the recursive system presentec above, OLS estimation techniques can be
applied to each equation separately. In fact. in this system there is “no simultaneous-
equation problem” (Gujarati, 1995, p. 680). Moreover, in this recursive system, Y,
affects Y5, but Y, does not affect Y;,. In addition, Y;, and Y5, both affect Y3, without
being influenced by Y3, In more technical terms, each equation exhibits a unilateral
causal dependence, hence the name “causal models” (Gujarati, 1995, p. 681).

Schematically, the above relationships are presented in the Figure 4.2 below:

Figure 4.2: Representation of a recursive model

g1 —— Y, %

b~
/

€, > Y, < (X, X2)

&3 —> \;a «

Source: Adapted from Gujarati (1995)

4.2.2 The General Model
The relationship between MCU and BMI can be modelled and estimated as a recursive
system. First, the recursive system is definzd (using a linear specification for

convenience at this stage) as follows:
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RF, =a,, +a,CV +0,BMI +¢, =1...m 4.4)

MCU, =B+ B, CV +B,BMI+Y B RF +&,  ;j=l..n (4.5)
i=1

where:

RF; = obesity-related risk factors;
BMT = body mass index;

CV = a vector of control variables;
MCU; = medical care utilisation; and

& and & are uncorrelated error termes.

In Equations (4.4) and (4.5) there are i = 1, . . ., m separate risk factors,and j =1, . . .,
n ways of measuring (indices of) MCU (these issues are considered later). Within this
framework it is possible to effectively estimate n models (i.e., one for each measure of
MCU), each consisting of m equations (4.4, plus one equation (4.5) (i.e., for one
particular j). The working hypotheses that can be tested using (4.4) and (4.5) are

presented in Table 4.1 (ignoring subscripts i and j for convenience).

Table 4.1: Principal hypotheses

Hypothesis Coefficients Tested Interpretation

l o >0 BMI affects RF
2 B; >0 RF affects MCU
3 B, =0 BMI has no direct effect on MCU

The first hypothesis states that BMI causes obesity-related risk factors. The second

hypothesis states that these risk factors lead to increased MCU (and, hence costs). The
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third hypothesis states that BMI has no significant direct (or independent) effect on
MCU. Therefore, the recursive system as defined by Equations (4.4) and (4.5) can be
estimated using standard OLS techniques. However, as RF is a vector of discrete

variables, OLS is inappropriate, and an alternative approach must be employed.

4.2.3 The General Model: Extensions and Further Interpretations

As indicated in the above section, the relationships between BMI, RF, and MCU could,
in principle, be modelled as a recursive systzm. However, there is an alternative
approach to estimating this system. To faci itate the following discussion, Equations

(4.4) and (4.5) are reproduced below using simplified notation for convenience:

RF =0, +a,CV +0,BMI +¢, (4.6)

MCU = B, + B,CV + B,BMI + B,RF +¢, (4.7)

Since RF in Equation (4.6) is a vector of discrete variables, an alternative approach is to

estimate this system as:

MCU = A, + ACV + A,BMI + E, (4.8)

MCU = B,+ BCV + B,BMI + B,RF + E| (4.9)

In this system of Equations, B, (4.9) is an estimator for 3, (4.7), and A, (4.8) is an
estimator for o, (4.6). Therefore, estimating Equation (4.9) tests hypotheses 2 and 3
from Table 4.1. If B3 (4.9) differs from zero we can then infer that obesity-related risk

factors affect (or impact upon) MCU. Furthermore, if B, (4.9) is zero or at least close to
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zero, this indicates that BMI has little direct effect on MCU. Hypothesis 1 can be tested
by estimating Equation (4.8) in addition to (4.9). The estimation of Equation (4.8) can

be seen by substituting Equation (4.6) into (4.7) to derive the ‘reduced’ form:

MCU = f3, + IBICV + BzBMI + ﬁ3(ao toCV +a,BMI+€)) +€, (4.10)

which can be rearranged as:

MCU = (0,8, + B,) + (&, B, + B)CV + (B, + B0, ) BMI + (¢, + BL€,) (4.11)

The BMI coefficient A, (4.8) corresponds to the BMI coefficient in (4.11) — that is, (S,
+ B;0). If we estimate (4.8), and A, differs, from B, (4.9), then this indicates that BMI
and RF are correlated. Taking this argument a step further, it can been seen that if A,
(4.8) differs from zero, and B, is close to zero, then the product of (8;¢) from (4.11)
differs from zero. Thus, if B; (and therefore [3;) differ from zero, then ¢, cannot equal

zero. Hence we can infer that BMI affects RF.

Alternatively, the above relationships can bz discussed in terms of path model analysis.
For instance, in path model terms, A; in (4.8) is being estimated as the measure of the
total effect of BMI on MCU, and it is an unbiased measure of the total effect. In
addition, B in (4.9) is a measure of the direct effect. Therefore, A; less B; is referred to

as the indirect effect.

Therefore, A, (4.8) estimates the coefficien: on BMI (4.11) —that is, (8 + B;). In

path model terms, f3; is the direct effect of BMI on MCU, f3; is the direct effect of RF on
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MCU, and ; is the direct effect of BMI on RF. Also, (B;) is referred to as the

indirect effect since it is the product of two separate, direct effects. Therefore:

Ay=By= (B + ) - B = Bsxz

[t is hypothesised that f3; in (4.7) would not »e significantly different from zero, and that
o in (4.6) would be different from zero. Furthermore, if A; in (4.8) is found to be
different from zero, it can be inferred that (£¢z) is different from zero (since B; — and

therefore f3; — does not equal zero).

4.2.4 Discussion of the General Model

The previous sections (4.2.2 and 4.2.3) indicate that the relationships between BMI, RF,
and MCU can be modelled as a recursive system. However, an alternative approach
(which can be derived from the recursive mcdel) may be employed in estimating this
system by using Equations (4.8) and (4.9). This approach was discussed in detail in
section 4.2.3. Following this discussion, it was also shown how this relationship can be

explained in terms of path model analysis.

Consequently, there are several approaches tnat can be used to interpret and examine the
relationships between BMI, RF, and MCU. This, in turn, raises the issue of which
approach is preferred. The preferred approach is governed by the objectives of the
project, which is to examine not only the relztionships between BMI, RF, and MCU but

also the policy implications associated with ¢ reduction in BMI.
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Taking this into account, the relationships between RF and BMI will be examined in

detail according to Equation (4.4). However, the relationship between BMI, RF, and
MCU (as represented in Figure 4.1) will be 2stimated using the approach presented in
Equations (4.8) and (4.9). As Equation (4.8) represents the rotal relationship between
BMI and MCU it is this particular equation that will form the cornerstone of the

subsequent policy analysis.

The simplified models presented here have been used to define the recursive
relationships between BMI, RF, and MCU. However, there are many obesity-related
risk factors (RF) and a number of ways to define and measure medical care utilisation
(MCU). The RF and MCU, and some of the CV variables presented above could be
discrete, continuous or in some cases categorical. This is relevant to the particular
techniques that can be used to estimate the parameters of the system, which depend
crucially on the availability and characteristics of the empirical data. The following
sections below discuss measurement issues and selection of variables in the context of

the preferred data source, which is the 1995 National Health Survey.

4.3 Measurement and Estimation

Medical research has demonstrated that obesity is a risk factor for a number of serious
medical conditions (or diseases). However, whether or not the medical approach to
identifying (and measuring) this risk factor and the associated medical conditions are

appropriate in the current context is debateable.

This section considers both the conceptual and practical problems associated with the

identification and measurement of risk factors for the purpose of this study. It also
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considers the measurement of medical care utilisation (MCU), which is to a large extent

problematic, given the multi-dimensional nature of medical care.

4.3.1 Measurement of Risk Factors

Definition of Risk and Risk Factors: A Medical Perspective

The term risk, when used in everyday language, denotes that certain activities may be
either hazardous or dangerous. For example, to take a risk often means to engage in
some potentially dangerous (or risky) activity such as rock climbing or white water
rafting. Therefore, to take a risk implies that there is a chance that an unpleasant event

(or outcome) may occur.

Within the health science field, the discipline of epidemiology defines the term risk as
the probability that an event will occur (Unwin et al. 1997). To fully explain the
concept of risk as used in the epidemiological and health science literature, it would be
beneficial to consider the seminal study by Doll and Hill (1964) who examined the

relationship between cigarette smoking and the cause of death in British physicians.

In October 1951, a questionnaire was sent out to 59,600 men and women whose names
appeared on the Medical Register in the United Kingdom. This questionnaire was
designed to collect information on the smoking habits of these doctors. In total, 40,637
doctors (i.e., a response rate of 68 per cent) returned completed questionnaires. The
number of doctors who had died, during the survey period, and their causes of death
were recorded (primarily from death certificates). Between November 1, 1955 and
October 31, 1961 there were 4,963 recorded deaths. The death rates by smoking status

for different causes of death are presented in Table 4.2.
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Referring to Table 4.2, the risk of death frorn all causes for non-smokers was 12.06 per
1,000 persons per year. Individuals who smoked 25 or more cigarettes per day
experienced an all cause death rate of 19.67 per 1,000 persons per day. These figures
are the absolute risk of death among the non-smokers and heavy smokers (i.e.,

individuals who smoked 25 or more cigarettes per day).

Table 4.2: Smoking status by cause of death (death/1000 persons per year)

Cause of death  Total population ~ Non-smokers  All cigarette smokers  Cigarette smokers >

25 a day
All causes 14.05 12.06 16.32 19.67
Lung cancer 0.65 0.07 1.20 2.23
Coronary heart 3.99 3.51 4.57 4.97

disease

Source: Adapted from Doll & Hill (1964)

In epidemiology, the concept of the relative risk (RR) is used to estimate the strength of
an association between exposure and disease and indicates the likelihood of developing
the disease in the exposed group compared o those who are not exposed (Hennekens &

Buring, 1987). The relative risk (RR) may oe written as follows:

RR = incidence in the group with the exposure

incidence in the group without the exposure

Taking the figures from Table 4.2 for death from lung cancer, the relative risk of all

those smoking is:

RR=1.207/0.07=17.1

This means that those smoking were 17 times more likely to die from lung cancer than

non-smokers were. In essence, relative risk is a measure of the strength of an
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association between an exposure and a disease. Therefore, if the relative risk is equal to
1 the incidence in the two groups is the same. However, if it is greater than 1 then the
exposure (i.e., smoking) is associated with an increased incidence in the disease (i.e.,
lung cancer). An exposure that is positively associated with the occurrence of a disease
(such as smoking and lung cancer in this example), is often referred to as a risk factor
for that disease (Unwin et al. 1997). There is also evidence to suggest that obesity is
positively associated with a number of medical conditions. Therefore, in this project,

obesity is a risk factor for a number of medical conditions.

The following passage in Unwin et al. (1997) provides an historical overview of how

the term risk factor originated in the medical literature:

“The idea that different exposures, behaviours ard personal attributes influence our risk of
developing disease is a very old idea. The concept of ‘risk factors’, however, comes from modern
epidemiology. It has its origins in some of the large prospective studies . . . that were started after
the Second World War. The study of the association of smoking behaviour of British doctors with
the cause of death is an example of this type of siudy. Another famous study which helped to
establish the concept of ‘risk factor’ was started in a small town in New England in the United
States of America. The town is called Framingh.m and in the late 1940s male and female
residents aged from 30 to 59 years underwent physical examinations, answered questions on
personal behaviours, such as smoking, and had blood tests. Over 5000 who were free of coronary
heart disease at the time of the examination were re-examined several times over many years to
determine who developed coronary heart disease. In this way it was discovered that an increased
risk of developing heart disease was associated v/ith smoking, high blood pressure, high serum
cholesterol and other factors. These factors were called ‘risk factors’ for coronary heart disease”
(Unwin et al. 1997, pp. 40-41).

From a medical perspective, the idea of idetifying risk factors for a particular disease
is to try to identify factors which may be the causes of the disease and which if modified
(or removed) could prevent (or at least minimise) the likelihood of the disease
occurring. However, this association does not imply causality in the medical context,
though, further (e.g. scientific) evidence may confirm beliefs about the direction of

causality.
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The Measurement of Risk Factors: Conceptual and Practical Considerations

There are a number of conceptual and practical issues related to the measurement of risk
factors and associated diseases. As stated previously, obesity is a risk factor for a
number of medical conditions such as elevated cholesterol levels and heart disease. To
examine measurement issues related to risk factors, consider the relationship between

cholesterol levels and heart disease will be v sed as an example.

Consider some medical indicator X, which is continuously measurable, such as
cholesterol levels. Cholesterol levels per se are not a medical problem (unless levels are
significantly elevated) in that it is not associated with pain and suffering or restriction in
mobility or function. However, elevated cholesterol levels may lead to (or be a causal
factor in the development of) medical condi:ion Y (say, heart disease). Now suppose
that Y is equal to either O or 1 (that is, you either have heart disease or you do not).

Then this relationship can be expressed for the individual as follows:

Y=fX2)

where Z is a vector of other indicative factors such as lifestyle, age, sex, other medical

conditions, and so on.

The concept of a risk factor in medicine, takes the form of specifying some value of X*
of X such that if X > X* then individuals whose cholesterol level 1s =2 X* face a
significantly greater risk of developing heart disease: cholesterol levels > X* are a risk

factor for Y. However, the way in which the level X* of X 1s determined by the medical

profession is not always clear. For example, in Australia, high cholesterol is defined as
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a plasma level 5.5 mmol/L or higher. However, there appears to be no clear answer to

the question of how this cholesterol cut off point was defined.

To explore this issue further, consider Figurz 4.3, which is a simplified representation of
the relationship between cholesterol levels and heart disease for a group of adults aged
20 to 64. The relationship presented in the Figure 4.3 is consistent with the medical

evidence that high cholesterol levels are a contributing factor to heart disease.

In Figure 4.3, the Y-axis represents whether or not an individual has heart disease (i.e.,
0 = no heart disease; and 1 = heart disease). The X-axis measures cholesterol levels as a
continuous variable. High cholesterol levels in the medical sense are represented at X*
(i.e., a cholesterol level > 5.5 mmol/L). Ploited in the Figure 4.3 are the cholesterol

levels for a group of ten individuals (x = with heart disease; o = without heart disease).

Consider all those individuals who are to the right of cholesterol level X*. Of these five
individuals, four have heart disease and one does not. This indicates that there is an
associated probability of 0.8 that individuals with a cholesterol level =2 X* will have
heart disease (other things equal). Now consider that the definition of high cholesterol
is revised downwards from X* to X°. When this is done, all those individuals who are to
the right of X" are now considered to have high cholesterol levels. Of these six
individuals, four have heart disease and two do not. In this scenario, there is an
associated probability of 0.67 that individuals with a cholesterol level 2 X" will have
heart disease. This simple example illustratzs that the selection of different cholesterol
cut off points will result in different probabilities that an individual will have heart

disease. In turn, this raises the following iscue: why not just measure cholesterol as a



continuous variable? For instance, by measuring cholesterol levels as a continuous
variable, probabilities could be estimated for each unit increase using cross sectional
data. Using this approach, it would be possible isolate the marginal effect of a one-unit
increase in cholesterol levels on the probabi ity that an individual will develop heart

disease.

Figure 4.3: Heart disease and cholesterol levels

1 X X XXX

0 ooo%o o) -
X X* X

where: Y = heart disease (yes/no); X = cholesterol levels (continuous); o = individuals without heart
disease; and x = individuals with heart disease.

From a medical perspective, the association between elevated cholesterol levels and
heart disease is supported in published results from long-term prospective clinical trials
such as the Lipid Research Clinics Program and the Framingham Heart Study (Kortt &
Armstrong, 1998). Large-scale prospective studies, such as Framingham, are specially
designed to follow a cohort of individuals over a period of time to see who develops a
disease and who does not. Both of these studies provided statistical evidence that
elevated cholesterol levels are associated with cardiovascular disease. However, for a
causal relationship to be established further evidence is needed. Initially, other
potential explanations have to be excluded such as the possibility of chance, bias, and

confounding. Once these possibilities have been ruled out, the criteria for establishing a



114

causal relationship need to be fulfilled. The criteria for determining a causal

relationship are listed in Table 4.3.

Table 4.3: Guidelines for causation

Components Interpretation Description

Temporal Does the cause precede the effect? This is a crucial relationship. In the

relation current context, elevated cholesterol
levels (the cause) must precede heart
disease (the effect).

Plausibility Is the association consistent with dther Is the relationship biologically plausible?

Consistency

Strength

Dose-response
relationship

Reversibility

Study design

Judging the
evidence

knowledge?

Have similar results been shown in other
studies?

What is the strength of the associition

between the cause and effect?

Is increased exposure to the possible
cause associated with the effect?

Does the removal of a possible cause
lead to a reduction of disease risk?

Is the evidence based on a strong study
design?

How many lines of evidence lead to the
conclusion?

Have several studies produced similar
results?

Is there a strong association between the
potential cause and the effect as measured
by the relative risk?

This relationship occurs when changes in

the level of a potential cause are related to
changes in the prevalence or incidence of

the effect.

Does the removal of a possible cause
result in a reduction of the disease risk.

Does the evidence come from randomised
controlled trials?

Causal inference is usually tentative and
judgments need to be made on the
available evidence.

Source: Adapted from Beaglehole et al. (1993).

These guidelines, presented in Table 4.3, provide a summary and description of the

necessary criteria that need to be fulfilled in order to establish causality. For example,

this systematic approach has been used by the United States Surgeon General to

establish that cigarette smoking caused lung cancer (United States Public Health

Service, 1964). If all criteria for a causal relationship are fulfilled and the scientific

evidence has been rigorously tested, then in a medical context, a causal relationship is

established. However, although the medical profession acknowledges that elevated
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cholesterol levels are a risk factor for heart cisease, there is debate about the preferred

course of treatment for high cholesterol levels.

For example, in the United States, the Natioaal Cholesterol Education Program (NCEP)
and the American College of Physicians have issued competing guidelines for the
treatment of elevated cholesterol levels (Kortt & Armstrong, 1998). These guidelines
outline different protocols for the detection, treatment, and management of elevated
cholesterol levels. In short, there are differing viewpoints within the medical profession

on how to treat this particular risk factor.

Clinical judgment (and experience) may play a crucial role in determining the
appropriate course of treatment of risk factors. For example, while there is agreement
that elevated cholesterol levels lead to heart disease in adults, this association is
controversial in individuals over 65 (Ito, 1996). Ito (1996) recommends that good
clinical judgement is required when treating elderly individuals with elevated
cholesterol levels. For example, care should be taken when dietary advice is given to
elderly individuals, as certain dietary restrictions could potentially contribute to other
medical problems. In turn, this raises an important question: ‘“should the focus on
cholesterol-lowering therapy interventions be on actually treating elevated cholesterol
levels, as opposed to treatment to goal, that is, obtaining a desired cholesterol level
according to the NCEP guidelines?” (Kortt & Armstrong, 1998, p. 201). In other
words, the crucial point is whether elevated cholesterol levels should be reduced to a

specific target (i.e. treatment to goal).
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Summarising, from a medical perspective, a set of criteria is used to establish whether a
causal link exists between an exposure and disease. However, for particular risk factors
such as elevated cholesterol levels, an important issues remains: why (and what is the
process behind) selecting cut-off points to classify individuals into different risk
groups? There appears to be limited discussion that explicitly addresses this point. In
turn, this raises the following issue: to what extent does clinical judgment contribute to
actually treating risk factors? While these topics are important to consider, there are

other issues in relation to risk factors that should be addressed.

Risk Factors: Further Consideration

The above section addressed the measurement of risk factors (and associated diseases)
from both a conceptual and medical perspective. However, a number of other issues
should also be considered. In the above example, it is worth noting that elevated
cholesterol levels are a modifiable risk factor. Treatment options for elevated
cholesterol levels include dietary modification, increased physical activity, or
pharmacotherapy. These treatment options can be used to lower cholesterol levels and

therefore reduce the risk that an individual will develop heart disease.

Other risk factors may be difficult (or indeed impossible) to modify. For example,
being female in and of itself is a risk factor for breast cancer. Also, an individual’s
environment (or more specifically, geographic location) may also be a risk factor. For
instance, living in the state of Queensland may be risk factor for the development of
skin cancer. This particular risk factor may be a relatively difficult to modify

(especially when one considers the economic constraints that may be associated with
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geographic re-location). However, with respect to these risk factors, the main point to

stress 1s that particular risk factors may be difficult (or impossible) to modify.

Measurement of Risk Factors and Diseases: Data Issues

In this project, obesity is defined as a risk factor for the following medical conditions:
type 2 diabetes mellitus, hypertension, coronary heart disease (CHD), elevated
cholesterol levels, depression, and musculoskeletal pain. To estimate the impact of
obesity on these conditions, the best available Australian dataset is the 1995 National
Health Survey (NHS). This dataset contains largely self-reported data on medical

problems and medical contacts, as well as personal characteristics.

Obesity is measured by the body mass index (BMI). The level of obesity can be
measured as a continuous variable using BMI. This differs from the standard medical
approach, which is to define obesity in terms of a given BMI value (see section 2.2).
BMI (obesity) should be based on measured height and weight. However, the BMI
values in the 1995 NHS are calculated on self-reported height and weight. The danger
in using self-reported measurements is that there may be a tendency for respondents to
overestimate their height and underestimate their body weight. Unfortunately, this type

of problem cannot be avoided in self-reported data.

Ideally, the measurement of obesity-associated medical conditions would be identified
(using standard diagnostic tests) and measured by trained medical or health care
practitioners. This approach would allow for greater accuracy in both the identification
and measurement of medical conditions (diseases). It would also assist in reducing the

distinct possibility of survey respondents either mis-reporting or under-reporting certain
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medical conditions. Moreover, the information collected by medical practitioners could
easily be used to measure particular medical conditions (such as type 2 diabetes
mellitus, hypertension, and elevated cholesterol levels) as continuous variables. For
example, the measurement of blood glucose levels (for type 2 diabetes mellitus), blood
pressure (for hypertension), and cholesterol levels would provide extremely useful
information. In terms of statistical analysis, the use of continuous variables would form

a base from which to conduct detailed statistical analysis.

Unfortunately, the preferred dataset does not provide this level of detail (or accuracy) in
relation to the measurement of obesity-associated diseases. As with obesity, these
medical conditions are self-reported by survey respondents. In addition, they have been
measured (and subsequently recorded) as discrete variables (e.g., the interviewer
recorded whether a survey respondent either has or does not have hypertension).
Therefore, it is likely that different types of respondents may tend to ‘under’ and ‘over’

report certain medical conditions.

