Chapter 5

Kernel Regression of SNP Data to

Predict Breeding Value

5.1 Introduction

In recent times there has been a