In the 1995 NHS, the classification of medical conditions (or diseases) was based on the
International Classification of Diseases, 9™ Revision (ICD9), but was “modified to suit
usage in the NHS” (Australian Bureau of Statistics, 1996, p.124). For example, the
classification of coronary heart disease actually consists of several different types of
heart disease. This means that particular medical conditions recorded in the NHS may
be an aggregation of specific diseases. Although precise classification of medical
conditions would be useful, the NHS dataset does provide useful information with

which to conduct statistical analysis, even ii"it is far from ideal.
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4.3.2 Measurement of Medical Care Utilisation

The term medical care utilisation (MCU) refers broadly to resource utilisation in the
medical sector (e.g., the number of doctor visits or the number of hospital visits).
Measurement of MCU poses a number of problems because of its multi-dimensional
nature. There is a range of medical care services that can be utilised and each of these

services is associated with different levels (or amounts) of medical care usage.

Consider the following characterisation of the issue. There is a range of medical care
services, i = 1, 2, ... m (e.g., GP consultations, specialist consultations, hospital
admissions, and so on) and each type of service is associated with various levels of
medical care inputs. Examples include: how much time is spent per doctor visit and
how many days are spent in hospital per adriission. Hence, each episode of MCU (or
services used) i can be represented by a vector of medical inputs: {X;1, Xi2, Xi3, . . . }. In
the case of a doctor visit, medical inputs cotld include: time spent per medical
consultation, drugs prescribed, tests administered, and so on. Therefore it is possible in
principle to fully describe medical care utilisation, for each individual, as a vector of

medical care utilisation (Y) and a matrix of medical inputs (X):

[x11 x12 x13 - - - xln| [yl |
x21 x22 x23 - - - x2n y2
X= Y=
| xml xm2 xm3 - - . xmn | | ym |

Column vector Y represents the different types of medical care services that could be

utilised by individuals. For illustrative purposes, consider the variable y,, which
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measures the number of times medical care service type 1 has been used by an
individual over a 12-month period (e.g., the number of GP visits). Each utilisation of
medical service y; is associated with a particular set of inputs, and total inputs used in
respect of all services type | used is given by: (Xi1, X12, X13, - . . , X1n). For a single
doctor visit, a range of possible medical inputs may include time input by the medical
practitioner, time input by nurse (or administrative staff), medical tests administered,

quantity of drug a prescribed, quantity of drag b prescribed, and so on.

In this example, the degree of disaggregation of MCU is, to a large extent, arbitrary.
However, the main point to emphasise is that MCU is a multi-dimensional concept. The
task here is to represent this comprehensive view of MCU in terms of definitions which
are theoretically and empirically manageablz. As noted in section 4.2, there are a
number of different ways to measure medical care utilisation (MCU). For example,
MCU can be aggregated into a single index such as total cost or disaggregated to
examine a number of specific types of medical care usage such as ‘doctor visits’ and

‘hospital visits.’

The 1995 NHS contains only limited information on resource utilisation in the medical
sector. Specifically, trained interviewers collected information about selected types of
health-related actions during the survey period but little about the total medical inputs
consumed. Information was collected (and classified) into the following nine
categories: (i) hospital episodes; (ii) visits to day clinics; (iii) consultations with
doctors; (iv) dental consultations; (v) consultation with other health professionals; (vi)

consultation with other persons/organisations; (vii) days absent from work or school;
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(viil) other days of reduced activity; and (ix, use of medications. Three of these nine

categories are of particular interest in this project (i.e., categories: i, iii, and v,).

The survey items within these three categories can be used as partial indicators of
medical care utilisation (MCU). For instance, the 1995 NHS contains a number of
survey items for particular types of medical care such as ‘doctor visits’ (category iii)
and ‘hospital episodes’ (category i). With respect to ‘doctor visits’, survey respondents
were asked: (1) whether consulted a doctor (GP or specialist) in the two weeks prior to
the survey; (2) number of doctor consultations in that period; (3) period since last doctor
consultation (if not in the last two weeks); and (4) in reference to the most recent doctor
visit, the reason(s) for the visit. These data could be used to examine the relationship
between MCU (in this case ‘doctor visits’) and the level of BMI. Furthermore, the data
pertaining to ‘consultations with other healt1 professionals’ and ‘hospital episodes’
could also be used in a similar fashion. As these components of MCU are likely to be

the main cost drivers, it is important to examine their impact separately.

These items on health-related actions are also self-reported. For example, survey
respondents were asked whether they had v:sited a doctor in the two weeks prior to the
interview. This is an important point because using two weeks (as opposed to 12

months) as a time frame will reduce the possibility of recall bias.

4.3.3 Estimation Matters
In section 4.2, the relationship between MCU and the level of BMI was described as a
recursive system. For convenience, a linear specification was used. However, a linear

specification may not be appropriate because of the way in which MCU, BMI, and RF
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are measured: the econometric techniques used to estimate these relationships depend
on the precise measurement (and definition) of the variables. Moreover, the RF
variables (in the 1995 NHS) have been measured as discrete variables. Therefore, for a
single attribute, like whether an individual has type 2 diabetes mellitus, the dependent

variable RF can only take on two values (0 and 1) defined as:

RF; =1 if individual i has type 2 diabetes mellitus; and

RF; = 0 otherwise (i.e., individual i does not have type 2 diabetes mellitus).

With respect to Equation (4.4), the dependent RF variables (as recorded and defined in
the 1995 NHS) are all discrete. Several statistical techniques may be used to estimate
this relationship: linear probability, logistic. or probit models may be used. What

cannot be used is OLS.

Equation (4.5) presents the relationship between MCU, the level of obesity (BMI), and
risk factors (RF). The MCU variables in the 1995 NHS can be characterised as either
discrete or count-based observations. For example, the number of doctor visits in the
1995 NHS are recorded as follows: (i) did you visit a doctor in the last 2 weeks prior to
this survey — yes/no?, and (ii) how many times did you visit a doctor in the last 2 weeks

prior to this survey — 0, 1, 2,3 ... 10 or more times?

Techniques such as logistic regression can be used to estimate the probability of
utilising medical care such as doctor visits and are appropriate to use where variables
are discrete. On the other hand, the level (or amount) of MCU utilisation can be

modelled within a count data framework. Poisson regression (and extensions of this
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technique) can be used to model the relationship between the level or the number of
times an individual visited a doctor. (This issue is considered further in section 4.4.5

below).

4.3.4 Choosing Control Variables

In this project, the control variables available include age, sex, education, race, family
income, employment status, geographic location, and insurance cover. These control
variables were included to account for the potential effect that these socio-economic
characteristics may have on medical care utilisation. Clinical evidence gives some
guidance of the precise selection of control variables to use in estimation, but choice of

control variables is ultimately justified by their significance in the estimated equation(s).

Age was selected as a control variable to take into account the likelihood that advancing
age will lead to an increase in MCU. Sex was also selected as a control variable to
account for the biological differences between men and women which are likely to
affect both dependent variables (RF and MCU). These biological differences may
potentially have an impact on MCU. The level of education attained by survey
respondents was also utilised. It is well known that the levels of education and health
status are positively correlated, hence education is likely to have an independent (or

explanatory) effect on MCU and (via the lifestyle effects of education) on RF.

An individual’s origin was also selected as « control variable to account for the variety
of different racial backgrounds in the Austrzlian population. As with sex, differences in
racial background (and customs associated with race) may have an impact upon the

decision to use medical care and on behaviour affecting the prevalence of risk factors
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Sobal and Stunkard (1989) have identified a relationship between socio-economic status
(SES) and obesity. This was the main reason why the level of gross personal income
was selected as a control variable. It is reasonable to argue that higher levels of income

may be associated with greater levels of MCU. other things being equal.

Employment status was also included as a control variable. An individual’s

employment status may have an independent effect on MCU and could well effect RF.

Geographic location was also selected as a control variable. It is anticipated that those
individuals living in metropolitan areas will 1ave greater access to medical services
compared to those individuals living in rural areas and hence will have higher levels of

MCU.

Health insurance cover was also selected as a control variable to account for differences
in the type of health insurance held by the Australian population. Whether an individual
has private health insurance may in fact influence MCU. Thus, the type of health
insurance cover is likely to have an explanatory impact on MCU (i.e., this variable was

included to address the potential problem of moral hazard).
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4.4 Variable Selection

The variables, used in the statistical analysis, were selected and extracted from the 1995
National Health Survey (NHS) on CD-ROM. In this project, the study sample consists
of 28,376 records (i.e., one record for each individual). In defining the data sample, the
following inclusion/exclusion criteria were used: (i) the study sample was limited to
individuals between the age of 20 and 64, and (i1) the body mass index (BMI) had to be

greater than or equal to 18.5.

Adults under the age of 20 were not included in the analysis because it is reasonable to
argue that these individuals could still be developing physically. Also, according to
Seidell and Flegal (1997), a healthy (or norraal) BMI range is between 18.5 and 24.9.
Therefore, people with a BMI value less than 18.5 were excluded from the analysis
because the focus of this analysis is on the potential impact of weight loss for high BMI

individuals.

The variables selected from the 1995 NHS were classified as either: (i) control
variables, (ii) obesity variables, (iii) obesity-related risk factor variables, or (iv) MCU
variables. The selection and classification of these variables is based upon the general

model presented in section 4.2.2.

4.4.1 CV Measures
Table 4.4 provides details of the control var ables used including variable names, codes,
frequencies, percentages, and labels. These control variables were selected to account

for the potential impact that these characteristics may have on MCU.
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Variable Name Code  Frequency Per cent  Variable Label
AGE 0 3237 1 .4 20-24 years
1 3535 125  25-29 years
2 3937 13.9  30-34 years
3 3979 14.0 35-39 years
4 3733 13.2  40-44 years
5 3399 12.0  45-49 years
6 2658 9.4 50-54 years
7 2131 7.5 55-59 years
8 1767 0.2 60-64 years
SEX 0 13991 49 Male
1 14465 51 Female
EDUCATION 0 7143 25.2  No higher qualifications
1 14040 49.5 NA, inadequately described
2 277 .0 Higher degree
3 431 .5 Postgraduate diploma
4 1504 5.3 Bachelor degree
5 650 2.3 Undergraduate diploma
6 786 2.8 Associate diploma
7 3545 12.5  Skilled/basic vocational
ORIGIN 0 20958 73.9 Australia and New Zealand
1 2636 9.3  British Isles and Ireland
2 2374 8.4  Europe
3 213 .8 Middle East
4 1397 49  Asia
5 798 2.8 Other
INCOME 0 2183 7.7 $30000-34999
1 3659 129 NA, Don’t know / Not Stated
2 336 .2 Negative
3 1852 0.5 $1-4999
4 3951 13.9  $5000-9999
5 2311 3.1 $10000-14999
6 2217 7.8 $15000-19999
7 3125 1.0 $20000-24999
8 2843 10.0  $25000-29999
9 1596 5.6 $35000-39999
10 1175 4.1 $40000-44999
11 719 2.5 $45000-49999
12 679 2.4 $50000-54999
13 338 (.2 $55000-59999
14 310 [.1 $60000-64999
15 176 .6 $65000-69999
16 174 .6 $70000-74999
17 732 2.6 $75000 or more
EMPLOYMENT O 21244 749 Wage and salary
I 1290 4.5 Inown business
2 5842 200.6  Other/NA
GEOGRAPHY 0 16774 59.1 Capital City
1 3094 10.9  Large/small rural centres
2 3894 13.7  Other rural area/remote
3 4614 153  ACT/NT
INSURANCE 0 7860 27.1 Does not have private insurance cover
1 13965 492 N/A
2 6551 23.1 Has private insurance cover

Note: Sample includes individuals aged 20 to 64 with a BMI value 2 18.5. In addition, all codes that are
equal to zero (0) have been selected as the excluded -eference group.
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The age variable is classified into nine categories covering the age range 20 to 64.
These categories were grouped into five-year intervals ranging from 20-24 (category 1)
to 60-64 (category 9). Individuals in the age group 20-24 were selected as the excluded
reference group. The sex variable was also selected to distinguish between males and
females, with males (category 0) being classified as the excluded reference group. An
individual’s level of education was classified into eight categories with those

individuals who had no higher qualifications selected as the excluded reference group.

An individual’s origin was used as a proxy for racial background. Five discrete
variables were used to classify an individual’s racial background. Individuals who were
born in either Australia or New Zealand (category 0) were selected as the excluded

reference group.

A control variable for gross personal income was also included. Seventeen discrete
variables were used to classify different income ranges. Individuals whose gross
personal income was between $30,000-34,000 per annum were selected as the excluded

reference group.

Employment status was also selected as a control variable. An individual’s employment
status was captured by three discrete variables with those individuals who were wage

and salary earners selected as reference group.

An individual’s geographical location was captured by three discrete variables.

Individuals residing in capital cities were chosen as the excluded reference group.
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A control variable for private health insurance cover was also selected. An individual’s
private health insurance cover was captured by two discrete variables. Those
individuals who did not have private health insurance were selected as the excluded

reference group.

4.4.2 Obesity Measures

The 1995 NHS contains a body mass index variable (BODYMIX) that is calculated on
self-reported height and weight. This variable has been classified according to the
National Health and Medical Research Council (NHMRC) definition of obesity. Table

4.5 provides details of the body mass index variable contained in the survey.

Table 4.5: Obesity variable (n = 28376)

Variable Name ~ NHS BMI  Frequency Per cent  Labels

Code
e BODYMIX Body Mass Index
1 1813 6.4 Less than 20
2 13347 47.0 20-25
3 9623 339 >25 <30
4 3593 12.7 > 30

Source: Australian Bureau of Statistics (1996).
Note: Sample includes individuals aged 20 to 64 with a BMI value > 18.5.

With respect to Table 4.5, the BODYMIX variable is discrete and four codes were used
to group survey respondents into different obesity categories. Using this classification
system, 46.6 per cent of individuals (in this sample) were deemed to be either
overweight or obese. With this variable, however, it was discovered that there was
some mis-classification of BMI values into the above codes. For example, several
respondents in the survey were assigned a BMI code of 3 when these individuals should
have, in fact, been assigned a BMI code of 2. This example highlights that, in several

instances, an incorrect BMI code was assigned to survey respondents.
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For this reason, a decision was made to re-calculate BMI using the height and weight
variables reported directly in the survey. This re-calculation provides each individual in
the sample with a BMI value (as opposed to a code). The reasons for re-calculating
body mass index were: (i) the original BMI variable in the survey contained a number
of classification errors, (ii) the newly created BMI variable is continuous, and (iii) this
new BMI variable can also be re-coded (into discrete variables) according to the WHO

classification of obesity. Table 4.6 provides details of the re-calculated BMI variables.

Table 4.6: Re-calculated obesity variables (n = 28376)

Variable Name BMI Code Frequency Per cent  Labels

¢ BMIR Body Mass Index re-code (discrete)
1 15295 539 >18.5<25
2 9493 335 >25<30
3 3425 12.1 >30<40
4 163 6 >40
e BMI Mean Min Max Body Mass Index (continuous)
25.30 18.51 52.86

Source: Australian Bureau of Statistics (1996).
Note: Sample includes individuals aged 20 to 64 with a BMI value > 18.5.

The re-calculated BMI variables summarised in Table 4.6 provide both continuous and
discrete measurements of body mass. Both of these variables will be used to examine

the association between MCU and BMI for a sample of the Australian population.

4.4.3 RF Measures
The following obesity-related risk factors were selected from the 1995 NHS: type 2
diabetes mellitus, hypertension, coronary heart disease (CHD), elevated cholesterol

levels, depression, and musculoskeletal pain. In the dataset, these variables are discrete
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(e.g., the interviewer recorded whether a survey respondent either has or does not have
type 2 diabetes mellitus). The classification of medical conditions was based on the
International Classification of Diseases, gth Revision, but was “modified to suit usage in
the NHS” (Australian Bureau of Statistics, 1996, p.124). Table 4.7 presents the six

obesity-related risk factors, the corresponding ICD9 code(s), and NHS re-code.

Table 4.7: Obesity-related risk factors, ICD9 code(s), and NHS re-code(s)

Obesity-Related Risk Factors ICD9Y code(s) NHS re-code(s)
Diabetes Mellitus (Type 2) 250.1 78
Hypertension 401-405 72
Coronary Heart Disease (CHD)
o Heart Disease 391, 393-398, <t10-426, 428 82
o [ll-defined signs and symptoms

of heart conditions 427, 429 182

Elevated Cholesterol Levels

e Atherosclerosis 440 15
e High Cholesterol 272.0 108
Depression 300.4, 309, 311 205
Musculoskeletal Pain

e Rheumatoid arthritis 714 68
¢ Osteoarthritis 715 69
o Arthritis 711-713,716 70
¢ Rheumatism 725,729 89

o Other musculoskeletal disorders 710,717-721, 7723, 726-728, 730-733,739 42

Source: Adapted from Australian Bureau of Statistics (1996).
Note: Selection of obesity-related risk factors was besed on a previous study by Kortt (1997).

The selection of the diagnostic codes was based on a previous study by Kortt (1997), in
which the selection of the diagnostic codes was reviewed by a team of four clinicians
within the Roche Global Pharmacoeconomic Research Department in Palo Alto,

California.

In Table 4.7, each medical condition was classified according to an ICD9 code (i.e., the

International Classification of Diseases, Edition 9). For example, type 2 diabetes



mellitus has a corresponding ICD9 code (250.1). Subsequently, this particular ICD9
code was re-coded in the 1995 NHS (78). Szveral medical conditions, such as heart
disease (ICD9 codes: 391, 393-398, 410-425, 428), were collapsed into a single NHS

code (82).

The 1995 NHS re-codes were used to select those individuals who were classified as
having an obesity-related risk factor. Following selection of these risk factors,
individuals were coded as either having an cbesity-related risk factor or not (i.e., 1 =
yes, 0 = no). Table 4.8 provides risk factor variable names, frequencies, mean values,
NHS re-codes, and variable labels. It is important to note that the six obesity-related

risk factors presented in Table 4.8 are discrete.

Table 4.8: Risk factor variables (n = 28376)

Variable Name  Frequency Mear.  NHS Re-code(s) Variable Label
RF --Yes  RF -- No
DM_TY?2 271 28105  0.010 78 Diabetes Mellitus (type 2)
HYPER 2654 25722 0.094 72 Hypertension
CHOLEST 1774 26602  0.063 15,108 High Cholesterol
CHD 733 27643 0.026 82,182 Coronary Heart Disease
DEPRESS 545 27831 0.019 205 Depression
MS_DIS 6595 21781 0.252 68,69, 70, 89, 42 Musculoskeletal disorders

a Means displayed for discrete variables reflect a proportion.
Note: Sample characteristics include BMI = 18.5 and Aged 20 to 64.

Referring to Table 4.8, type 2 diabetes mellitus, hypertension, high cholesterol levels,
and coronary heart disease were selected because there is well-documented evidence
that obesity is associated with these diseases (Vanltallie, 1985; Garrow, 1991; Colditz,
1992). Depression was also selected as a risk factor. The Swedish Obesity Study
(SOS) has indicated that obese adults reported a worse mental health state (Sjostrom et
al., 1992; Sullivan et al., 1993). Furthermore, obese subjects, and in particular obese

women, displayed poorer psychological profiles and mood swings. Based on these
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findings, a depression indicator variable was included to examine further the association
between obesity and depression. Musculoskeletal disorders were also included because
there is evidence linking obesity to a variety of diseases ranging from osteoarthritis to

joint pain (Bray, 1985; Colditz, 1992).

However, as noted previously, the obesity-related risk factors in the 1995 NHS are self-
reported. The collection of self reported data might lead to certain risk factors being
under-reported by survey respondents. Using the study sample, the obesity-related
factors were compared with results of other studies to determine if any of these risk
factor were under-reported. Table 4.9 preseats the number of obesity-related risk
factors by BMI for the NHS sample. As shown in Table 4.9, the percentage of
individuals who have an obesity-related risk factor increases with the level of BMI.
This association is most evident for those individuals who have any one of the

following risk factors: hypertension, high cholesterol, or musculoskeletal pain.

Table 4.9: Obesity-related risk factors by BMI (9)

Risk Factors by BMI BMI BMI BMI BMI Total
18.5-24.9 25-29.9 30-39.9 >40
RISK FACTORS (n) 15295 949=. 3425 163 28376
Diabetes Mellitus (Type 2) 51(0.33) 109 (1.15) 97 (2.83) 14 (8.59) 271 (0.96)
Hypertension 802 (5.24) 1055 (11.11) 742 (21.66) 55(33.74) 2654 (9.35)
High Cholesterol 613 (4.01) 786 (3.28) 355(10.36) 20(12.27) 1774 (6.25)
Heart Disease 305 (1.99) 292 (3.08) 129 (3.77) 7(4.29) 733 (2.58)
Depression 274 (1.79) 174 (1.83) 90 (2.63) 7 (4.29) 545 (1.92)
Musculoskeletal Pain 2929 (19.15) 2479 (25.11) 1116(32.58) 71 (43.56) 6595 (23.24)

However, the prevalence of some obesity-related risk factors reported (in the NHS
sample) is relatively low compared to other epidemiological estimates. For example,
Kluthe & Schubert (1985) report that about 20 per cent of obese individuals also have

hypertension. Colditz (1992) also estimates that 26 per cent of obese individuals have
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hypertension. In this sample, the comparison rate for hypertension (for those
individuals with a BMI = 30) is about 22 per cent, which is consistent with other

estimates.

Furthermore, it has been reported that 24-27 per cent of obese individuals also have
some type of coronary vascular disease (Colditz, 1992; Wolf & Colditz, 1994; Wolf &
Colditz, 1998). In the NHS sample, the comparison rate for CHD is about 3.8 per cent.
This discrepancy may, in part, be the result of under-reporting. Therefore, it may be
reasonable to argue that the number of risk factors, presented in Table 4.9, is under-
reported. This under-reporting of risk factors is a limitation associated with self-

reported data.

4.4.5 MCU Measures

The MCU variables are classified as either discrete or count data. Three types of
medical care utilisation (MCU) were selected: (i) doctor visits, (ii) other health care
professional visits, and (iii) hospital visits. The three discrete variables associated with

these types of care are presented in Table 4.10.

In Table 4.10, the ACOLSDOC variable is discrete and is used to indicate whether an
individual visited a doctor in the two weeks prior to the interview (1= yes; 0 = no).
Included in this definition are consultations by telephone or having a third party (such as
a friend or relative) consult a doctor on behalf of the survey respondent. The term
doctor includes both general practitioners (GPs) and specialists (such as surgeons,

psychiatrists, and so on).



134

Table 4.10: Discrete MCU variables (n = 28376)

Variable Name Mean Min. Max. Variable Label
Doctor Visits
¢ ACOLSDOC 0.22 0 1 Whether consulted any doctors in the 2 weeks

prior to interview (yes/no)

Other Health Professionals

(OHP)

e ACOL6OHP 0.108 0 1 Whether visited OHP in the 2 weeks prior to
interview (yes/no)

Hospital Visits
¢ ACOLIHOSP 0.008 0 I Whether hospitalised in the 2 weeks prior to
interview (yes/no)

Notes: Means displayed for discrete variables reflec a proportion and sample characteristics include
BMI = 18.5 and Aged 20 to 64.

The use of other health care professionals (OHP) is also discrete: whether an individual
visited an OHP in the two weeks prior to the interview (1 = yes; 0 = no). As defined in

the survey, OHP include: chemists, nurses, social workers, psychologists, and so on.

Finally, hospital visits were also selected as a measure of medical care utilisation. The
variable ACOL1HOSP is used to identify those individuals who were hospitalised in the

two weeks prior to the survey interview (1 == yes; 0 = no).

These discrete MCU variables are also recorded as count data (i.e., data involving
counts per time interval) in the 1995 NHS, rhe number of times an individual utilised
medical care was also recorded. The information for these variables are presented in
Table 4.11. Included in Table 4.11 is the variable name, the frequency associated with

the number of visits, and the variable label.

In Table 4.11, the ANUMSDOC variable contains the number of consultations (with
either a GP or specialist) during the survey period. The number of doctor visits

recorded in the survey range from no visit (0) to 10 or more visits (10+). In this sample,
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6,256 individuals had at least one consultation with a doctor during the survey period.

The mean number of doctor visits for this sample is 0.298.

Table 4.11: Count data: MCU variables (n = 28376)

Variable Name Frequency Variable Label

ANUMSDOC Number of doctor visits in the last 2 weeks
0 22120
1 4755
2 1098
3 246
4 93
5 37
6 9
7 7
8 0
9 3
10+ 8
ANUMG6OHP Number of OHP visits in last 2 weeks
0 25298
| 2241
2 504
3 114
4 117
S 33
6 31
7 8
8 5
9 3
10 10
11 2
12 |
13 1
14+ 8
ANUMIHOSP Number of nights spent in hospital
0 28162
| 70
2 29
3 26
4 13
5 13
6 13
7 13
8 11
9 6
10 7
11 2
12 1
13 0
14 1
15+ 9

Note: Sample characteristics for all respondents with BMI = 18.5 and Aged 20 to 64.
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The ANUMG6OHP variable contains the number of consultations with other health
professionals during the survey period. The number of OHP visits recorded in the
survey range from no visit (0) to 14 or more visits (14+). In this sample, 3,087 people

had at least one consultation with another health care professional. The mean number

of OHP visits is 0.169.

Finally, the ANUM1HOSP variable lists the total number of nights spent in hospital
during the survey period. The total number of nights spent in hospital range from no
nights (0) to 15 or more nights (15+). Interestingly, only 214 people were recorded as
having spent at least one night in a hospital during the survey period. The mean number

of nights spent in hospital for this sample is 0.031.

4.5 Model Selection

This section discusses the selection of the econometric models used to estimate the
relationship (or association) between MCU and the level of BMI for a sample of the
Australian population. The econometric models, which are presented below, are based

on the general model presented and discussed in section 4.2.2.

4.5.1 Modelling the Relationship between RF and BMI

The relationship between MCU and BMI was modelled as a recursive system (refer to
Equations 4.4 and 4.5 in section 4.2.2). In this section, the econometric models used to
estimate the relationship between RF and BMI is addressed. To facilitate the
discussion, a variation of Equation (4.4), is reproduced below. This equation was

specified (and subsequently estimated) for each obesity-related risk factor.



K
RF, =+ Y, 04, CV, +a,BMI +¢,

k=1

where there are i = 1, . . ., m separate risk factors and K control variables.
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(4.12)

As previously noted, obesity is defined as a risk factor for a number of medical

conditions. However, some of these medical conditions are, in turn, risk factors for

other medical conditions. For example, elevated cholesterol levels are a medical

condition and obesity is one of its risk factors, but elevated cholesterol is also a risk

factor for heart disease. As a result, the inter-relationship between these risk factors

(and obesity) may lead to simultaneity problems in the econometric estimation of

Equation (4.12). However, the inter-relationship between these medical conditions can

also be modelled as a recursive system (thus eliminating the potential problems

associated with simultaneity and identification). These relationships are presented in

Table 4.12.

Table 4.12: The inter-relationship between medical conditions

Possible
causes / -
Associations
Medical Diabetes CHD | Hypertension Cholesterol Depression | Musculoskeletal
Conditions Mellitus Pain
{ (type 2)
Diabetes mellitus
(type 2)! X v v v
CHD X
Hypertension® v X
Cholesterol’ v X
Depression X

Musculoskeletal
Pain

X

Notes:

1 - Type 2 diabetes mellitus is a risk factor for CHD (Gerard et al. 1989; Persson, 1995) and hypertension
(Gerard et al. 1989; Songer & Zimmet, 1995). Type 2 diabetes mellitus has also been associated with
anxiety disorders and depression (Hornquist et al. 1995; Connell et al. 1994; Palinkas et al. 1991).

2 — Hypertension is a risk factor for CHD (Kannel, 1785; Johannesson, 1995; Johannesson et al. 1993).

3 — Elevated cholesterol is a risk factor for CHD (Kaanel, 1985; Kortt & Armstrong, 1998).




The six medical conditions listed are also possible risk factors for other medical
conditions. For instance, in the elevated cholesterol row, the ‘v’ indicates that high
cholesterol is a causal factor in the development of heart disease. Table 4.12, shows
that the inter-relationship between the above risk factors can be modelled as a recursive
system. This is based on the following proposition that if there is a ‘v at a;; then a
‘blank’ at aj; is necessary for there to be no feedback in this system of equations. Since

this condition is satisfied in all cases, we can be assured that there is no feedback.

The model selection process was governed by the characteristics of the 1995 NHS
dataset. As previously stated, all risk factor variables are discrete (i.e., coded 1 = yes; 0
=no). Statistical techniques may that be used to estimate these relationships include

linear probability, logistic, or probit techniqles.

Of these three models, the linear probability model has a number of limitations
including (i) non-normality of the error terir, (ii) heteroscedasticity of the error term,
(iii) the distinct possibility that the predictec. value of Y will lie outside the O-1 range,
and (iv) generally lower R? values (e.g., see Gujarati, 1995, p. 552). These limitations
mean that the linear probability model will have limited appeal in empirical research. In
fact, Griffiths et al. (1993) state that the linear probability model is “generally not
recommended for use in practice” (Griffiths et al. 1993, p. 739). As a result, the linear

probability model will not be used in this project.
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In the current context, either a logistic or probit model could be used to examine the
relationship between risk factors and the levzl of obesity. For illustrative purposes, the

logistic model and a variation of this model - the probit model — will be discussed.

The logistic model is defined according to whether the respondent either has a risk
factor (Y = 1) or does not (Y = 0). In this inttance, the RF variables consist of six
obesity-related risk factors. It is postulated rhat a set of factors — including age, sex,
education, origin, income, employment status, geography, insurance, and BMI — may
explain whether or not individuals have a particular risk factor. The relationship

between RF and a set of explanatory factors can be expressed as follows:
K

P.= E(RF,=1|CV,.BMI)= 0,y + ¥, CV, + 04, BMI (4.13)
k=t

where the CV; and BMI are the explanatory variables and RF; = 1 where the individual
has risk factor i.

Now consider the following representation of whether or not an individual has a risk

factor:

1
P =E(Y =1|CV,,BMI)= : (4.14)
(gt o, CV, +a;, BML)
I+e k2
For ease of exposition, Equation (4.14) can be written as:
1
b= = (4.15)
I+e™

where:
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K
0, = ot + Y0, CV, +0,BMI (4.16)

k=l

Equation (4.16) is the cumulative logistic distribution function (Aldrich & Nelson,
1984; Cramer, 1991; Griffiths et al. 1993; Gujarati, 1995). If P; is the probability of
having a risk factor, then (1 - P;), the probatility of not having a risk factor is given by

the following expression:

e
1-P = 4.17
Colte” (4.17)
Therefore,
P /14e™"
L o (Vite™) _ oo (4.18)

(1-P) (e"/1+e™")

Therefore, P; /(1 - P;) is the odds ratio in favour of having a risk factor. In other words,
P;/(1 - P;} is the ratio of the probability tha: an individual will have a risk factor to the
probability that an individual will not have a risk factor. Taking the natural log of

Equation (4.18) will result in the following equation:

K
L =ln(Pi/1~Pl.)=aio+2a”kCVk +o,BMI (4.19)
k=1
where L; (the log of the odds ratio) is linear in the dependent variables and linear in the
parameters (Gujarati, 1995). In the logistic model (L;) is a linear function of the
independent variables, then the probability (P;) is a non-linear, S-shaped function

(Hamilton ,1992). A distinct advantage of the logistic model is that the coefficients can
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be interpreted as odds ratios. For discrete variables, the odds ratio equals the anti-
logarithm (that is, e to the power) of the corresponding coefficient (Cramer, 1991;
Hamilton, 1992; Menard, 1995). Odds ratios are used comparatively to examine the
“strength of an effect” (Hamilton, 1992, p. 230). However, this is only one approach to
interpreting the coefficients in a logistic regression equation. In general, there are three
approaches that can be used to interpret logistic coefficients: (i) the log odds (L,); (ii)

ratio of odds ( e ); or (iii) probabilities [P, = 1/(1 + ¢ )],

A variation of the logistic model is the probit (or normit) model. As previously noted,
the logistic model uses a cumulative logistic function as shown in Equation (4.14).
However, this is not the only cumulative density function (CDF) that can be used
(Griffiths et al. 1993). In some applications, the normal CDF has been used (Gujarati,
1995). The model that emerges from the normal CDF is commonly referred to as the
probit model. In fact, one could substitute tie normal CDF in place of the logistic CDF
in Equation (4.14) and could proceed as above. As a result, the formulation of both the
logistic and probit models are comparable, with the only real difference being the type
of cumulative distribution function used (Griffiths et al. 1993; Gujarati, 1995). In terms
of estimation, both models produce similar results. Thus, if both models are
theoretically similar and produce similar estimates, which model is preferable in

empirical research? Gujarati (1995) provides some insight with respect to this issue:

“. .. the choice between the two is one of (mathematical) convenience and ready availability of
computer programs. On this score, the logit model is generally used in preference to the probit”
(Gujarati, 1995, pp. 567-568).

There are also other advantages in using the logistic model over the probit model. First,

the logistic coefficients are relatively easier to interpret and can also be expressed as



odds ratios. The logistic model is used here due to the relatively faster computation

speed and superior interpretability of the logistic coefficients.

The specification used to estimate the association between type 2 diabetes mellitus (risk
factor 1) and the level of BMI for a sample of the Australian population is given by

Equation (4.20):°

Logistic Model: Probability of type 2 diabetes mellitus (risk factor 1)

Li = [In(P/1 - P)] = By + BAGE + B.SEX + B;EDUCATION +B,0RIGIN + BINCOME +
BsEMPLOYMENT + B,GEOGRAPHY + BUNSURANCE + BoBMI + ¢, (4.20)

In Equation (4.20), the dependent variable is defined according to whether an individual
either has type 2 diabetes mellitus. Thus, Equation (4.20) represents the relationship
between the probability that an individual has type 2 diabetes mellitus and a set of
explanatory factors. Of particular interest, in Equation (4.20), is the BMI variable and
the corresponding logistic coefficient . It is anticipated that the Sy coefficient will be
positive, indicating that there is a statistically significant relationship between BMI and

the likelihood that an individual has type 2 diabetes mellitus.

In this equation, the BMI variable can be estimated as either a continuous or discrete
variable. If the BMI variable is discrete, then the coefficients in the logistic model can
be used to derive an odds ratio which equals the anti-logarithm (that is, e to the power)

of the corresponding logistic coefficient.

* Equation (4.20) is a stylised regression equation in ‘which the 8 symbols were used instead of & symbols
to describe the relationship between RF and BMI to provide a simplified representation of this
relationship. The results presented in chapter 5 (and the appendices) use the 8 symbols for all estimated
regression coefficients.
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In Equation (4.20), the BMI variable is used to classify obesity into four categories.

The BMI categories, presented in Table 4.13, are the World Health Organisation
(WHO) classification system for obesity. Category (1) is considered to be a ‘normal’ or
‘healthy’ BMI range and it is this category that is used as the excluded reference group
to compare the different grades of obesity. The classification of the discrete BMI
variables is consistent with the following proposition that: “If a qualitative variable has
m categories, introduce only m-1 dummy variables” (Gujarati, 1995, p. 504). As there
are four obesity categories only three discreie BMI variables are introduced (e.g., BMII,

BMI2, and BMI3).

Table 4.13: Obesity categories and discrete BMI variables

Obesity Categories” BMII  BMI2  BMI3

(HBMI 18.5-24.9° 0 0 0
(2) BMI 25-29.9 1 0 0
(3) BMI 30-39.9 0 1 0
(4) BMI 2 40 0 0 1

a: Categories (2) to (4) are the WHO-endorsed international classification system
b: Reference group

Each discrete BMI variable is being comparzd to the excluded reference group, namely
the ‘normal’ or ‘healthy’ BMI range. Therefore, the odds ratio for the three discrete
BMI variables may be written as:

_B(on BMI)
ORBMI2:’S—29A9 versus BMI <25 = €

___B(on BMI2)
ORBMI30-39.9 versus BMI <25 = €

OR B> 40 versus BMiI < 25 = 7" BMP

The above odds ratios are used comparatively to examine the strength of an effect or
association (Hamilton, 1992). It is anticipated that the log-odds of type 2 diabetes
mellitus will be dependent on the BMI value of an individual. For example, if the odds

ratio for BMI3 is equal to 3 then this indicates that individuals in the outermost BMI
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category (i.e., a BMI = 40) are 3 times more likely to have type 2 diabetes mellitus
compared to individuals within a healthy BMI range. In summary, if the BMI
coefficients are statistically significant, then there is evidence of an association between

type 2 diabetes mellitus and BMI.

Logistic regression equations for the follow:ng obesity-related risk factors —
hypertension, CHD, elevated cholesterol levels, depression, and musculoskeletal pain —
are summarised in Table 4.14 below. All are the same form as (4.20), with appropriate

interpretation.

Table 4.14: Logistic regression equations for risk factors

Equation  RF (Dependent Variable)

(4.21) Hypertension

(4.22) CHD

(4.23) Elevated Cholesterol Levels
(4.24) Depression

(4.25) Musculoskeletal Pain

Note: The independent (or explanatory) variables arz the same as in Equation (4.20).

4.5.2 Modelling the Relationship between MCU, RF, and BMI
The next step was to examine the relationship between MCU, RF, and BMI. Equation
(4.26), which is a variation of Equation (4.5), was specified and estimated for each type

of medical care utilisation j:

K m
MCU, = By+ Y BuCV, +B,BMI + Y B, RF, +¢, (4.26)

k=] i=l
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where there are j = 1, . . ., n ways of measuring MCU, i =1, .. ., m separate risk
factors and K control variables. As described in section 4.2.3, Equation (4.26) was
estimated with and without the RF variables so in order to examine both the roral and

partial impact of BMI on MCU.

The relationship between MCU and BMI was modelled in two stages. The first stage
was to estimate the probability (or likelihood) of an individual using medical care. The
second stage was to estimate the association between the level (or amount) of MCU and
BMI. The components of MCU include doctor visits, visits to other health care

professionals, and hospital visits.

In the first stage, a logistic model was defined according to whether a respondent either
utilised medical care. The three discrete measures are: (i) whether or not the survey
respondent visited a doctor in the two weeks prior to the survey, (ii) whether or not the
survey respondent visited another health professional (OHP) in the two weeks prior to
the survey, and (iii) whether or not the survey respondent spent a night in hospital in the
two weeks prior to the survey. It is postulatzd that a set of factors — including age, sex,
education, race, income level, employment status, insurance, BMI, and RF — may
explain the decision of whether or not indiv duals utilise medical care. For example, the
relationship between whether or not the survey respondent visited a doctor and a set of

explanatory variables can be expressed in the following stylised regression equation:

Logistic Model: Probability of a doctor visit

Li =[In(Pi/ 1 - Pi)] = By + BAGE + B.SEX + BEDUCATION +B,0RIGIN + BINCOME +
BsEMPLOYMENT + B,GEOGRAPHY + BINSURANCE + BoBMI + B1oRF + & (4.27)
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Equation (4.27) highlights the relationship tetween the probability of a doctor visit and
the level of BMI. Initially, Equation (4.27) was estimated without the RF variables to
assess whether BMI impacts upon MCU (that is, the toral relationship as discussed in
section 4.2.3). Conditional upon the establishment of a relationship between MCU and
BMLI, it was then examined whether this association is partly operating through the
obesity-related risk factors (RF). This is done by estimating Equation (4.27) as
presented above. Of particular interest in (4.27) are the BMI coefficients () and the
RF coefficients (f3;0). If the introduction of the risk factor variables (RF) are statistically
significant and the BMI variables are statistically insignificant, then this indicates that

the impact of BMI is partly exerted through these obesity-related risk factors.

Logistic regression equations for the following types of medical care utilisation (MCU)
— other health care professional visits and nights spent in hospital — are summarised in
Table 4.15 below. These equations are in the same form as (4.27), with appropriate

interpretation.

Table 4.15: Logistic regression equations for MCU

Equation MCU (Dependent Variable)

(4.28) Visited another health care professiona. (yes/no)
(4.29) Spent a night in hospital (yes/no)

Note: The independent (or explanatory) variables arc the same as in Equation (4.27).

The second stage was to estimate the association between the number of medical
services utilised and the levels BMI for survey respondents who: (i) visited a doctor,
(i1) visited another health care professional, or (ii1) spent a night in hospital. As
mentioned previously, the association between the level (or amount) of MCU and BMI

can be modelled within a count data framework. Specifically, Poisson regression (and
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extensions of this technique) can be employed. However, prior to model specification,

it would be helpful to provide an overview of count data models.

As discussed in section 4.4.5 above, the 1995 NHS survey also contains data that
involve counts per time interval. For example, as shown in Table 4.11, survey
respondents were asked: how many times did you visit a doctor in the two weeks prior
to the survey? Responses range from no (0) visits to 10 or more (10+) visits. More
generally, the dependent variables presented in Table 4.11 have a number of
characteristics that may impact upon the choice of estimation technique. Characteristics
of these variables include: (1) a categorical distribution, (i1) an excess number of zeros,
and (ii1) a relatively long right tail. Several estimation techniques may be suitable for
handling data with these particular characteristics (Grootendorst, 1995). Candidate
models include the Poisson, negative binomial, and zero inflated count data models.

These models are reviewed below.

The Poisson Model

According to Winkelmann (1997), Poisson regression is the benchmark of count data
models. In fact, the competing models discussed below are essentially extensions (or
variants) of the Poisson regression model. Within the econometrics literature, the
Poisson model has been used extensively to model drug utilisation (Grootendorst,
1995), the number of doctor consultations (Cameron & Trivedi, 1985), the discovery of

new drugs (Jensen, 1987), and labour mobility (Skrovetz, 1984).
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To begin the discussion, consider the probability function of a Poisson-distributed
random variable Y,
AT exp( —7.)

fly,)=Pr(Y, = yi):“Tw, vy, =01,2,.. (4.28)

and A; = exp(x;8), where x; is a vector of independent variables and SBis a k x 1 vector of
unknown parameters (Caudill & Mixon, 1995; Grootendorst, 1995; Winkelmann, 1997).
This particular transformation ensures that t1e estimated mean of the Poisson model is
positive (Grootendorst, 1995). Moreover, this transformation also indicates that the
mean and variance of Y; is equal to A; (Caudill & Mixon, 1995; Grootendorst, 1995;
Winkelmann, 1997). Cameron and Trivedi (1985) note that the Poisson regression
model is based on the following restrictive ussumptions. First, it is based on the
assumption that “events occur independently over time” (Cameron & Trivedi, 1985,
p.31). This is a strong assumption that may not hold for certain types of count data. For
instance, the event that individual A saw his/her physician on Friday may not be
independent of the event that he/she also saw the physician on Thursday, if both events
arise from the occurrence of a single medical condition. Secondly, the assumption that
the conditional mean and variance of y; given x; are equal may also be a restrictive
assumption failing to account for overdispersion — that is, the variance exceeds the mean

(Cameron & Trivedi, 1985; Grootendorst, 1995; Winkelmann, 1997).

In addition to the above limitations, there is another important point worth noting. As
presented in Table 4.11, the distribution of these variables has been right censored. For
example, consider the number of doctor visits recorded during the survey period. Any

observation greater than 10 is masked by being labelled a 10 (Green, 1993). Likewise,
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the number of other health care professional visits and number of nights spent in
hospital are also masked by the labels 14 and 15, respectively. Data with these
particular characteristics can be modelled within a Poisson framework (Caudill &
Mixon, 1995; Green, 1993). The Poisson model with right censoring is the same as
(4.28) above except that for some integer C, all values of y greater than or equal to C are
reported as C (Green, 1993).* The formulation of this model follows the exposition by
Caudill & Mixon (1995) and Green (1993). First, a latent variable’, Y, is defined as an

underlying Poisson variable:

_ A exp(-4)

Prob(Y*=y) (4.28a)
y!

where A = exp(xf)

The observed variable is therefore:

y = Min[y*,C] (4.29)

Thus,

Probly =j] =Probly=j]=if y< C (4.30)

and;

* In essence, this a Tobit model for count data (e.g., see Green, 1993).
* In the current context, the latent variable can be thought of as desired MCU.
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Prob(y = C) = Prob(y = C)
= (1 - Prob[y < C])

C-1
=1- ) Prob(y* = j) (4.31)

j=0

This shows how censored count data can be handled within a Poisson framework.
However, owing to the restrictions associated with the Poisson model, other

specifications may, in fact, be more appropriate.

The Negative Binomial Model

Certain types of count data are characterised by overdispersion (i.e., the conditional
variance exceeds the conditional mean). Overdispersion may arise due to unobservable
individual heterogeneity in the dependent variable (Cameron & Trivedi, 1985;
Grootendorst, 1995). The negative binomial model arises if this inter-person
heterogeneity is modelled using the gamma probability distribution (Cameron &
Trivedi, 1985; Grootendorst, 1995; Winklemann, 1997). Specifically, the density of the
negative binomial is derived by including an error term to the conditional mean of the

Poisson (Grootendorst, 1995):
Ai=exp(xf) + € (4.32)

where exp(€) follows a gamma distribution with mean one and variance «. Moreover,

substituting (4.32) into (4.28a) above and integrating € out of the expression will result

in the negative binominal density:
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I'o+y.)
)=Prob(Y. =y )=—2ub(l—-u)y.,
fy;) (Y.=y) o)y O —u;)y
vi=0,1,2,... (4.33)
where:
0 1 )
u, = ———,0 = —,I'(-) = gamma function
0+ A, o

Therefore, the introduction of the parameter « allows the mean to differ from the
variance. Ultimately, this extension of the Poisson model can be used to model data
characterised by overdispersion. With the availability of specialised econometric
programs such as LIMDEP by William Greene, the estimation of the negative binomial
model is relatively straightforward. More iraportantly, testing for overdispersion
“conveniently reduces to a z-test on the sign ficance of the estimated value of &

(Grootendorst, 1995, p.185). That is:

H,: o = 0 (the Poisson model is favoured)

H,: o> 0 (the negative binomial model is favoured)

It is also important to note that the negative binomial model with censoring can be
obtained by altering the functional form of the probability (this is analogous to the

censored Poisson model discussed above).
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The Zero Inflated Count Data Models

In some cases, the Poisson and negative binomial regression models may not accurately
assign the probability to the outcome Y = 0 (Green, 1994; Winkelmann, 1997). For
example, in a survey of the number of times an individual consulted a doctor, the
outcome for ¥ = 0 may arise; at another time, that same individual might choose Y=/ >
0. This is a subtle point as the response 0 is distinct from the response *0 and none
planned.” Consequently, zero inflated Poisson or negative binomial models can be used
to address this issue (Green, 1994; Grootendorst, 1995; Winklemann, 1997). The
underlying theory associated with these models follows the exposition by Winklemann
(1997). To begin with, consider a binary variable ¢; that allows for a separate treatment

of zeros and positive outcomes. Following on from this let:

Oifc, =0
yi=9 . T (4.34)
yo e =

Thus, if the probability of ¢; = | is denoted by p;, then the associated probability

function of y; is:

g =U=p) ™ +p.f(y) (4.35)

With respect to zero inflated count data models “there are two types of zeros: one type
is obtained as c; = 0; the other as ¢; =1 and y;* = 0” (Winkelmann, 1997, p.107).
However, the selection of which of these two models is more appropriate will ultimately
dependent on the application and characteristics of the data. However, in practice, it is

possible to estimate both these models and “hen examine which is the preferred model.
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Selecting the Preferred Count Data Model

As reviewed above, there are a number of candidate models to select from. To facilitate
the discussion, these competing models are summarised in 4.16 below. Ultimately,
selection of the preferred model is, to a large extent, dependent upon the characteristics
of the dataset and the empirical results obtained. In principle, it would be feasible to

estimate all the above models.

Table 4.16: Candidate count data models

Models

(1) Poisson & censored Poisson

(2) Negative binomial & censored negative binomial
(3) Zero inflated Poisson (ZIP)

(4) Zero inflated negative binomial (ZIB)

However, from a practical viewpoint it would preferable to estimate a base model from
which to compare alternative models. Thus, a decision was made to estimate the
Poisson and censored Poisson models first. This decision was based on the following
reasons: (i) the Poisson model is the benchinark for count data models (Winkelmann,
1997); and (ii) in the applied econometric literature, the Poisson model has been used as
a starting point in analysing count data models. In addition, the other models presented
in Table 4.16 are essentially extensions of the Poisson model. It is entirely possible that
owing to the characteristics of the dataset, the estimation of alternative models may, in
fact, provide little, if any, improvement over the Poisson model. This is, however, an
empirical question. Therefore, as a starting point, the Poisson and censored Poisson
regression models were specified and estimated for the three different types of medical
care utilisation. Poisson and censored Poisson equations for the three types of medical

care utilisation are summarised in Table 4.17.
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Table 4.17: Poisson and censored Poisson equations for MCU
Equation MCU (Dependent Variable)

Poisson

(4.36) Number of doctor visits

4.37) Number of visits to other health care professional
(4.38) Number of nights spent in hospital

Censored Poisson

(4.36a) Number of doctor visits

(4.37a) Number of visits to other health care professional
(4.38a) Number of nights spent in hospital

Following the estimation of the above equations, the alternative count data models listed

in Table 4.16 were also investigated. The purpose of this was to examine whether

extension of the Poisson model was warrantad.

4.6 Summary

This chapter has provided a discussion of the econometric methods and models used to

examine the relationship between MCU, BMI, and RF for a sample of the Australia

population. The following chapter presents (and discusses) the results from these

econometric models, with particular reference given to the working hypotheses

presented in Table 4.1.
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CHAPTER 5: RESULTS

5.1 Introduction

This chapter presents the estimates from the econometric models discussed in chapter 4.
The econometric analysis of the 1995 NHS dataset was performed using the statistical
software packages SPSS (Version 8.0) and LIMDEP (Version 7). SPSS was used to
estimate the logistic regression equations while LIMDEP was employed to estimate the
count data models. The results reported in this chapter include: (i) descriptive statistics
of the sample by the level of BMI; (ii) logistic estimates of the relationship between RF
and the level of BMI, (iii) logistic estimates of the relationship between MCU and the
level of BMI, and (iv) Poisson estimates for the relationship between the level of MCU
and BMI. The results are presented and discussed with particular reference to the
working hypotheses presented in chapter 4 (refer to Table 4.1). The final section in this

chapter provides a summary of the principal findings.

5.2 Characteristics of the Dataset

The data used in this analysis were extracted from the 1995 Australian National Health
Survey (NHS) on CD-ROM. This sample includes 28,376 unique records (i.e., one
record for each individual). The results presented in this section are for adults (age
between 20 and 64 years) with a BMI value greater than or equal to 18.5. Table 5.1
highlights the characteristics of the 28,376 individuals in the sample by BMI (as a
percentage of the total). Included in Table 5.1 are the control and obesity-related risk

factor variables.
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156

Characteristics BMI BMI BMI BMI Total
18.5-24.9 25-29.9 30-39.9 >40
AGE
20-24 years 2315(71.5) 707 (21.8) 210 (6.5) 5(00.2) 3237
25-29 years 2186 (61.8) 1007 (28.5) 324 (9.2) 18 (0.5) 3535
30-34 years 2250 (57.2) 1222 (31) 442 (11.2) 23 (0.6) 3937
35-39 years 2235 (56.2) 1292 (32.5) 427 (10.7) 25 (0.6) 3979
40-44 years 1953 (52.3) 1309 (35.1) 450 (12.1) 21 (0.6) 3733
45-49 years 1590 (46.8) 1280 (37.7) 504 (14.8) 25(0.7) 3399
50-54 years 1146 (43.1) 1070 (40.3) 425 (16.0) 17 (0.6) 2658
55-59 years 877 (41.2) 879 (41.2) 354 (16.6) 21 (0.1) 2131
60-64 years 743 (42.0) 727 (41.1) 289 (16.4) 8 (0.5) 1767
SEX
Female 8671 (62.3) 3432 (24.7) 1677 (12.1) 131 (0.9) 13911
Male 6624 (45.8) 6061 (41.9) 1748 (12.1) 32(0.2) 14465
HIGHER EDUCATION
No higher qualifications 3721 (52.1) 2398 (33.6) 966 (13.5) 58 (0.8) 7143
NA, inadequately described 7588 (54.0) 4687 (33.4) 1681 (12.0) 84 (0.6) 14040
Higher degree 156 (56.3) 105 (37.9) 16 (5.8) -- 277
Postgraduate diploma 256 (59.4) 137 (31.8) 37 (8.6) 1(0.2) 431
Bachelor degree 937 (62.3) 457 (30.4) 108 (7.2) 2(0.1) 1504
Undergraduate diploma 400 (61.5) 192 (29.5) 56 (8.6) 2(0.3) 650
Associate diploma 447 (56.9) 253 (32.2) 86 (10.9) -- 786
Skilled/basic vocational 1790 (50.5) 1264 (35.7) 475 (13.4) 16 (0.5) 3545
ORIGIN
Australia and New Zealand 11285 (53.8) 6948 (33.2) 2591(12.4) 134 (0.6) 20958
British Isles and Ireland 1433 (54.4) 919 (34.9) 277 (10.5) 7(0.3) 2636
Europe 995 (41.9) 981 (41.3) 384 (16.2) 14 (0.6) 2374
Middle East 89 (41.8) 90 (42.3) 33(15.5) 1 (0.5) 213
Asia 1067 (76.4) 285 (20.4) 44 (3.1) 1 (0.1) 1397
Other 426 (53.4) 270 (33.8) 96 (12.0) 6 (0.8) 798
INCOME
$30000-34999 1151 (52.7) 768 (35.2) 252 (11.5) 12 (0.5) 2183
NA, Don’t know / Not Stated 1957 (53.5) 1268 (34.7) 422 (11.5) 12 (0.3) 3659
Negative 163 (48.5) 140 (41.7) 32 (9.5) 1 (0.3) 336
$1-4999 1108 (59.8) 497 (26.8) 235 (12.7) 12 (0.6) 1852
$5000-9999 2017 (51.1) 1259 (31.9) 622 (15.7) 53 (1.3) 3951
$10000-14999 1348 (58.3) 642 (27.8) 301 (13.0) 20 (0.9) 2311
$15000-19999 1335 (60.2) 642 (29.0) 226 (10.2) 14 (0.6) 2217
$20000-24999 1767 (56.5) 1018 (32.6) 329 (10.5) 110.4) 3125
$25000-29999 1585 (55.8) 920 (32.4) 325(11.4) 13 (0.5) 2843
$35000-39999 828 (51.9) 583 (36.5) 181 (11.3) 4(0.3) 1596
$40000-44999 563 (47.9) 449 (38.2) 157 (13.4) 6 (0.5) 1175
$45000-49999 359 (49.9) 277 (38.5) 81 (11.3) 2(0.3) 719
$50000-54999 303 (44.6) 290 (42.7) 83 (12.2) 3(0.4) 679
$55000-59999 159 (47.0) 149 (44.1) 30 (8.9) -- 338
$60000-64999 160 (51.6) 110 (35.5) 40 (12.9) -- 310
$65000-69999 81 (46.0) 71 (40.3) 24 (13.6) -- 176
$70000-74999 82 (47.1) 76 (43.7) 16 (9.2) -- 174
$75000 or more 329 (44.9) 334 (45.6) 69 (9.4) - 732
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Wage and salary 11576 (54.5) 7261 (34.2) 2323 (10.9) 84 (0.4) 21244
In own business 721 (55.9) 395 (30.6) 167 (12.9) 7(0.5) 1290
Other/NA 2998 (51.3) 1837 (31.4) 935 (16.0) 72 (1.2) 5842
GEOGRAPHY

Capital City 9221 (55.0) 5502 (32.8) 1952 (11.6) 99 (0.6) 16774
Large/small rural centres 1599 (51.7) 1042 (33.7) 436 (14.1) 17 (0.5) 3094
Other rural area/remote 1918 (49.3) 1416 (36.4) 532 (13.7) 28 (0.7) 3894
ACT/NT 2557 (55.4) 1533 (33.2) 505 (10.9) 19 (0.4) 4614
INSURANCE

Does not have private insurance 4310 (54.8) 2521 (32.1) 975 (12.4) 54 (0.7) 7860
N/A 7545 (54.0) 4665 (33.4) 1671 (12.0) 84 (0.6) 13965
Has private insurance cover 3440 (52.5) 2307 (35.2) 779 (11.9) 25 (0.4) 6551
RISK FACTORS

Diabetes Mellitus (Type 2) 51 (18.8) 109 (40.2) 97 (35.8) 14 (5.2) 271
Hypertension 802 (30.2) 1055 (39.8) 742 (28.0) 55 (2.1) 2654
High Cholesterol 305 (41.6) 292 (39.8) 129 (17.6) 7(1.0) 733
Coronary Heart Disease 613 (34.6) 786 (44.3) 355 (20.0) 20 (1.1) 1774
Depression 274 (50.3) 174 (31.9) 90 (16.5) 7(1.3) 545
Musculoskeletal disorders 2929 (44.4) 2479 (37.6) 1116 (16.9) 71 (1.1) 6595

Note: Sample characteristics include BMI 2 18.5 and Aged 20 to 64.

5.3 Logistic Model Estimates: The Relationship between RIF and BMI

In total, 12 logistic equations were estimated to assess the relationship between RF and

BMI. As noted in the previous chapter, the BMI coefficients are of particular interest in

all these models (i.e., By from equations 4.20 to 4.25 in chapter 4). As presented in

Table 4.1, the principal hypothesis to test is whether BMI affects RF. The association

between BMI and RF is summarised in Table 5.2 (complete details for all coefficients —

including control variables — are provided ir Tables Al to A12 in Appendix A, on CD-

ROM).



Table 5.2: Logistic regression estimates (/3), standard errors (SE), and odds ratios (OR) (n =
28376); dependent variables = risk factors

B SE OR Label
Type 2 Diabetes Mellitus
(Equation 4.20)
BMI| 09211 0.1741 2.5121 BMI 25 to < 30
BMI2 1.75307" 0.1791 5.7719 BMI 30 < 40
BMI3 2.9320™" 0.3327 18.7660 BMI > 40
#BMI™
BMI 0.1480™" 0.0l 5 1.1595 Continuous measure
Hypertension
(Equation 4.21)
BMI|I 0.5712"™" 0.05 9 1.7704 BMI 25 to < 30
BMI2 1.3650™" 0.0593 3.9155 BMI 30 < 40
BMI3 2.0715™ 0.1869 7.9367 BMI = 40
#BMI™
BMI 0.1193™" 0.0048 1.1267 Continuous measure
CHD
(Equation 4.22)
BMI1 0.1184 0.0865 1.1257 BMI 25 to < 30
BMI2 0.2534" 0.1108 1.2883 BMI 30 < 40
BMI3 0.4459 0.4012 1.5619 BMI > 40
#BMI™
BMI 0.02317" 0.0039 1.0234 Continuous measure
High Cholesterol
(Equation 4.23)
BMI1 0.4683™" 0.0533 1.5972 BMI 25 to < 30
BMI2 0.6968""" 0.0728 2.0073 BMI 30 < 40
BMI3 1.0248""" 0.2525 2.7865 BMI > 40
#BMI™"
BMI 0.0623™" 0.0057 1.0643 Continuous measure
Depression
(Equation 4.24)
BMII 0.0400 0.1014 1.0409 BMI 25 to < 30
BMI2 0.2062 0.1257 1.2290 BMI 30 < 40
BMI3 0.2614 0.3935 1.2988 BMI > 40
#BMI
BMI 0.0163" 0.0095 1.0164 Continuous measure
Musculoskeletal Pain
(Equation 4.25)
BMI1 0.2605™" 0.0333 1.2976 BMI 25 to < 30
BMI2 0.4799"" 0.0443 1.6159 BMI 30 < 40
BMI3 0.8512"" 0.1667 2.3425 BMI > 40
#BMI™
BMI 0.0452""" 0.0035 1.0463 Continuous measure

#BMI — Joint hypothesis tests for the discrete BMI variables as a group.
*p<0.1. %% p <0.05. ¥** p < 0.01
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Included in Table 5.2 are the logistic regression estimates (f), standard errors (SE), and
odds ratios (OR) for the BMI variables. BMI was estimated as both a discrete and
continuous measure. For the discrete measure of BMI, joint hypothesis tests were
conducted to assess whether these variables, as a group, were statistically significant. In
addition, each discrete BMI variable was compared to the excluded reference group

(i.e., those individuals with a BMI value 18.5 to 24.9).

Overall, there is a statistically significant association between the level of BMI and the
likelihood that an individual has an obesity-related risk factor (RF). For the discrete
measure of BMI, these results clearly indicae that higher levels of BMI are associated
with the following four risk factors: type 2 diabetes mellitus, hypertension, high
cholesterol, and musculoskeletal pain (all p values are < 0.01). Moreover, the joint
hypothesis tests for BMI, as a group, also indicate that increasing BMI is associated

with these particular risk factors (p values < 0.01).

With respect to the discrete BMI variables, the odds ratios presented in Table 5.2, can
be readily interpreted. For illustrative purposes, consider the BMI1 coefficient (and
corresponding odds ratio) for type 2 diabetes mellitus (Equation 4.20). This result can
be interpreted as a follows: compared to those individuals in a healthy weight range
(i.e., BMI 18.5 to 24.9), overweight individuals (BMI1) are 2.5 times more likely to
have type 2 diabetes mellitus. Appropriate interpretations can be made for all other
discrete BMI coefficients so long as each coefficient is compared to the excluded

reference group.
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More importantly, higher levels of BMI are associated with a greater likelihood that an
individual will have one of these particular risk factors. For instance, individuals in the
outermost BMI group (i.e., those individuals with a BMI greater than or equal to 40) are
much more likely to have a risk factor. Surprisingly, as a group, the three discrete BMI
variables are not associated with coronary hzart disease (CHD) at the 5 per cent level
(although they are statistically significant at the 10 per cent level). However, it is
interesting to note that when Equation (4.22) was estimated using BMI as a continuous
variable this relationship was statistically significant (p < 0.01). This particular finding
indicates that information is lost through the categorisation of the continuous BMI
variable. Moreover, as a group, the three discrete BMI variables are not associated with
depression but the continuous measure of BMI is associated with depression at the 10

per cent level of significance.

It is also worth noting that the logistic coefficient associated with the continuous
measure of BMI can be interpreted as the change in the dependent variable, logistic (),
associated with a one-unit change in the explanatory variable (Hamilton, 1992; Menard,
1995). For example, the continuous BMI ccefficient in Table 5.2, for Equation (4.20),
suggests that for a one-unit increase in BMI. the log of the odds in favour of having type
2 diabetes mellitus goes up by about 0.1480 Taking the antilog of 0.1480 results in an
odds ratio of 1.1595. This means that for a unit increase in BMI, the odds in favour of
developing type 2 diabetes mellitus increase by about 1.1595 or 15.95per cent. Similar
interpretations can be made for all estimated continuous BMI coefficients presented in
Table 5.2. Moreover, the estimated logistic coefficients can also be interpreted as
probabilities. Therefore, it is possible to calculate the associated probabilities of having,

for example, type 2 diabetes mellitus at different levels of BMI.
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In other words, it is possible to map the probability of developing type 2 diabetes

mellitus against body mass. For illustrative purposes, the estimated coefficients for

Equation (4.20) using BMI as a continuous measure were selected (refer to Table A7 in

Appendix A for complete details). As a group, only the age and employment status

variables were statistically significant (p < C.01). However, for descriptive purposes, all

the information contained in Table A7 was used to estimate the probability of having

type 2 diabetes conditional upon a set of personal characteristics and a given value of

BMI. Taking this into account, the logistic Equation from Table A7 is approximately:

.O7X,‘41 - .10X,‘42 +.1 1X,‘43 - .52X,’44 -1 lX,'_15 + ~15>:146

L= -11.79 + .5 1X; + .87X,‘2 + 1.22X5 + 253X4 + 266X,s + 320Xl(, + 311X+ 321X,g +.40X,x) +
.66X,‘1() + .OIX“] + .26X,‘12 + .09X,‘13 - .18X,14 - .28X,‘15 + .OSX,’]G - .004X,‘17 + .OSX,‘lg - .89X;19 +
.34X,‘2() + .64Xi21 + .18X,‘22 - ,53X,‘23 + .09X,'24 + .SCXQS + .18X,‘26 + .05X[27 + ,43X,‘3_g -. 18X,‘29 - .08X,~30
- .39X,‘_’;1 + .61X,‘32 - .08X,’33 + .56X,‘34 - .78X,‘35 + .82X,‘36 - .21X,‘37 - .69X,’33 + .29X,’39 + .70X,‘40 -

(5.0)

where variables are described as follows:

Age
X, 25-29 years
X,  30-34 years
X3 35-39 years
Xy  40-44 years
Xs  45-49 years
Xe  50-54 years

X7  55-59 years

Xg  60-64 years
Sex

Xy Female
Education

Xy NA, inadequately described
X;; Higher degree

X1, Postgraduate diploma

X3 Bachelor degree

X134 Undergraduate diploma

X5  Associate diploma

X6  Skilled/basic vocational
Origin

X,7 British Isles and Ireland

X, Europe

X9 Middle East

Xy Asia

X,1  Other

X5 NA, Don’t know/Not Stated
Income

X3 Negative
Xo  $1-4999

X36

X9
Xao

Xa
X4w

Xi3

Xys

X46

$5000-9999
$10000-14999
$15000-19999
$20000-24999
$25000-29999
$35000-39999
$40000-44999
$45000-49999
$50000-54999
$55000-59999
$60000-64999
$65000-69999
$70000-74999

$75000 or more
Employment Status

In own business
Other/NA

Geographic Location
Large/small rural centres
Other rural area/remote
ACT/NT

N/A

Insurance Cover

Has private insurance cover
BMI

Continuous measure of BMI, and

Predicted log odds of type 2 diabetes mellitus
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The variables X;-X45 are the discrete control variables that have been defined in the
previous chapter. The variable X4¢ is the continuous measure of the BMI. Thus,
Equation (5.0) specifies the predicted log odds of type 2 diabetes mellitus for a person,
as a function of BMI and other factors (control variables). Consider the case of a male
(X9 =0) with a BMI of 30 (X4¢ = 30), and thz following personal characteristics:

e age 50-54 (X¢ =1 and X-Xs, X7-Xg = J);

no higher qualifications (Xo-X ¢ = 0);

born in Australasia (X,7-X5; = 0);

wage earner (X39-X40 = 0);

gross income per year $25,000-29,999 (X9 = 1 and X5;-Xog, X30-X358 = 0);
residing in a large/small rural centre (X4; = | and X43-X43 = 0); and

no private health insurance (X44-Xy5 =1J).

Using these characteristics, Equations (5.0) reduces to:

L;=-11.79 + 3.20(1) - .18(1) - .07(1) + .15(30) = -4.34 5.1

The value of L; in (5.1) gives the predicted 1og odds of type 2 diabetes (L) as -4.34.
This can then be translated into the following probability: e (1+e*) = 0.0121.
Thus, the probability that an individual with these characteristics and a BMI of 30 has
type 2 diabetes is equal to 0.0121. The primary advantage of this approach is that it is
relatively easy to interpret. This relationship between BMI and the probabilities for a

person with these characteristics is summarised in Figure 5.1 below.

As shown in Figure 5.1, increasing BMI will lead to an increase in the probability that
an individual with the above characteristics will develop type 2 diabetes mellitus. The

increase in the probability over the BMI range of 20-40 is relatively small. However,
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for those individuals, with a BMI greater than 40, the probability of developing type 2

diabetes increases significantly.

Figure 5.1: Probability of type 2 diabetes mellitus
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For comparative purposes, Table 5.3 (below) provides the probabilities associated with
having an obesity-related risk factor at different levels of BMI. For consistency, the
above personal characteristics were also selected for each remaining risk factor. As
shown in Table 5.3, the probabilities for each risk factor increase as the level of BMI
increases (and at an increasing rate). Particularly striking relationships are found for

hypertension, high cholesterol, and musculoskeletal pain.
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Table 5.3: Probability of risk factors by level of BMI

Risk Factors Level of BMI  Probability of having risk factor
Type 2 Diabetes Mellitus 20 0.0028
25 0.00:8
30 0.0121
35 0.0221
40 0.0512
45 0.101¢6
50 0.1917
Hypertension 20 0.0828
25 0.1424
30 0.2316
35 0.3537
40 0.4984
45 0.6424
50 0.76€1
CHD 20 0.0268
25 0.0322
30 0.0373
35 0.0416
40 0.04¢€5
45 0.0519
50 0.0579
High Cholesterol 20 0.0558
25 0.0747
30 0.09¢2
35 0.13C&
40 0.1704
45 0.21¢0
50 0.27€9
Depression 20 0.00€¢.1
25 0.00¢6
30 0.0072
35 0.0078&
40 0.00¢5
45 0.0092
50 0.00¢9
Musculoskeletal Pain 20 0.2616
25 0.3075
30 0.3576
35 04110
40 0.4606
45 0.52=1
50 0.57¢9

Note: Probabilities are for men, age between 50-54, with no higher qualifications, born in Australasia,
earning a wage between $25,000-29,999, residing in a large/small rural centre, with no private health
insurance.
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For example, the probability that an individual with these characteristics has
hypertension at a BMI level of 30 is equal to 0.23. If this particular individual has a
BMI value of 40 then the corresponding probability is almost 0.50. Similar
interpretations can be made for all the probabilities presented in Table 5.3. Overall,
these results strongly support the hypothesis that increasing BMI lead to an increasing

probability of having each risk factor.

5.3.1 Diagnostic Statistics
It 1s useful to examine the summary measures for evaluating the logistic regression

models. The principal concern is how well these models fit the data.

In logistic regression, there are close parallels to the statistics F and R? in linear
regression. In linear regression, the sum of squared errors is the criterion used to select
variables (Green 1993; Gujarati, 1995; Menard, 1995; Selvin, 1995). However, in the
case of logistic regression, the log-likelihood (LL) statistic is used to select variables
(Menard, 1995). Most statistical programs usually report not the log-likelihood statistic
but the log-likelihood statistic multiplied by -2 (i.e., -2LL). This is because when the
log-likelihood statistic is multiplied by —2 it has an approximate > (chi-square)

distribution (Menard, 1995; Selvin, 1995).

The value of the —2LL statistic for the logistic regression model with only the intercept
term included (hereafter referred to as Dy) is called the ‘Initial Log Likelihood
Function’ in the SPSS logistic regression output. This statistic provides information

when none of the explanatory variables are included in the regression equation. This
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particular statistic is analogous to the total sum of squares (TSS) in linear regression

(Menard, 1995).

The value of —2LL for the logistic model that includes all explanatory variables as well
as the intercept term is called the ‘-2 Log Likelihood’ in the SPSS output. For
notational convenience, this particular statistic will be referred to as Dy,. This statistic is
comparable to the error sum of squares (SSE) in linear regression (Menard, 1995). In
short, Dy is used as an indicator of how pocrly the model fits with all the explanatory

variables included in the logistic equation (Menard, 1995).

In logistic regression, the difference betweea Dy and Dy (i.e., Dy — Dy) is called the
‘Model Chi-Square’ in the SPSS output (Menard, 1995). From this point on, the
difference will be referred to as Gy. This particular statistic is comparable to the F test
in linear regression (Selvin, 1995). Specifically, Gy tests the null hypothesis that 3, =
B =...= P =0 for the logistic regression model (Menard, 1995; Selvin, 1995).
Therefore if Gy is statistically significant at the 5 per cent level, one can reject the null
hypothesis and conclude that the information about the explanatory variables allows one
to make a better prediction than one could without the explanatory variables. According
to Menard (1995) it is “advisable to focus primarily on Gy and only secondarily on Dy”

(Menard, 1995, p.21).

It is also worth noting that several analogues to the R? measure of goodness-of-fit in
linear regression have been proposed for logistic regression (Green, 1993; Menard,
1995). However, to maintain the current analogy between linear and logistic regression,

the R*_ proposed by Hosmer and Lemeshow (1989) provides one measure of the
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association between the independent and explanatory variables in logistic regression.

Formally, R? = GMm/(Dy) = Gm/(Gm+Dy). Menard (1995) states that the:

“R’_is the proportional reduction in % or a proportional reduction in the absolute value of the log-
likelihood measure. It indicates by how much the inclusion of the independent variables in the
model reduces the badness-of-fit Dy chi-square statistic” (Menard, 1995, p.22).

Therefore, the above summary statistics can be used to examine how well the models fit
the relationship between RF and BMI. For convenience, this information is summarised

in Table 5.4 below.

Table 5.4: Logistic diagnostic statistics for the relationships between RF and BMI

Equation D, Dy Gy _ R,
Type 2 diabetes mellitus (Equation 4.20)

BMI as discrete measure 3060.34 2545.07 51527  0.1688
BMI as continuous measure 3060.34 2530.11 530.23  0.1733

Hypertension (Equation 4.21)
BMI as discrete measure 17628.33 1469342 293541 0.1665
BMI as continuous measure 17628.33 14657.52 2971.31 0.1685

CHD (Equation 4.22)

BMI as discrete measure 6806.32 6088.17 718.65 0.1056
BMI as continuous measure 6806.32 6087.77 719.06  0.1056
High Cholesterol (Equation 4.23)

BMI as discrete measure 13270.33 11746.95 1523.90 0.1148
BMI as continuous measure 13270.33 11751.88 1518.97 0.1145
Depression (Equation 4.24)

BMI as discrete measure 5387.70 5020.94 366.77 0.0681
BMI as continuous measure 5387.70 5020.89 366.82  0.0681

Musculoskeletal Pain (Equation 4.25)
BMI as discrete measure 30769.67 28450.80  2318.87 0.0754
BMI as continuous measure 30769.67 28433.72 2335.95 0.0759

Notes: Dy = The value of the —2LL statistic for the Icgistic regression model with only the intercept term
included. Dy; = The value of —2LL for the logistic model that includes all explanatory variables as well as
the intercept term. Gy = The difference between Dy, and Dy. R? = Gum/(Dg) = Gu/(Gy+Dyy). All the GM
statistics are significant at the | per cent level.

Included in Table 5.4 are the Dy, Dym, Gy, and RzL logistic regression diagnostics.

These statistics are presented for logistic equations estimated with body mass index
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(BMI) as a discrete and continuous measure. All Gy statistics are significant at the 1
per cent level (i.e., p < 0.01). Therefore, one can reject the null hypothesis and
conclude that the information about the control and BMI variables allows one to make a
better prediction than one could without these variables. The R diagnostics indicate
that models (4.20) to (4.23) fit the data reasonably well, especially considering that the
data are cross sectional survey data. Overall, these measures provide information about

how well the logistic regression models actually fit the data.

5.4 Logistic Model Estimates: The Relationship between MCU and BMI

Logistic equations were also estimated for the three different types of medical care
utilisation (MCU), namely doctor visits, other health care professional visits, and
hospital visits. As already noted, the BMI and RF coefficients are of particular interest
in these logistic models (i.e, By and ;¢ from equations 4.27 to 4.29 in chapter 4). As
indicated in Table 4.1, the hypotheses tested are: (1) whether BMI affects RF, (2)
whether RF affects MCU, and (3) whether BMI has any direct effect on MCU. Results
for each type of MCU are presented below. The Tables presented in this section
summarise the relationship between MCU, BMI, and RF (Complete details for all
coefficients are reported in Appendix B, which is contained on CD-ROM attached to the

inside of the back cover).

5.4.1 Logistic Model Estimates for Doctor Visit

Logistic regression estimates for the relationship between the likelihood of a doctor visit
and BMI are presented in Table 5.5. It should be noted that Equation (4.27) was
initially estimated with: (i) control and discrete BMI variables only; (ii) control and RF

variables only; and (iii) control, RF, and discrete BMI variables. For convenience, these
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alternative models have been labelled (1), (Z), and (3), respectively. For each model,
the parameter estimates (f3) and standard errors (SE) are reported. Maximum likelihood
(ML) ratio test results for model comparison are also presented. The ML ratio tests the
significance of either including or removing a group of variables. Finally, the R?_ for
each model is also reported. Note that the coefficients in Table 5.5 are shown for only
the RF and BMI variables. (Complete details for all variables — including the control

variables — are located in Appendix B).

Table 5.5: Logistic regression estimates (f3) and standard errors (SE), (n = 28376); dependent
variable = doctor visit (with discrete BMI variablas)

Model (1) Model (2) Model (3)
B SE B SE B SE

Doctor Visit
(Equation 4.27)
BMI Variables
BMI|1 0.1177°"  0.0334 0.0620°  0.0340
BMI2 0.2207"  0.0454 0.0655 0.0472
BMI3 0.4559""  0.1680 0.1539 0.1748
Risk Variables
DM_TY?2 0.6122""  0.1325 0.5947"""  0.1331
HYPER 0.4840™"  0.0488 047157 0.0494
DEPRESS 1.0805™  0.0904 1.0801™"  0.0905
CHD 0.59777"  0.0826 0.5992""  0.0826
CHOLEST 0.3183™  0.0585 0.3127""  0.0586
MS_DIS 0.5276""  0.0341 0.5225™"  0.0342
LL -14567.84 -14252.36 -14250.1
DF 48 51 54
ML Ratio Tests -- - (vs.(3) p<0.01

-- - (2) vs. (3) NS
R 0.0268 0.0478 0.0480

*p<0.1. ¥ p <0.05. *** p <0.01
Notes: LL = log likelihood. DF = degrees of freedcm. ML = maximum likelihood. NS = not
statistically significant.

The estimates for model 1 in Table 5.5 indicate that there is a statistically significant

relationship between the likelihood of a doctor visit in 1995 and the level of BMI. This



170

association is particularly evident for individuals in the upper two BMI categories (i.e.,
variables BMI2 and BMI3). Individuals within the BMI range of 30-39.9 (BMI2) were
25 per cent (OR = 1.25) more likely to have visited a doctor in 1995, compared to
individuals within a healthy BMI range (18.5-24.9). Individuals in the outermost BMI
group (BMI3) were 58 per cent (OR = 1.58) more likely to have had a doctor visit in
1995, compared to individuals within the healthy BMI range. For model 1, the

corresponding goodness of fit measure, R, is 0.0268.

Model 2, which includes only control and RF variables, clearly indicates that there is a
strong relationship between the likelihood of a doctor visit and risk factors. All risk
factor variables in this model are statistically significant at the 1 per cent level. The
benefit of estimating model 2 is that it can be compared to model 3 to ascertain whether
the BMI variables, as a group, are statistically significant. The R?_ for model 2 is

0.0478.

Model 3, which includes the control, BMI, and RF variables, indicates that all the RF
variables are statistically significant at the 1 per cent level. While the three discrete
BMI variables are not statistically significant at the 5 per cent level, the BMI1 variable
is statistically significant at the 10 per cent level. The corresponding ML ratio test
comparing models 2 and 3 is not statistically significant (that is, testing whether the
BMI variables as a group are statistically significant). There is no evidence of an

independent BMI effect.

The results presented in Table 5.5 will now be discussed with reference to the working

hypotheses presented in Table 4.1. To begin with, the estimation of model 3 tests
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hypotheses 2 and 3 from chapter 4. Hypothesis 2 states that the presence of RF would
lead to increased MCU. In other words, these risk factors affect MCU. Thus, the
estimated coefficients on the RF variables should be positive. Since the coefficients on
the RF variables in model 3 are positive, hypothesis 2 is not rejected. Therefore, one

may conclude that there is an association between MCU and RF.

Hypothesis 3 states that BMI has no independent effect on MCU. Thus the estimated
coefficients on the BMI variables in model 3 should not significantly differ from zero.
Hypothesis 3 is not rejected (as supported by the ML ratio test) and it can be inferred

that BMI have no independent impact on MCU.

Together, models 1 and 3 in Table 5.5 can be used to test hypothesis 1 from chapter 4.
Hypothesis 1 states that BMI affects RE. As shown in Table 5.5, the BMI coefficients
in model 1 differ from the BMI coefficients in model 3, indicating that BMI and RF are,
in fact, correlated. In chapter 4 (section 4.2.3), it was demonstrated that if the BMI
coefficients in model 1 differ from zero and the BMI coefficients in model 3 are
relatively close to zero, then one can infer that BMI affects RF. Alternatively, in path
model terms, if the introduction of the RF variables is statistically significant (model 3)
and the BMI variables are attenuated, then this indicates that the impact of obesity is
being exerted through these risk factors. Thus, the results presented in Table 5.5
provide evidence that there is causal relationship between BMI and RF. These findings

support hypothesis 1 from Table 4.1 that BMI affects RF.

The relationship between the likelihood of a doctor visit and BMI was also estimated

using BMI as a continuous variable. By using a continuous measure of BMI,
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information is not lost through categorisation (i.e., transforming a continuous variable
into a series of discrete variables). A continuous measure of BMI can also be used to

isolate the marginal effect associated with a one-unit increase in BMI.

Table 5.6 below contains the logistic regression estimates for the relationship between
the likelihood of doctor visit and BMI, with BMI estimated as a continuous measure.

Table 5.6 is in the same format as Table 5.5. For each model, the parameter estimates
(B) and standard errors (SE) are reported. Maximum likelihood (ML) ratio test results

for model comparison are also presented. The R?_ for each model is also reported.

The estimates presented in Table 5.6, indicate that there is a statistically significant
positive association between the likelihood of a doctor visit and the level of BMI (model
1). The coefficient for the continuous BMI variable is 0.0198 (p < 0.01). This result
suggests that for a one-unit increase in BMI, the log of the odds in favour of visiting a
doctor goes up by about 0.0198. Taking the antilog of 0.0198 results in an odds ratio of
1.02. Thus, for a one-unit increase in BMI the odds in favour of visiting a doctor

increase by about 1.02 or 2 per cent.

As shown in Table 5.6, all the RF variables were statistically significant at the 1 per cent
level (models 2 and 3). In fact, the introduction of the RF variables (model 3)
substantially attenuated the impact of the BMI variable. Although the corresponding
BMI coefficient in model 3 is close to zero it is nevertheless statistically significant at
the 10 per cent level. However, the corresponding ML ratio test comparing models 2

and 3 indicates that there is no evidence of an independent BMI effect. Table 5.6
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clearly indicates that most of the impact of obesity is being exerted through these six

risk factors.

Table 5.6: Logistic regression estimates () and standard errors (SE), (n = 28376); dependent
variable = doctor visit (with BMI as a continuous variable)

Model (1) Model (2) Model (3)
B SE B SE B SE

Doctor Visit
(Equation 4.27)
BMI Variable
BMI 0.0198""  0.0035 0.0064°  0.0036
Risk Variables
DM_TY2 0.6122""  0.1325 0.5930™"" 0.1330
HYPER 0.4840™"  0.0488 0.4705™"" 0.0494
DEPRESS 1.0825°"  0.0904 1.0795™" 0.0905
CHD 0.5977""  0.0826 0.5992"" 0.0826
CHOLEST 0.3133™  0.0585 0.3138" 0.0586
MS_DIS 0.5276™"  0.0341 0.5227"" 0.0342
LL -14568.12 -14252.36 -14250.8
DF 46 51 52
ML Ratio Test -- -- (Hvs.(3) p<0.0l

-- -- (2) vs. 3) NS
R%. 0.0267 0.0478 0.0480

*p<0.1. %% p <0.05. %** p < 0.01

Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood. NS = not
statistically significant.

5.4.2 Logistic Model Estimates for Health Care Professional Visit

Logistic regression estimates for the relationship between the likelihood of a health care
professional visit (OHP) and BMI are preseated in Table 5.7 below. Equation (4.28)
was initially estimated with: (i) control and discrete BMI variables only; (i1) control and
RF variables only, and (iii) control, RF, and discrete BMI variables. For each model,

the parameter estimates (f3) and standard errors (SE) are reported. Maximum likelihood

(ML) ratio test results and the R is also reported.



Table 5.7: Logistic regression estimates () and standard errors (SE), (n = 28376); dependent
variable = other health care professional visit (with BMI as discrete variables)

(D

B SE
OHP Visit
(Equation 4.28)

BMI Variables

BMI1 0.0422 0.0443
BMI2 0.1811""  0.0596
BMI3 -0.0205  0.2472

Risk Variables
DM_TY2
HYPER
DEPRESS
CHD
CHOLEST
MS_DIS

LL -9590.69

DF 48
ML Ratio Test --

R% 0.0155

2
B

0.6647""
0.14177
0.9589™"
0.0797
0.0546
0.9420™"

-9302 06
51

0.0451

SE

0.1659
0.0686
0.1039
0.1207
0.0823
0.0426

(3)
B

-0.0146
0.0458
-0.3309

0.6748""
0.1404™
0.9590"""
0.0792
0.0537
0.9424™""

-9030.67
54

(1) vs. (3)
(2) vs. (3)

0.0453

SE

0.0451
0.0619
0.2544

0.1666
0.0695
0.1039
0.1207
0.0824
0.0427

p <0.01
NS

% p<0.1. %% p < 0.05. #* p < 0.01

Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood. NS = not

statistically significant.
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The results for model 1 in Table 5.7 show th.at only one discrete BMI variable, BMI2, is

statistically significant (p < 0.01). Although this finding is somewhat surprising, it

could suggest that the use of these discrete BMI variables (and subsequent loss of

information through categorisation) may, in fact, be obscuring the underlying

relationship between the likelihood of a hea th care professional visit and the level of

BMI.

The estimation of models 2 and 3 indicate that the following RF variables are

statistically significant at the 5 per cent level or better: type 2 diabetes mellitus,
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hypertension, depression, and musculoskeletal disorders. The CHD and high
cholesterol variables are not statistically significant. This finding may be due, in part, to
the nature of these particular risk factors. It could be argued that individuals with these
particular risk factors may not be inclined tc visit other health care professionals.
However, the ML ratio test comparing models 1 and 3 indicates that, as a group, the RF

variables are statistically significant.

Furthermore, the BMI coefficients in model 3 are not statistically significant at the 5 per
cent level. The ML ratio test comparing models 2 and 3 indicates that, as a group, the
BMI variables are not statistically significant, indicating a failure to reject the null

hypothesis of zero BMI effect.

While the estimation of models 1 and 3 to some extent support the working hypotheses
presented in chapter 4, these results are less convincing. Subsequently, it was
discovered that model improvement was obrained when Equation (4.28) was estimated
using BMI as a continuous variable. These results are presented in Table 5.8 below.

Table 5.8 has a similar format to Table 5.7, with appropriate interpretation.

Model 1 in Table 5.8 clearly indicates that tae continuous BMI coefficient (8= 0.015) is
statistically significant (p < 0.01). Taking the antilog of the BMI coefficient results in
an odds ratio of 1.015. Therefore, for a one-unit increase in BMI the odds in favour of

visiting a health care professional increase by about 1.015 or 1.5 per cent.
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Table 5.8: Logistic regression estimates (f) and standard errors (SE), (n = 28376); dependent
variable = other health care professional visit (with BMI as a continuous variable)

(1) (2) (3)

B SE i SE B SE

OHP Visit
(Equation 4.28)
BMI Variable
BM!I 0.0150""  0.0045 0.0028 0.0047
Risk Variables
DM _TY?2 0.6647""  0.1659 0.6554""" 0.1667
HYPER 0.1417"  0.0686 0.1352" 0.0695
DEPRESS 0.9589""  0.1039 0.9586™"" 0.1039
CHD 0.0797 0.1207 0.0807 0.1207
CHOLEST 0.0545 0.0823 0.0522 0.0824
MS_DIS 0.9422""  0.0426 0.9400™" 0.0427
LL -9589.9 -9302.06 -9301.5
DF 46 51 52
ML Ratio Test - -- (Dvs.(3) p<0.01

- - (2) vs. (3) NS
R 0.0156 0.0451 0.0452

*p<0.1. %% p <0.05. *** p <0.01
Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood. NS = not
statistically significant.

Model 3 in Table 5.8 shows that the following risk factors are statistically significant at
the I per cent level: type 2 diabetes mellitus, depression, and musculoskeletal disorders.
The hypertension variable is statistically significant but only at the 10 per cent level of
significance (p = 0.052). The BMI coefficient in model 3 is not statistically significant
and is relatively close to zero. The results for model 3 demonstrate that RF affects
MCU and there is no evidence of an independent BMI effect. In fact, the inclusion of
the RF variables attenuated the impact of the BMI variable. In path model terms, the
introduction of the RF variables suggests that the impact of obesity is being exerted
through these risk factors. This can be seer. by comparing the BMI coefficients in

models 1 and 3, respectively.



177

5.4.3 Logistic Model Estimates for Hospital Visits

Logistic regression estimates for the relatior ship between the likelihood of a hospital
visit and the level of BMI are presented in Table 5.9. As with previous relationships
presented in the above sections, Equation (4.29) was estimated with: (i) control and

discrete BMI variables only; (ii) control and RF variables only, and (iii) control, RF,
and discrete BMI variables. For each model the coefficients () and standard errors

(SE) are reported. The ML ratio test results and the R2L for each model is also reported.

Table 5.9: Logistic regression estimates () and standard errors (SE), (n = 28376); dependent
variable = hospital visit (with BMI as discrete variables)

(1) 2 (3)

B SE B SE B SE
Hospital Visit
(Equation 4.29)
BMI Variables
BMII 0.0847  0.1618 0.0605 0.1627
BMI2 04112  0.1955 0.3568" 0.1998
BMI3 0.2444  0.7243 0.1247 0.7330
Risk Variables
DM_TY2 0.2744 0.5220 0.2154 0.5249
HYPER 0.1921 0.2199 0.1378 0.2222
DEPRESS 0.8566""  0.2972 0.8575™" 0.2972
CHD 1.0884  0.2688 1.0956™" 0.2686
CHOLEST -04318  0.3072 -0.4469 0.3070
MS_DIS 0.3078"  0.1589 0.2890" 0.1597
LL -1201.3 -1189.98 -1188.44
DF 48 51 54
ML Ratio Test - - (Hvs.(3) p<0.01

- - 2) vs. (3) NS

R% 0.0459 0.0549 0.0561

*p<0.1. ¥ p <0.05. ¥** p < 0.01
Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood. NS = not
statistically significant.
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The results for model 1 as shown in Table 5.9 indicate that only one discrete BMI
variable, namely BMI2, is statistically significant (p < 0.05). This finding suggests that
the relationship between the likelihood of a hospital visits and the level of BMI is
relatively weak. Model 3 in Table 5.9 shows that the depression and CHD variables are
statistically significant at the 1 per cent level. The musculoskeletal disorder variable is
statistically significant but only at the 10 per cent level (p = 0.07). No other risk factor
variables are statistically significant. However, the ML ratio test (model 1 vs. model 3)
clearly indicates that the introduction of the risk factor variables, as a group, is
statistically significant (p < 0.01). Overall, the results in Table 5.9 indicate that there is
a relationship between the likelihood of hosfital visit and presence of risk factors
(hypothesis 2) but the relationship is fairly weak. While model 3 demonstrates the BMI
has no independent impact on MCU (hypothesis 3), there is little statistical evidence

supporting hypothesis 1 that BMI affects RF.

With this in mind, Equation (4.29) was also estimated using BMI as a continuous
variable. The results are reported in Table 5.10 below. Table 5.10 follows a similar
format to Table 5.9 but appropriate interpretation is needed. The use of the continuous

BMI variable makes little difference to the overall findings.

Model 1 in Table 5.10 clearly shows that the level of BMI is not associated with the
likelihood of a hospital visit. However, the introduction of the RF variables, as a group,
is statistically significant at the 1 per cent level as indicated by the corresponding ML

ratio test (i.e., model 1 vs. model 3).



Table 5.10: Logistic regression estimates () and standard errors (SE), (n = 28376); dependent
variable = hospital visit (with BMI as a continuous variable)

(D

B SE
Hospital Visit
(Equation 4.29)

BMI Variable
BMI 0.0191 0.0155

Risk Variables
DM_TY?2
HYPER
DEPRESS
CHD
CHOLEST
MS_DIS

LL 2405.32
DF 46
ML Ratio Test -

2

R 0.0448

(2
B

0.2744
0.1921
0.8566"""
1.0884""
-0.4313
0.3078"

2379.96
51

0.0549

SE

0.5220
0.2199
0.2972
0.2688
0.3072
0.1589

(3)

B SE
0.0135 0.0159
0.2322 0.5244
0.1637 0.2223
0.8541™" 0.2973
1.0931™ 0.2687
-0.4405 0.3072
0.2966" 0.1596
2379.24

52
(1) vs.(3) p<0.0l
(2) vs. (3) NS

0.0552

#p<0.1. %% p < 0.05. *** p < 0.01

Notes: LL =log likelihood. DF = degrees of freedom. ML = maximum likelihood. NS = not

statistically significant.

Model 3 in Table 5.10 indicates that while the RF variables affect MCU there is no
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evidence to suggest that BMI has an independent impact on MCU. Surprisingly, there

is no statistically positive relationship between BMI and the likelihood of a hospital

visit (model 1). A possible explanation for “his finding may be the limited number of

dependent observations (recall that only 214 individuals were recorded as having spent

at least one night in hospital during the survey period). Therefore, it is entirely possible

that a larger sample may, in fact, uncover a statistically significant relationship between

the likelihood of a hospital visit and the level of BMI (model 1).
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5.5 Poisson Model Estimates: The Relationship between MCU and BMI

Initially, the level (or amount) of MCU was modelled using Poisson regression
(Complete details for all Poisson coefficients are reported in Appendix C, on the CD-
ROM.) Following this, censored Poisson regression techniques were also used to take
into account the fact that dependent MCU variables were right-censored. The results for
both the Poisson and censored Poisson estimates were similar. This is not surprising, as
there were only a relatively small number of observations at the point of censoring
(refer to Table 4.11). Thus, to avoid the repetition of discussing similar results, only the
uncensored Poisson regression estimates are reported. (Complete details for all censored

Poisson coefficients are presented in Appendix D, on the CD-ROM.)

Extensions to the Poisson technique were also examined (refer to Table 4.16 for a
complete list of alternative models). However, it was discovered that little, if any,
improvement was obtained by modifying the basic underlying Poisson model. Another
point worth noting is that for the relationship between the number of hospital visits and
BMLI, i.e., equations (4.38) and (4.38a), the discrete income variables were re-coded
owing to estimation problems. Subsequently, the 18 income categories were collapsed
into 15 categories. As a result of this re-classification, 14 discrete income variables
were used as opposed to 17. Details of the re-coded income variable are presented in
the appropriate Tables contained within Appendices C and D. The Poisson estimates

will now be discussed for each specific type of medical care utilisation.
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5.5.1 Poisson Model Estimates for the Number of Doctor Visits

Poisson regression estimates for the relationship between the expected (mean) number
of doctor visits and BMI are presented in Teble 5.11. Equation (4.36) was estimated
with: (i) control and discrete BMI variables only; (ii) control and RF variables only,
and (iii) control, RF, and discrete BMI variables. For consistency, these alternative
models have also been labelled (1), (2), and (3), respectively. For each model, the
parameter estimates (f3) and standard errors (SE) are reported. Maximum likelihood

(ML) ratio test results for model comparison are also presented.

Table 5.11 : Poisson regression estimates (f) and standard errors (SE), (n = 28376); dependent
variable = number of doctor visits (with BMI as discrete variables)

(D ) 3)

i SE B SE Jij SE
Doctor Visits
(Equation 4.36)
BMI Variables
BMII 0.0795™"  0.0251 0.0299 0.0253
BMI2 0.1776™"  0.0331 0.0544 0.0338
BMI3 031607 0.1121 0.0751 0.1133
Risk Variables
DM_TY2 0.2970""  0.0832 0.2848""" 0.0838
HYPER 0.3051""  0.0338 0.2957"" 0.0343
DEPRESS 0.8090"™"  0.0487 0.8082"" 0.0487
CHD 0.4078™"  0.0520 0.4094" 0.0520
CHOLEST 0.2469""  0.0395 0.2433™" 0.0396
MS_DIS 0.4424™"  0.0244 0.4388""" 0.0245
LL -20131.62 -19719.59 -19717.5
DF 48 51 54
ML Ratio Test -- - (Dvs.(3) p<0.01

- - (2)vs.(3) NS

#p<0.1. %% p <0.05. *** p < 0.01
Notes: LL = log likelihood. DF = degrees of freedecm. ML = maximum likelihood. NS = not
statistically significant.
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As presented in Table 5.11, Model | clearly indicates that there is a statistically
significant positive relationship between the expected (or mean) number of doctor visits
and the level of BMI (all BMI coefficients are statistically significant at the 1 per cent

level).

Model 2, which includes only control and RF variables, also indicates that there is a
strong relationship between the expected number of doctor visits and obesity-related

risk factors. All RF variables in model 2 are statistically significant the 1 per cent level.

Model 3, which includes the control, BMI, and RF variables, indicates that all the RF
variables are statistically significant the 1 per cent level. However, as expected, the
three discrete BMI variables are not statistically significant. The corresponding ML
ratio test comparing models 2 and 3 is not statistically significant. This indicates that
the BMI variables, as a group, are not statistically significant. Furthermore, the BMI
coefficients are relatively close to zero. The results for model 3 demonstrate that RF
affects MCU and that BMI has little independent impact on MCU. In fact, the inclusion
of the RF variables attenuated the impact of the BMI variables (this can be seen by
comparing models 1 and 3). In path model terms, the introduction of the RF variables
suggests that the impact of obesity is exerted through these particular risk factors

(model 3).

Equation (4.36) was also estimated using BMI as a continuous measure. The results for
all three models are presented in Table 5.12 below. Table 5.12 is in the same format as
Table 5.11 above but appropriate interpretation is required. The use of the continuous

BMI variable makes no real difference to the overall results.
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Model 1, in Table 5.12, clearly indicates that there is a statistically significant
relationship between the expected number of doctor visits and the continuous measure
of BMI (p < 0.01). The corresponding BMI coefficient is 0.0153. This result can be
interpreted as follows: a one-unit increase in BMI will result in a 1.5 per cent increase

in the expected number of doctor visits.

Table 5.12: Poisson regression estimates () and standard errors (SE), (n = 28376); dependent
variable = number of doctor visits (with BMI as a continuous variable)

(N (2) 3)

B SE B SE B SE
Doctor Visits
(Equation 4.36)
BMI Variable
BMI 0.0153™  0.0025 0.0044 0.0026
Risk Variables
DM_TY2 0.2970"  0.0832 0.2828™"" 0.0836
HYPER 0.3051"™"  0.0338 0.2955™" 0.0342
DEPRESS 0.8090""  0.0487 0.8079"" 0.0487
CHD 0.4078™"  0.0520 0.4096"" 0.0520
CHOLEST 0.2469™  0.0395 0.2435™" 0.0396
MS_DIS 04424  0.0244 0.4387°"" 0.0245
LL -20131.06 -19719.59 -19718.1
DF 46 51 52
ML Ratio Test -- -- (1) vs.(3) p<0.0l

- -- (2) vs. (3) NS

*p<0.1. ¥ p <0.05. *** p < 0.01
Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood. NS = not
statistically significant.

In model 3 all RF variables are statistically significant at the 1 per cent level. The
continuous BMI variable is statistically significant at the 10 per cent level. However,
when comparing models 1 and 3 it is evident the that the introduction of the RF
variables has attenuated the impact of BMI on MCU. Once again, this is consistent with

the proposition that the damaging impact of obesity is exerted through the obesity-
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associated risk factors. In addition, the corresponding ML ratio test comparing models
2 and 3 is not statistically significant, indicating that there is no evidence of an

independent BMI effect.

5.5.2 Poisson Model Estimates for the Number of Health Care Professional Visits
Poisson regression estimates for the relationship between the expected number of other
health care professional visits (OHP) and the level of BMI are reported in Table 5.13
below. For consistency, Equation (4.37) was estimated with: (i) control and discrete
BMI variables only; (ii) control and RF variables only, and (iii) control, RF, and
discrete BMI variables. Once again, the BMI and RF coefficients are of particular

interest.

As reported in Table 5.13, model 1 shows that the expected number of health care
professional visits is associated with only two discrete BMI variables, namely BMI1
and BMI2 (p < 0.01). Models 2 and 3 indicate that the following risk factor variables
are statistically significant at the 5 per cent level or better: type 2 diabetes mellitus,
hypertension, depression, and musculoskeletal disorders. The CHD and cholesterol risk

factor variables are not statistically significant.

The results for model 3 are of particular interest and there are several points worth
noting. First, the introduction of the RF variables, as a group, is statistically significant
as indicated by the corresponding ML ratio test (p< 0.01). This result provides evidence
that the RF variables impact upon the level of MCU. Furthermore, the inclusion of the
RF variables also attenuates the impact of the BMI coefficients in model 3. Once again,

this is consistent with previous findings, demonstrating that the impact of obesity 1s
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partly operating through these particular risk factors. However, as a group, the discrete
BMI variables in model 3 are statistically significant as shown by the ML ratio test
comparing models 2 and 3 (p < 0.025). Thus while the impact of BMI is attenuated
with the inclusion of the RF variables, there is evidence to suggest that obesity in and of
itself exerts an independent impact on MCU. This is an interesting result and suggests
that obese individuals may actually visit a health care professional in an attempt to

specifically treat their weight.

Table 5.13: Poisson regression estimates (f) and standard errors (SE), (n = 28376); dependent
variable = number of other health care professional visits (with BMI as discrete variables)

(n (2) (3)

B SE 3 SE B SE
OHP Visits
(Equation 4.37)
BMI Variables
BMII 010417 0.0332 0.0495 0.0334
BMI2 0.2381""  0.0439 0.1076" 0.0449
BMI3 -0.0580  0.1907 -0.3148 0.1922
Risk Variables
DM_TY2 02613 0.1299 0.2661°" 0.1306
HYPER 0.1715""  0.0498 0.1587"" 0.0504
DEPRESS 0.8127""  0.0666 0.8129™" 0.0666
CHD -0.0517 0.0915 -0.0505 0.0915
CHOLEST -0.0005 0.0613 -0.0081 0.0613
MS_DIS 0.9650"  0.0307 0.9590™" 0.0308
LL -14977.7 -14442.29 -14437.21
DF 48 51 54
ML Ratio Test -- -- (Dvs. (3) p<0.01

- -- (2) vs. (3) p<0.025

*p<0.1. %% p <0.05. *** p < 0.01
Notes: LL = log likelihood. DF = degrees of freedcm. ML = maximum likelihood.

It is of interest to note that the BMI3 coefficients in models 1 and 3 are not statistically
significant and are negative. Once more, this may suggest that using a discrete measure

of body mass may, in fact, be obscuring the underlying relationship. With this in mind,



186

Equation (4.37) was re-estimated using a continuous measure of BMI. The results for

all three models are presented in Table 5.14.

Model 1, in Table 5.14, clearly shows that there is a positive statistical relationship
between the expected number of visits to health care professionals and BMI (p < 0.01).
In this instance, the use of a continuous measure of BMI is preferable to a discrete
measurement. The corresponding BMI coetficient is 0.0212. This result can be
interpreted as follows: a one-unit increase in BMI (holding all other explanatory
variables fixed) will lead to a 2 per cent increase in the expected number of visits to

health care professionals.

Table 5.14: Poisson regression estimates () and standard errors (SE), (n = 28376); dependent
variable = number of other health care professional visits (with BMI as a continuous variable)

(1) (2) 3)

B SE B SE B SE
OHP Visits
(Equation 4.37)
BMI Variable
BMI 0.0212°7  0.0033 0.0098""" 0.0034
Risk Variables
DM_TY?2 0.2613"  0.1299 0.2241" 0.1306
HYPER 0.17157°  0.0498 0.1476"" 0.0504
DEPRESS 0.812777  0.0666 0.8117"" 0.0666
CHD 20.0517 0.0915 -0.0465 0.0915
CHOLEST -0.0005 0.0613 -0.0096 0.0613
MS_DIS 0.9630""  0.0307 0.9559™" 0.0308
LL -14973.47 -14442.29 -14438.18
DF 46 51 52
ML Ratio Test -- -- (1)vs.(3) p<0.01

- - ) vs.(3) p<0.01

*p<0.1. %% p <0.05. *** p <0.01
Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood.
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Model 3 in Table 5.14 shows that the following RF variables are statistically significant:
type 2 diabetes mellitus, hypertension, depression, and musculoskeletal pain.

Moreover, as a group, the introduction of the RF variables is statistically significant as
demonstrated by the ML ratio test comparing model 1 to model 3 (p < 0.01). The
inclusion of the RF variables attenuates the impact of BMI on the expected number of
visits to health care professionals even though the BMI coefficient in model 3 is
statistically significant at the | per cent level. The ML ratio test comparing models 2 to

3 (p <0.021) indicates that there is an independent BMI effect.

5.5.3 Poisson Model Estimates for the Number of Hospital Visits
Poisson regression estimates for the relationship between the expected number of

hospital visits and the level of BMI (Equation 4.38) are presented in Table 5.15 below.

Table 5.15, is presented in the same format as previous tables but appropriate
interpretation is required. To begin with, model 1 in Table 5.15 indicates that only two
discrete BMI variables are statistically significant at the 1 per cent level. Interestingly,
while the BMI coefficient in model 1 is statistically significant it is also negative, which
is unexpected. Again, this suggests that information is lost through the categorisation of

a continuous variable.
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Table 5.15: Poisson regression estimates (f3) and standard errors (SE), (n = 28376); dependent
variable = number of hospital visits (with BMI as discrete variables)

(1) (2) (3)

B SE B SE B SE
Hospital Visits
(Equation 4.38)
BMI Variables
BMII -0.3607"  0.0854 -0.3998  0.0859
BMI2 0.3768"  0.0890 0.3126™" 0.0911
BMI3 -0.0292 0.3584 -0.1735 0.3624
Risk Variables
DM_TY?2 0.2791 0.2370 0.2377 0.2383
HYPER 0.1496 0.1044 0.1149 0.1055
DEPRESS 1.1859""  0.1210 1.1953™" 0.1209
CHD 1.1296™  0.1219 1.1536™" 0.1215
CHOLEST -0.33517  0.1393 -0.3378" 0.1389
MS_DIS 02991 0.0770 0.28917"" 0.0774
LL -4538.81 -4480.18 -4455.19
DF 45 43 51
ML Ratio Test -- -- (Hyvs.(3) p<0.0l1

-- -- (2)vs.(3) p<0.0l

*p<0.1. %% p<0.05. ¥** p < 0.01
Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood.

Looking at models 2 and 3, the following risk factors are statistically significant at the 5
per cent level or better: depression, CHD, elevated cholesterol levels, and
musculoskeletal disorders. The results for model 3 are particularly interesting in that
inclusion of the risk factor variables as a group is statistically significant. This is
supported by the ML ratio test comparing models 2 and 3 (p <0.01). Moreover, there is
evidence to suggest that BMI exerts an independent impact on the expected number of
hospital visits. However, the issue still remains that coefficients BMI1 and BMI3 in
models 1 and 3 are negative and this finding is not consistent with the other types of
MCU discussed earlier. Therefore, Equaticn (4.38) was re-estimated using BMI as

continuous measure. These results are shown in Table 5.16 below.
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Table 5.16: Poisson regression estimates () and standard errors (SE), (n = 28376); dependent
variable = number of hospital visits (with BMI as a continuous variable)

(1 (2) 3)

B SE i SE B SE
Hospital Visits
(Equation 4.38)
BMI Variable
BMI 0.0129°  0.0075 0.0062 0.0077
Risk Variables
DM_TY2 0.2791 0.2370 0.2601 0.2382
HYPER 0.1496 0.1044 0.1370 0.1055
DEPRESS 1.1869™°  0.1210 1.1849™ 0.1210
CHD 1.12967°  0.1219 1.1328"" 0.1219
CHOLEST -0.33517  0.1393 -0.3390™ 0.1393
MS_DIS 0.2991™"  0.0770 0.2936™" 0.0773
LL 9126.14 8960.35 8959.72
DF 43 48 49
ML Ratio Test - - (Dvs.(3) p<0.01

-- -- (2) vs. (3) NS

*p<0.1. %% p<0.05. #** p < 0.01
Notes: LL = log likelihood. DF = degrees of freedom. ML = maximum likelihood.

The results presented in Table 5.16 provide a better estimate of the relationship between
the expected number of hospital visits and BMI. Model 1, in Table 5.16, shows that
there is a positive statistical relationship between BMI and MCU, although the
relationship is only statistically significant at the 10 per cent level. The corresponding
BMI coefficient in model I can be interpreted as follows: a one-unit increase in BMI

will lead to a 1.3 per cent increase in the average number of hospital visits.

Models 2 and 3 indicate that the following RF variables are statistically significant at
the 5 per cent level of better: depression, CHD, elevated cholesterol levels, and
musculoskeletal disorders. Moreover, when comparing models 1 and 3, it is evident

from the corresponding ML ratio test that the introduction of the RF variables, as a
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group, are statistically significant at the 1 per cent level. The BMI coefficient, in model
3, is relatively close to zero (= 0.0062) and is not statistically significant as indicated
by the ML ratio test comparing models 2 and 3. Once again, this indicates that the

damaging impact of obesity is exerted through the associated risk factor variables.

5.6 Summary of Findings
This chapter has presented the results from the econometric models outlined in chapter

4. The major findings reported in this chapter are listed below:

(1) Overall, there is a statistically significant positive relationship between MCU and
the level of obesity (as represented by ‘¢’ in Figure 4.1). Specifically, the following

associations are indicated:

o Likelihood of a doctor visit increases wi-h BMI;

e Likelihood of a visit to a health care professional increases with BMI;

e Likelihood of a hospital visit is not associated with BMI;

e Expected number of doctor visits increases with BMI;

o Expected number of visits to health care professional increases with BMI; and

e Expected number of hospital visits increases with BMI.

(2) Overall, the introduction of the six obesity-related risk factor variables significantly
attenuated the independent impact of BMI variables, suggesting that increased MCU in
these groups is related to these risk factors. In other words, obesity exerts its major

impact through these six risk factors. For the most part, the ML ratio tests indicate that

there is only little evidence to support the independent impact of BMI.
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(3) The continuous measure of BMI generates a better fit. Overall the findings are

consistent with the working hypotheses and current opinion in the medical literature.

These results presented in this chapter were also used to examine the policy
implications and potential cost savings associated with a reduction in BMI.
Specifically, those Poisson estimates that used BMI as a continuous measure will form

the basis of the policy analysis in the next chapter.



CHAPTER 6: POLICY IMPLICATIONS

6.1 Introduction

The results presented in the previous chapter indicate that obesity exerts its damaging
impact through a number of serious medical conditions. The purpose of this chapter is
to utilise the results in chapter 5 to estimate the association between the direct cost of
MCU and the level of BMI. These results were used to estimate the change in total
costs associated with a one-unit change in BMI for people with a particular set of
personal characteristics. Policy scenarios were also examined to estimate the potential
cost savings associated with a reduction in body size (BMI) for various groups in the

population.

6.2 A General Framework for Policy Analysis

The results presented in chapter 5 show that MCU and BMI are related. Information on
this relationship was used to estimate the potential direct cost savings associated with a
reduction in body mass. In examining these relationships, it is important to note that
these estimates were based on the assumption of reversibility — that is, reductions in
BMI could affect long-term, obesity-related risk factors (such as type 2 diabetes and

hypertension) and, hence, the cost of MCU.

The evidence supporting reversibility is found in the medical literature. As discussed in
chapter 2, there is a growing body of eviderice indicating that a reduction in body
weight is associated in a reduction in the mortality rate (e.g., Williamson et al. 1995).

Moreover, there are a number of studies indicating that obesity-related risk factors such
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as type 2 diabetes, hypertension, and elevated cholesterol levels are reduced by weight
loss (refer to chapter 2, section 2.5.5). Therzfore, there is a medical basis for assuming

reversibility in the BMI, MCU relationship.

In terms of policy analysis, the total relationship (i.e., relationship ¢ as depicted in figure
4.1 from chapter 4) was used to examine the association between the total direct cost of
MCU and the level of BMI (obesity) using the Poisson estimates from chapter 5. The
focus is on direct costs (i.e., the resource costs of providing medical care) rather than on
the indirect costs, for example, lost productivity. The Poisson estimates presented in

Table 6.1 below were used in the policy analysis presented below.

Table 6.1: Summary of Poisson regression estimates used in the policy analysis

Equation B SE Interpretation

Doctor Visits 0.0153™  0.0025 A one-unit increase in BMI will lead to a 1.5% increase in the
(4.36) mean number of doctor visits.

OHP Visits 0.0212""  0.0033 A one-unit increase in BMI will lead to a 2% increase in the
(4.37) mean number of visits to other health care professionals

Hospital Visits ~ 0.0129° 0.0075 A one-unit increase in BMI will lead to a 1.3 % increase in the
(4.38) mean nuraber of hospital visits.

Source: Tables 5.12, 5.14, and 5.16 from chapter 5.

*p<0.1. % p <0.05. %** p < 0.01

Note: Continuous measure of BMI is used and estimates of control variables are contained in Appendix
C on CD-ROM.

The [ estimates presented in Table 6.1 were selected for the following reasons. First,
the estimated coefficients are for a continuous measure of BMI. A continuous measure
is preferable to a discrete measure, as information is not lost through categorisation.
Second, Poisson regression estimates provide information on the expected or mean
amount of medical care utilisation. This is important information as unit cost data can
be attached to each type of medical care. The cost for each type of medical care can

then be aggregated to provide an estimate of the total cost of MCU for this sample and
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the population. Furthermore, information 01 total cost can then be used to assess the
medical utilisation cost implications of a one-unit increase or decrease in BMI for the
average person or a member of a given population segment. Information on the
marginal cost of BMI in different segments of the population gives the policy maker a
guide as to where to focus health care resou-ces to reduce the medical costs associated

with obesity.

6.3 Sources of Cost Data

For this project, three types of medical care utilisation measures are used: doctor visits;
other health care professional visits (OHP); and hospital visits. To quantify the
relationship between the cost of MCU and BMI, cost data were selected following a
search of the literature. The objective of this search was to identify suitable cost data

for each type of MCU. The cost data and their sources are listed in Table 6.2 below.

Table 6.2: Cost data and their sources

Item Cost Source

Standard General Practitioner consultation  $26.45 Medicare Benefits Schedule, 2000 (1 November
1999 Including 1 February 2000 and 1 May 2000

Supplements)
Average cost of OHP consultation $48.15  Schedule for Allied Health Fees, 1999
Average Hospital Visit Cost, Australia $2,529 Australia’s Health, 1998

Notes: Complete details on the current Medicare Be1efits Schedule (MBS) can be found at the following
website: http://www .health.gov.au/pubs/mbs/mbs6/default.htm. This page was produced by Health
Access and Financing Division, Commonwealth Department of Health and Aged Care, 14 March 2000.

The standard general practitioner (GP) schedule fee of $26.45 was selected from the

Medicare Benefits Schedule (2000) to represent the cost associated with a doctor visit.°

¢ Note that it will be an under-estimate insofar as many GPs charge a higher fee. Against this, there is
much bulk billing, where the effective fee charged is only 85 per cent of the schedule fee. Accordingly,
the schedule fee is considered a reasonable estimate of the direct costs of GP visits.
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This cost assumption was selected after seeking advice from the Health Access and
Financing Division at the Commonwealth Department of Health and Aged Care. A
similar cost assumption was also used in a study by Dalton et al. (1997) which
examined the cost-effectiveness of GP-led tehavioural change involving weight

reduction.

The cost of an OHP consultation was estimated using a simple average of the costs
associated with the following types of visits to a dietician ($30.40 per half-hour),
physiotherapist ($39.40), podiatrist ($33.90), psychologist ($85.90), speech pathologist
($59.70), and social worker ($39.65). These costs were obtained from the Consultation
and Treatment Fees for Allied Health Practitioners (1999) from the Health Access and

Financing Division, Commonwealth Department of Health and Aged Care.

The average hospital cost estimate of $2,529 per instance of use was selected from the
Australian Institute of Health and Welfare’s report entitled Australia’s Health (1998).
This cost is an indicator that *“. . . measures -he average cost of providing care for an
admitted patient (whether an overnight-stay patient or a same-day patient) adjusted for
the relative complexity of the patient condition and of the hospital services performed”
(Australia Institute of Health and Welfare, 1998, p. 191). The cost components
contained in this measure take into account medical labour, non-medical labour, and

indirect costs.
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6.4 Marginal Cost of MCU as a Function of BMI

The Poisson regression estimates for the thrze different types of MCU (Table 6.1) and
the unit cost assumptions (Table 6.2) were used to quantify the cost of increased MCU
associated with increased BMI. (This is henceforth referred to as ‘the marginal cost of
BMTI’ for convenience.) The cost associated with each type of MCU was aggregated to
provide an overall measure of the marginal cost of BMI. For aggregation purposes, it
was assumed that there was independence between the three different types of MCU
(e.g., a visit to a doctor was independent of a visit to another health care professional
and so on). This assumption was based on the structure of the survey, in which
respondents were specifically asked about their MCU in the 2 weeks prior to the survey.
Owing to the survey design, it was reasonatle to assume that there was independence
between the number of doctor visits, other health care professional visits, and hospital
visits. Taking into account the cost data and Poisson regression estimates, the marginal
cost of MCU was estimated for individuals with a particular set of personal

characteristics at a given level of BMI.

6.4.1 A Framework for Generating Marginal Cost Estimates

As previously noted, Table 6.1 provides estimates of the impact of BMI on the expected
number of visits to doctors, other health care professionals, and hospitals. Table 6.2
provides a list of the cost assumptions and taeir sources. Together, this information can
be used to estimate the marginal cost of BMI for an individual with a particular set of

personal characteristics at a given level of BMI.



To begin with, consider Equation (6.1) below which provides a definition of the

expected total cost of MCU for an individuel:

TC=C,N,+C,N,+C,N,

where:

TC = expected total cost of medical care utiiisation (MCU);

A

N, = expected number of doctor visits;

1\7(, = expected number of OHP visits;

A

N,, =expected number of hospital visits;
Cp = cost of doctor visit ($26.45);
C, = cost of other health care professional visit ($48.15); and

Cy = cost of hospital day ($2,529).

The marginal cost (MC) associated with a one-unit change BMI is shown below:

oTC oN,, iC oN,, N,

J(BMI) =Co aBMI) " aBMI) " °BMI)

Now, consider the estimated number of doctor visits, obtained from the Poisson
regression (Equation 4.36 from Table 6.1):

N, =exp(0,)- exp(0, - BMI)

where:

exp( (90 ) captures the effect of all control variablessuch as age, sex, and so on.

Differentiating (6.3) with respect to BMI gives:

197

6.1)

(6.2)

(6.3)
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oN s -
8(BAL/}I):exP( 0,)-0,exp(0,- BMI) = O,N,, (6.4)

That is, the MC of BMI associated with the expected number of doctor visits is:

MC,=0,C,N, (6.5)

This procedure can also be applied to the expected number of other health care

professional visits and hospital visits. Thus. the marginal cost of BMI is defined as:

CpN, +0,C,N, +0,C Ny, (6.6)

Equation (6.6) provides a framework to genzrate marginal cost of BMI estimates for
individuals. Given the vector of socioeconcmic characteristics (i.e., control variables)
and BMI, the expected number of medical care visits was determined. Given the
coefficient estimates, the effect on cost of MCU of a unit increase in BMI for this type
of person can be estimated from (6.6). With reversibility, these MC estimates also
define the marginal benefits of weight loss in terms of direct cost savings. As previously
indicated, the Poisson regression estimates presented in Table 6.1 and the cost data from
Table 6.2 were used to estimate the marginal costs for BMI. The following section
provides marginal cost examples for individuals with a particular set of personal

characteristics at selected BMI values.

6.4.2 Marginal Cost Estimates: Selected Examples
Using this framework, it is now possible to quantify and examine the relationship
between the marginal cost of BMI at different levels of BMI. For expository purposes,

the estimated Poisson regression coefficients (as reported in Table 6.1) were selected
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(refer to Tables C2, C7, and C12 in Appendix C for complete details of all estimated
coefficients including control variables). Of the eight different types of control
variables, a number of different categories were statistically significant. However, age
and sex were the most statistically significant control groups. For purely illustrative
purposes however, all the information contained within Tables C2, C7, and C12 was
used to provide an estimate of the marginal cost of BMI conditional upon a set of
personal characteristics at a given level of BMI. Four examples are provided below to

illustrate how to derive marginal costs estimates.

Person Type 1

For person type 1, the following characteris:ics were selected: male, age 45-49, with no
higher qualifications, born in Australasia, earning a wage between $20,000-$24,999,
residing in a capital city with no private health insurance cover (the appropriate control
variable coefficients were selected from Tables C2, C7, and C12). For an individual
with these personal characteristics and a BMI value of 20, the expected marginal cost of

MCU (over the 2-week survey period) is:

MC, = [$26.45%0.0153*exp(-1.4777 + 0.0153*20)] + [$48.15%0.0212%exp(-2.4426 +

0.0212#20)] + [$2529*0.0129*exp(-5.0444 + 0.0129*20)

=$0.53

In other words, a one-unit reduction in BMI will result in a $0.53 reduction in MCU

costs in a 2-week period. This figure can be multiplied by 26 weeks to estimate the

annual MC associated with a one-unit change in BMI (i.e., $0.53%26 = $13.86).
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Holding these personal characteristics fixed. the marginal cost of MCU can also be
estimated at various levels of BMI. Table 6.3 below shows the value of the marginal

cost of MCU at different levels of BMI.

Table 6.3: Marginal cost of BMI for person type 1

BMI  MC ($) — 2 week period MC (8) — per year

18.5 0.52 13.54
20 0.53 13.86
25 0.58 14.99
30 0.63 16.34
35 0.67 17.53
40 0.73 18.97

Note: Marginal Cost (MC) estimates are for men, age 45-49, with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24,999, residing in a capital city with no private health
insurance cover. Differences between fortnightly and yearly estimates are due to rounding.

This example highlights that marginal cost rises (at an increasing rate) as BMI increases
[as can be confirmed from differentiation of (6.6)]. This is to be expected as higher
levels of BMI are associated with greater resource utilisation in the medical care sector.
Therefore, a reduction in BMI will result in cost savings. For example, a man with the
above characteristics and a BMI value of 40 will save $18.97 per year of medical costs
as a result of a one-unit reduction in BMI. To explore these issues more fully,

extensions of this example are presented below.

Person Type 2

Person type 2 is defined as female age 45-49 with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24,999, residing in a capital city and
with no private health insurance cover. The only difference in this example is that the
individual is female. Therefore, taking this into account, the expected marginal cost of

MCU for a female with the above set of characteristics and a BMI value of 20 is:
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MG, = [$26.45%0.0153*exp(-1.7917 + 0.0153%20)] + [$48.15%0.0212%exp(-2.7471 +

0.0212%20)] + [$2529*0.0129*exp(-5.2124 + 0.0129%20)

=$0.42

Table 6.4 below shows the relevant MC estimates for selected BMI values.

Table 6.4: Marginal cost of BMI for person type 2

BMI  MC ($) - 2 week period MC ($) — per year

18.5 0.41 10.71
20 0.42 10.96
25 0.46 11.84
30 0.49 12.80
35 0.53 13.83
40 0.57 14.95

Note: Marginal Cost (MC) estimates are for women, age 45-49, with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24,999, residing in a capital city with no private health
insurance cover. Differences between fortnightly and yearly estimates are due to rounding.

Interestingly, men with identical characteristics (person type 1, Table 6.3) have a higher
MC profile when compared to women (person type 2, Table 6.4). These examples
suggest that greater potential cost savings could be obtained by targeting overweight

and obese men, other things equal.

Person Type 3

Person type 3 is defined as male, age 55-59, with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24.,999, residing in a capital city with no
private health insurance cover. Except for the selected age group (55-59), the following
set of characteristics is same as for person type 1. The MC for a man with these

characteristics and a BMI value of 20 is:
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MC; = [$26.45%0.0153*exp(-1.3759 + 0.0153*20)] + [$48.15%0.0212%exp(-2.2592 +

0.0212*%20)] + [$2529*0.0129*exp(-5.1013+ 0.0129%20)

=$0.52

The MCU estimates for different BMI values are presented in Table 6.5 below.

Table 6.5: Marginal cost of BMI for person type 3

BMI  MC (3) — 2 week period ~ MC ($) — per year

18.5 0.50 13.09
20 0.52 13.40
25 0.56 14.48
30 0.60 15.65
35 0.65 16.92
40 0.70 13.30

Note: Marginal Cost (MC) estimates are for men, agz 55-59, with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24.999, residing in a capital city with no private health
insurance cover. Differences between fortnightly and yearly estimates are due to rounding.

Not surprisingly, these MC estimates are similar to the estimates presented in Table 6.3

for person type 1 though slightly lower over the range of BMI.

Person Type 4

Person type 4 is defined as female, age 55-59, with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24,999, residing in a capital city with no
private health insurance cover. These characteristics are the same as for person type 2,

but older and differ from those of person type 3 in being female.

MC, = [$26.45*%0.0153%exp(-1.6899 + 0.0153%20)] + [$48.15%0.0212%*exp(-2.8733 +

0.0212*%20)] + [$2529%0.0129*exp(-5.2693 -+ 0.0129%20)
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=$0.41

Table 6.6 below lists the MC of MCU for different values of BMI for person type 4.
These results are consistent with those given previously. The marginal costs for women
in this group are uniformly lower than those for equivalent males and lower than those

for those for younger women.

Table 6.6: Marginal cost of BMI for person type 4

BMI  MC (8) - 2 week period MC ($) — per year

18.5 0.40 10.34
20 0.41 10.58
25 0.44 11.42
30 0.47 12.33
35 0.51 13.32
40 0.55 14.40

Notes: Marginal Cost (MC) estimates are for women. age 55-59, with no higher qualifications, born in
Australasia, earning a wage between $20,000-$24,999, residing in a capital city with no private health
insurance cover. Differences between fortnightly and yearly estimates are due to rounding.

6.4.3 Discussion of Selected Examples

The examples presented above demonstrate how marginal cost estimates can be
calculated for individuals with a certain set of personal characteristics at different levels
of BMI. In order to facilitate the discussion, the above MC estimates (for the 2-week
period) were plotted against BMI in Figure 6.1 below. Figure 6.1, shows the
relationship between the MC of MCU and the level of BMI for person type 1 to person

type 4. Taking into account these relationships. it is worth noting that:

e There is a positive relationship between MC and the level of BMI; and

e The difference between the MC profiles is relatively small.
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Figure 6.1: Marginal cost of MCU
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It is possible to generate a whole family of MC cost profiles dependent on the particular
selection of the person characteristics (i.e., the estimated control variable coefficients
presented in the appropriate tables in Appendix C). In fact, there are numerous

combinations of personal characteristics that could be selected.

The difference between the MC profiles shewn in Figure 6.1 is relatively small, which
indicates that the fine level of detail is not really necessary. Although these examples
provide a framework for estimating MC, the real challenge is to provide MC estimates

for various segments of the Australian population aged 20 to 64.

In order to provide an estimate of the MC for segments of the Australian population, it
is necessary to reduce the amount of detail contained within the extensive number of
control variable categories. Ideally, it would be preferable to aggregate all MC
estimates across all the different types of people as defined by the control variables.
However, this approach is not practical given the level of detail presented in the above
examples. Therefore, to generate MC estimates for various segments of the population,

it is necessary to drastically reduce the numoer of control variable categories.

6.5 Marginal Cost Estimates for Segments of the Population

To obtain MC estimates for segments of the Australian population (aged 20-64), it was
necessary to select personal characteristics that were manageable. After considering all
the relevant Poisson coefficients (as summarised in Table 6.1) a decision was made to
select only two of the control variables namely; age and sex. This decision was made

for the following reasons: (i) overall, the age and sex coefficients were statistically
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significant, (ii) the other categories do not contribute very much to describing the data,
and (ii1) it was a convenient approach in terms of broadly summarising (and

categorising) the Australian population.

Taking this into account, Equations (4.36), (4.37), and (4.38) were then re-estimated
using the following independent variables: age (re-coded into three broad categories),
sex, and a continuous measure of BMI. The age variable was grouped into the
following categories: (i) 20-39, (ii) 40-54, cnd (iii) 55-64 and two discrete variables
were used, with category (i) selected as the excluded reference group. Summarising the

sample according to the sex and age variables results in the following six categories:

¢  Women 20-39;
e  Women 40-54;
e  Women 55-65;

e Men 20-39;
e Men 40-54; and
e Men 55-64.

The above six categories provide a simplified framework necessary to generate MC
estimates for these particular segments of the Australian population. The re-estimated
Poisson regression equations are shown in Table 6.7 below. The BMI coefficients, as
shown in Table 6.7, are highly significant for all equations (p < 0.01). Furthermore, all
but one of the control variables are statistically significant at the 1 per cent level. These
estimated coefficients were then used to provide an estimate of the MC of MCU for

each of the six categories listed above.



Table 6.7: Poisson regression estimates () and standard errors (SE), (n = 28376); dependent

variables = MCU (re-estimated)

B SE Label
Doctor Visits
(Equation 4.36)
Control
Variables
AGEl -0.0273 0.0247 40-54
AGE2 0.1387""" 0.0152 55-64
SEX -0.4352"" 0.0222 Female
BMI Variable
BMI 0.0203™ 0.0025 Continuous
Constant -1.56217" 0.0629
OHP Visits
(Equation 4.37)
Control
Variables
AGEl -0.1180™" 0.0321 40-54
AGE2 -0.0933™" 0.0229 55-64
SEX -0.3453™" 0.0293 Female
BMI Variable
BMI 0.0244™" 0.0032 Continuous
Constant 217317 0.0832
Hospital Visits
(Equation 4.38)
Control
Variables
AGE]l -0.2593™" 0.0802 40-54
AGE2 0.2086"" 0.0436 55-64
SEX -0.5253"" 0.0692 Female
BMI Variable
BMI 0.0263™" 0.0074 Continuous
Constant -3.8932"" 0.1911
*#% p <0.01

The estimated coefficients for the control and BMI variables in Table 6.7 were

combined with the unit cost data presented in Table 6.2 to generate marginal cost

estimates for each segment of the population. Details of the MC calculations for

women aged 20-39 are provided in the follcwing section.
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MC Estimates for Women Aged 20-39

In this section, a detailed account is presented of how to generate MC estimates for the
population group: women aged 20-39. As the focus is on MC estimates for the
Australian population it would be helpful to provide an overview of population
estimates derived from the 1995 National Health Survey (NHS). In fact, the 1995 NHS
contains weights (or expansion factors) for cach record contained in the survey. These
weights can then be used to “. . . provide estimates relating to the whole population

within the scope of the survey” (Australian Bureau of Statistics, 1996, p.20).

From the sample used in this project (n = 28,376), it is possible to obtain relevant
population estimates. Information on the profile of the population by sex, age group,
and BMI are presented in Table 6.8 below. Several aspects of Table 6.8 are worth
noting. Based on a sample of 28,376 records, it was estimated that 9,531,510
Australians were between the age of 20-64. Of this total, 52 per cent were female and
48 per cent were male. Interestingly, 4,738,842 individuals (or about 50 per cent of
people aged 20-64) were classified as being either overweight or obese (i.e., a BMI >
25). This finding is consistent with recent US estimates, which indicate that one of
every two adults is either overweight or obese (Must et al. 1999). Moreover, 1,303,152
(14 per cent) of people between 20-64 were classified as obese (BMI = 30). This
information is important as it can be used in conjunction with the Poisson regression

estimates to calculate the MC for segments of the Australian population.



Table 6.8: Population estimates derived from the 1995 NHS by age, sex, and BMI

Population
Sex

Females 20-64
Males 20-64
Total

Population by Sex and Age Groups
Female

Age 20-39

Age 40-54

Age 55-64

Male

Age 20-39

Age 40-54

Age 55-64

Population with a BMI > 25 by Sex and Age
Groups
Female

Age 20-39
Age 40-54
Age 55-64
Total Female
Male

Age 20-39
Age 40-54
Age 55-64
Total Male
All Persons

Population with BMI > 30 by Sex and Age Groups
Female

Age 20-39
Age 40-54
Age 55-64
Total Female
Male

Age 20-39
Age 40-54
Age 55-64
Total Male
All Persons

Number

4,991,155
4,540,355
9,531,510

2,596,049
1,684,932
710,174

2,347,490
1,544,789
648,076

1,324,540
1,096,690

476,842
2,898,072

738,415
739,318
363,037
1,840,770
4,738,842

287,128
281,137
123,635
691,900

240,071
250,085
121,096
611,252
1,303,152
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Note: These population figures are based on the population weights from the sample of 28,376 records

selected from the 1995 National Health Survey.
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Table 6.9 below, provides details on the selected Poisson regression coefficients for
women aged 20-39. For convenience, the [ coefficients are reproduced in the second

column of Table 6.9.

Table 6.9: Poisson coefficients for women aged 20-39

Doctor Visits

Equation (4.36) B
AGEl -0.0273
AGE2 0.1387
SEX -0.4352
BMI 0.0203
Constant -1.5621
OHP Visits

Equation (4.37)

AGElI -0.1180
AGE2 -0.0933
SEX -0.3453
BMI 0.0244
Constant -2.1731

Hospital Visits
Equation (4.38)

AGEI -0.2593
AGE2 0.2086
SEX -0.5253
BMI 0.0263
Constant -3.8932

To estimate the MCU for females in the 20-39 age group (i.e., the reference age group)
at a particular BMI, AGE1 and AGE?2 are set equal to zero and the remaining coefficient
estimates are substituted into the MC function (6.6), along with the relevant cost
estimate and specified level of BMI. For example, the (two-week) marginal cost for

women in this group with a BMI of 20 is given by:

MCremale20-39 = [$26.45%0.0203*exp(-1.9972+ 0.0203*20)] + [$48.15%0.0244*exp(-

2.5184 + 0.0244*20)] + [$2529*%0.0263*exp(-4.4186 + 0.0263%20)]
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=$1.62

The procedure for calculating the above MC is same method employed in section 6.4.2.
As before, the MC can be calculated at different levels of BMI. Table 6.10 below
provides complete details for the MC profile of women in the population aged 20-39.
Column (1) lists the MC per person per year. Column (2) lists the body mass index
(BMI) groups. For convenience, these BMI groups were calculated at the midpoint.
For example, all individuals whose BMI values were between 24.75 and 25.25 were
assigned a BMI value of 25. Column (3) provides information on the number of
females in the population aged 20-39, who fall into each BMI group. For example, a
total of 49,163 women are classified in the BMI group of 30. The sum of column (3) is
2,596,049, which is the total number of females in the population aged 20-39 (as
reported in Table 6.8). Finally, column (4) provides an estimate of the potential cost
savings per year. These estimates were calculated by multiplying column (1) by column
(3). That is, the MC per person per year by the number of women in each BMI

category.

For illustrative purposes, consider the following example (from Table 6.10 above) for

women aged 20-39 with a BMI value of 30. The potential cost savings associated with
this particular group of women is equal to $2,677,510 per year. This can be interpreted
as follows: if all women in this group reduced their BMI value by one-unit, a potential

annual cost saving of about $2.7 million would be realised for the year.



Table 6.10: MC profile and potential cost savings for women aged 20-39

(1)
Per year
$47.89
$48.51
$49.14
$49.77
$50.42
$51.07
$51.73
$52.40
$53.08
$53.77
$54.46
$55.17
$55.88
$56.61
$57.34
$58.08
$58.83
$59.60
$60.37
$61.15
$61.94
$62.75
$63.56
$64.38
$65.22
$66.06
$66.92
$67.78
$68.66
$69.55
$70.45
$71.37
$72.29
$73.23
$74.18
$75.14
$76.11
$77.10

(2)
BMI
25
25.5
26
26.5
27
27.5
28
28.5
29
29.5
30
30.5
31
31.5
32
325
33
335
34
34.5
35
355
36
36.5
37
37.5
38
38.5
39
395
40
40.5
41
41.5
42
425
43
43.5

3)
Number in population
177,608
146,612
132,394
99,813
114,468
78,279
78,642
100,750
43,580
65,266
49,163
29,587
36,873
30,769
21,070
20,700
19,986
13,544
11,175
9,895
6,409
8,608
5,693
4,509
3,811
2,893
2,109
870

977
1,068
1,184
1,838
771
2,157
435
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4)
Potential Cost Saving
$8,505,314
$7,111,870
$6,505,306
$4,967,881
$5,771,076
$3,997,658
$4,068,182
$5,279,296
$2,313,189
$3,509,081
$2,677,510
$1,632,261
$2,060,523
$1,741,725
$1,208,160
$1,202,311
$1,175,834
$807,186
$674,614
$605,052
$397,017
$540,134
$361,854
$290,275
$248,531
$191,133
$141,119
$58,954
$67,104
$74,276
$83,441
$131,169
$55,738
$157,973
$32,249
$3,563

$0
$75,970

The information presented in Table 6.10 can also be used to examine the overall cost
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savings for women in the population who are (i) either overweight/obese (i.e., BMI >

25) or (ii) obese (BMI > 30). For instance, the potential cost savings for all women who
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are either overweight or obese is about $68.7 million per annum. For obese women, the
corresponding amount is $16.7 million per annum. Thus, if all women in the population
with a BMI value 2 25 reduced their BMI value by one-unit a potential cost saving of
$68.7 million per annum would be realised. For obese women, as a group, a one-unit
reduction would result in a cost saving of atout $16.7 million. These amounts indicate

that the cost savings associated with a reduction in body size are substantial.

Potential Cost Savings for the Remaining Segments of the Population

The above section provided a detailed account of how to generate MC estimates for
women aged 20-39. In addition, potential cost savings were also presented for sections
of this particular segment of the population. The procedure presented above was also
used to generate MC profiles and potential cost savings for all six specitied categories
of the Australian population. Table 6.11 below provides a summary of the relationship
between MC and BMI for these segments of the population. It should be noted that the

selected BMI values are presented for comparative purposes.

Table 6.11 shows yearly MC estimates for the six segments of the Australian
population. A range of BMI values was chcsen to highlight the different MC profiles
for women and men in the three different age groups. As described in the previous
section above, the yearly MC estimates for all six categories of the Australian
population were multiplied by the population distribution to provide an estimate of the
potential cost savings. In other words, the same procedure as presented in Table 6.10

can be used to estimate the potential cost savings for each segment of the population.



Table 6.11: Marginal cost per person per year by BMI

Age and Sex MC per person

by BMI value per year
BMI 25

Women 20-39 $47.89
Women 40-54 $38.11
Women 55-64 $57.28
Men 20-39 $79.26
Men 40-54 $62.89
Men 55-64 $95.18
BMI 30

Women 20-39 $54.46
Women 40-54 $43.32
Women 55-64 $65.16
Men 20-39 $90.16
Men 40-54 $71.50
Men 55-64 $108.31
BMI 35

Women 20-39 $61.94
Women 40-54 $49.25
Women 55-64 $74.13
Men 20-39 $102.57
Men 40-54 $81.30
Men 55-64 $123.25
BMI 40

Women 20-39 $70.45
Women 40-54 $55.99
Women 55-64 $84.34
Men 20-39 $116.70
Men 40-54 $92.45
Men 55-64 $140.25
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Details of the potential cost savings are shown in Table 6.12 below. The potential cost

savings, presented in Table 6.12, indicate that a reduction in body size could lead to

substantial cost savings related to MCU. The magnitude of potential savings is greatest

for overweight/obese men and women in the 20-39 year age group. For instance, the

expected cost savings associated with a one-unit reduction in BMI for all men aged 20-

39 with a BMI > 25 is equal to about $65 million per year. For obese men, in this age

group, the expected cost savings associated with a one-unit reduction in BMI are



estimated to be in the order of $25 million. For all persons aged 20-64 in the

population, the expected cost savings are substantial.

Table 6.12: Potential cost savings for segments of the population

215

Women Men All Persons
Age BMI >25 BMI > 30 BMI > 25 BMI > 30 BMI >25 BMI > 30
20-39 $68,724,530 $16,695,676 $65,417.243  $24,047,465 $134,141,773  $40,743.142
40-54 $45,573,473  $12,907,376 $52,083.788  $19,790,674 $97.657.261 $32,698,049
55-64 $29,855,447 $8,577,059 $38,667.017  $14,456,384 $68,522.465  $23,033,443
Total $144,153,450 $38,180,111 $156,168,048  $58,294,523  $300,321,499  $96,474,634

For instance, if all people aged 20-64 with a BMI > 25 reduced their BMI by one-unit, a
potential cost saving of about $300 million per annum could be realised. These cost
estimates indicate that significant savings could be achieved in the medical sector
through a reduction in body size. However, while these results provide estimates of the
MC for segments of the Australian population, it is important to demonstrate the
magnitude of potential cost savings through simple policy scenarios. The following
section discusses the results from three policy scenarios. These scenarios were selected
to demonstrate the potential cost savings that could be realised through weight reduction

and maintenance strategies.

6.6 Policy Scenarios
Three policy scenarios were conducted to assess the potential cost savings associated
with a reduction in BMI: (i) shifting all overweight/obese individuals to a ‘healthy’

BMI value of 25; (ii) reducing obese individuals’ BMI value by 5 per cent (i.e., all
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individuals’ with a BMI > 30); and (iii) reducing the BMI of all obese individuals by 10

per cent.

The first policy scenario is referred to as an ideal outcome. The purpose of this scenario
is to estimate the potential cost savings with shifting all overweight/obese individuals to
a BMI value of 25. It provides an indication of the magnitude of the potential cost
savings if overweight and obesity could be ¢liminated in all persons aged 20-64 in the
Australian population. Equivalently, it measures the total direct MCU cost of obesity

and overweight.

The total cost equation (6.1) from section 6.4.1 above was used to estimate the potential
cost savings associated with this ideal policy scenario. For illustrative purposes,
consider the following example, which highlights the potential cost savings associated
with reducing all women aged 20-39 from a BMI value of 30 to a BMI value of 25.

Table 6.13 below provides details on how this policy scenario was calculated.

In Table 6.13, the following information is presented. The selected BMI values for
women aged 20-39, the total number of individuals in this segment of the population,
the total cost (TC) per person, and the TC par person per year. Thus the estimated
annual savings in MCU costs if a woman aged 20-39 with a BMI of 30 were to reduce

her weight to attain a ‘healthy’ BMI of 25 would be $2,125 - $1,869 = $256 per annum.
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Table 6.13: Shifting women aged 20-39 from a BMI of 30 to 25

BMI No. in population TC per person TC per year/per person

25 177,608 $71.92 $1,869.90
30 49,163 $81.75 $2,125.43

As previously indicated, the TC estimates were calculated using Equation (6.1). For
example, the TC per person for women with a BMI equal to 30 was calculated as

follows:

TClemale20-39 = [$26.45%exp(-1.9972+ 0.0203*30)] + [$48.15*exp(-2.5184 + 0.0244*30)]

+ [$2529%exp(-4.4186 + 0.0263*30)]

= $81.75

This figure corresponds to an annual estima:e of $2,125.43. Therefore, the difference
between the yearly TC figures provide an estimate of the potential cost savings per
person per year. In this example, the saving per person per year is equal to $255.52.
Multiplying this amount by the total number of women results in an aggregate saving of
about $12.6 million. The approach described above was applied to each segment of the
Australian population to generate an estimate of potential savings that could be realised
if overweight and obesity could be eliminated in all persons aged 20-64. The results

from this ideal policy scenario are presentecl in Table 6.14 below.

The estimates presented in Table 6.14 indicate that under this ideal policy scenario, the

potential cost savings are substantial. For a'l persons, this scenario suggests that if
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overweight and obesity were eliminated, savings of about $1 billion could be achieved.
To put this policy scenario into perspective, this saving represents approximately 2 per
cent of total health care expenditure in 1997-98. During this period it was reported that
total health expenditure totalled about $47 billion or 8 per cent of gross domestic

product (Australian Institute of Health & Weltare, 2000).

Table 6.14: Policy scenario 1 — Shifting individuals to a BMI value of 25

Age and Sex Potential Annual Cost Savings
Women

20-39 $205,786,406
40-54 $147,268,248
55-64 $98,593,799
Subtotal $451,648,453
Men

20-39 $267,253,553
40-54 $217,701,671
55-64 $159,150,976
Subtotal $644,106,199
Total All Persons $1,095,754,652

From a health policy perspective, the breakdown of the potential savings provides an
indication of where the greatest benefits could be achieved. In this ideal scenario, 59
per cent of cost savings were attributed to men compared to 41 per cent for women.
This indicates that a greater proportion of cost savings (in terms of medical care
utilisation) could be achieved by specifically targeting overweight and obese men. Itis
also worth noting that for both men and women, the greatest savings are realised for the
age group 20-39. For men 20-39, the potential cost savings is about $267 million per
annum. The corresponding saving for women is about $206 million per annum. Noting

that these are annual cost savings, any policy that successfully and permanently reduces
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the weight of the young will have more long-term benefits than successful policies

targeted at older population segments.’

The second policy scenario was designed to estimate the potential cost savings that
could be realised by reducing BMI values (in those individuals with a BMI value > 30).
In other words, what are the cost saving associated with a 5 per cent reduction in the
body mass of obese individuals? The purpose of this policy scenario was to estimate
the benefits associated with a moderate (and achievable) reduction in body size. The

estimates for the second policy scenario are displayed in Table 6.15 below.

Table 6.15: Policy scenario 2 - Reducing obese individuals’ BMI values by 5%

Age and Sex Potential Annual Cost Savings
Women

20-39 $26,671,435
40-54 $20,437.,659
55-64 $13,652,114
Subtotal $60,761,208
Men

20-39 $40,318,412
40-54 $33,063,282
55-64 $23,984,534
Subtotal $97,366,229
Total All Persons $158,127,437

The total cost approach as described above was also used to estimate the second policy

scenario. As shown in Table 6.15, the potential cost saving associated with a 5 per cent

" A complete cost-effectiveness analysis would generate estimates of the present value of cost savings for
different segments. This would clearly favour policies directed at the young. However, since the obese
die earlier than the non-obese, these higher benefits may be partly or totally offset by the increased
medical costs associated with a longer life span. These issues are not investigated here.
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reduction in BMI for obese individuals was about $158 million per annum. Thus, a
very modest reduction in BMI for all obese individuals aged 20-64 could result in
substantial savings. Once again, greater cost savings can be achieved by targeting obese
men. The potential cost savings for men was estimated to be about $97 million per

annum. The corresponding cost savings for women was about $61 million per annum.

The third policy scenario was designed to estimate the potential cost savings from a 10

per cent reduction in BMI for obese individuals aged 20-64. The results for this policy

scenario are presented in Table 6.16 below.

Table 6.16: Policy scenario 3 — Reducing obese individuals’ BMI values by 10%

Age and Sex Potential Annual Cost Savings
Women

20-39 $52,239,427
40-54 $40,041,664
55-64 $26,740,383
Subtotal $119,021,473
Men

20-39 $78,869,139
40-54 $64,686,894
55-64 $46,929,988
Subtotal $190.486,021
Total All Persons $309,507,494

A 10 per cent reduction in BMI is reasonable — especially for obese individuals — in
terms of both potential cost savings and the positive health improvement associated with
weight loss. As shown in Table 6.16, if all persons aged 20-64 with a BMI = 30 were
able to reduce their BMI value by 10 per cent, potential cost savings of about $310

million per annum could be achieved. Consistent with the previous two policy
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scenarios, the greatest economic benefits could be achieved by targeting obese men,
especially those men aged 20-39. The information from these policy scenarios indicates
that the potential cost savings associated with reducing overweight and obese

individuals is substantial. The following section discusses these policy scenarios.

6.7 Discussion of Policy Scenarios

A good case can be made that these policy scenario figures underestimate the true
potential cost savings associated with a reduction in the level of obesity for the
following reasons. As indicated above, the cost of MCU comprises the sum of the costs
of (i) the expected number of doctor visits, (ii) the expected number of visits to other
health care professionals, and (iii) the expected number of hospital visits. The mean
cost of MCU for the 1995 NHS sample is $868 per annum (i.e., the mean value of the
cost data presented in Table 6.2 above). However, it should be noted that in 1997-98
per capita Australian health care expenditure was estimated at $2,523 (Australian
Institute of Health & Welfare, 2000). These differences suggest that the total cost
estimates are, in fact, biased downwards because only doctor visits, other health care
professional visits, and hospital visits are included in the definition of MCU. The
definition of the cost of MCU does not account for other medical costs associated such
as other home health care, nursing home care, medical durables, drugs and other non-
durables, and other personal care. Nevertheless, taking into account the limitations
associated with the availability of suitable cost data, the above policy scenarios still
provide a guide as to the overall size of the potential cost savings that could be achieved

by implementing weight reduction strategies.
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Secondly, these policy scenarios do not take into account the benefits associated with a
reduction in indirect costs (e.g., a reduction in lost productivity). A case can be made
that losses in productivity due to obesity-related illness, disability, and sudden death
(Gorstein & Grosse, 1994) result in lost income by the patient and their family
(Langley, 1993). Therefore, a reduction in indirect costs would be achieved through the

implementation of weight loss strategies, especially among obese members of society.

The policy scenarios are presented in terms of a reduction in body size (BMI) as
opposed to a reduction in weight. However. since BMI is linearly related to weight,
proportional changes in weight generate proportional changes in BMI. For example,
consider a man who is 1.83 meters (6 foot) tall and weighs 100 kilograms. The
corresponding BMI value is 30.® Therefore. a 5 per cent reduction in BMI will reduce
the BMI value to 28.5. A 5 per cent reduction in body mass is equivalent to about a 5
kilogram weight loss. A 10 per cent reduction in BMI will reduce the BMI value to 27,
which is equivalent to about a 10 kilogram weight loss. However, if this individual
weighed 150 kilograms, his BMI value would be 45. In this case, a 10 per cent
reduction to a BMI value of 40.5 would be equivalent to a weight loss of about 14
kilograms. This relationship indicates that reductions in BMI will be associated with a

greater absolute reduction in weight loss, the greater the BMI value.

Another point worth noting is that the policy scenario estimates are for one year only.
These figures do not take into account the potential lifetime savings associated with a
reduction and maintenance of a healthy BMI value. Clearly, the above estimates

indicate that if younger Australians (aged 2(*-39) were able to reduce and maintain their
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BMI value within a ‘healthy’ or desirable BMI range, then the potential lifetime cost

savings would also be considerable.

The policy scenarios have focussed on the benefits (cost savings) of weight reduction,
and paid no attention to the methods availatle for generating weight reductions, and the
costs of these. Yet information on the effectiveness of alternative policies, such as
educational campaigns, advice from health professionals, subsidised diet food, and so
on, is required before cost-effective interventions can be considered. Nevertheless, the
estimates presented here give some guidance on how to plan such interventions. For
example, it indicates the different magnitudes of benefits to be derived from targeting
particular groups rather than the population as a whole. Effective and efficient policy
needs to derive information on the costs of securing weight loss among these different
groups: is it cheaper to generate an across-the-broad weight loss (of, say, 10 per cent)
or a reduction in the number of obese peoplz? The are the types of questions that need

to be examined.

Although these policy scenarios have limitations, they nonetheless show that a moderate
reduction in BMI could lead to substantial cost savings in the medical sector.
Furthermore, these estimates could also be used to provide health policy
recommendations such as the implementation of weight loss programs that are designed
to target overweight and obese individuals. The final chapter of this thesis provides a
summary of this research project, addresses study limitations, and puts forth areas for

continuing economic research.

* BMI: 100/1.83° = 29.86. The BMI values have been rounded to the nearest whole number.
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CHAPTER 7: CONCLUSION

7.1 Introduction
The purpose of this research project was to provide answers to the following research
questions posed in the introductory chapter. For convenience, these four questions are

summarised below:

(1) Is there are casual relationship between BMI and RF?;
(2) Do these RF lead to increased MCU?;
(3) Does obesity have an independent impact on MCU; and

(4) To what degree might weight loss reduce the cost associated with MCU?

Given that the results and policy analysis has been reported in the previous chapters, it
is now possible to summarise the key findings, address study limitations, and identify

areas for continuing research.

7.2 Summary of Key Findings

The key findings presented in this thesis indicate that overall, there is a statistically
significant positive association between MCU and the level of BMI. There is also
strong evidence indicating that there is, in fact, a causal relationship between BMI and
RF, and that RF lead to increased MCU, and hence costs. It is also worth noting that the
introduction of the six RF variables significantly attenuated the independent impact of

the BMI variables. In other words, obesity exerts its damaging influence primarily
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through this particular set of risk factors. Overall, there is evidence to suggest that

obesity in and of itself does not exert an independent impact.

The results reported in chapter 5 were used in the subsequent chapter devoted to policy
implications. Poisson regression estimates were combined with unit cost data to
generate MC estimates for various segments of the Australian population. Moreover,
several policy scenarios were examined to provide an indication of the magnitude of the
potential cost savings associated with a reduction in body size. Results from these
policy scenarios indicate that the annual cost savings are substantial. For instance, if all
obese individuals aged 20-64 with a BMI > 30 reduced their BMI value by 5 per cent
the annual cost savings would be about $158 million per annum. For a 10 per cent
reduction in BMI, the annual cost savings would amount to about $310 million per
annum. These findings indicate that public health policies designed to target obese

individuals could result in considerable medical care utilisation cost savings.

7.3 Study Limitations

As with any study, there are always a number of limitations. In this study, MCU
estimates were restricted to (i) the number of doctor visits, (i1) the number of other
health care professional visits, and (iii) the number of hospital visits. Other resource
costs such as laboratory tests and the level of prescription drug use were not included.
As previously noted, this limitation would most likely bias downwards the potential cost
savings estimates. In addition, there are also limitations associated with using short-

term cross-sectional data to draw inference about long-term dynamic processes.
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Another limitation with this project is that the data are self-reported. For this reason,
data on variables such as height, weight, and health status can be open to a number of
problems. For instance, there could be a problem with recall bias, which in turn, could
lead to under-or over-reporting of certain items in the 1995 NHS. Also, it could be
argued that there might be a tendency for respondents to over report their height and
under report their weight since height is ‘good’ and weight is ‘bad’ in this society. This

unfortunately is a limitation associated with self-reported data.

Furthermore, all the obesity-related risk factors such as diabetes mellitus, hypertenston,
and heart disease were also self-reported and some of these conditions may be
misreported and, hence miscoded. Thus, this research project may have actually under
estimated the magnitude of the association between MCU and the level of BMI.
However, in the absence of large-sample ‘objective’ data, the 1995 NHS probably

provides the best option for comprehensive research on these relationships.

7.4 Areas for Continuing Research

The research reported here is one of the firsi economic studies to use individual-level
(i.e., microeconomic) data to model the association between MCU and the level of
obesity (as defined by the body mass index). There are a number of potential economic

research areas related to obesity warranting further investigation.

To begin with, it would be interesting to examine whether the relationships reported in
this research project are similar for alternative datasets. Ideally, a longitudinal dataset
would be extremely useful as the relationship between MCU and BMI could be tracked

over time. Longitudinal data would also allow an investigation of the dynamics of
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BMI; for example, whether weight gains tend to be continuous or tend to zero (i.e., a
stable BMI). Furthermore, it would also be interesting to examine these relationships
under alternative health care systems in other countries such as the United Kingdom and

Canada.

Another possible research area would be to examine the relationships between lost
productivity (such as work days lost) and the level of BMI. As indicated in the obesity
cost-of-illness literature, indirect costs associated with obesity are considerable. Further
analysis of the 1995 NHS data may allow exploration of this issue. For example, it
would also be challenging to generate estimates of the intangible cost related to obesity.
There is also evidence to suggest that there are psychological costs associated with
being obese, especially for women. Subsequently, there could be potential research into
the development and administration of instruments designed to measure the impact of
obesity on an individual’s quality of life. The key point to stress, however, is that there

are a number of potential economic research areas in the field of obesity.

7.5 Concluding Comments

This research project attempted to answer a number of questions about the relationship
between MCU and the level of obesity for a sample of the Australian population.
Following an extensive review of the current literature a method was developed to
quantify and examine these relationships. Specifically, data extracted from the 1995
NHS were used to model these relationships. Overall, the results supported the working
hypotheses and the subsequent policy analy«es indicated that potential cost savings

associated with reduction in BMI could be substantial.





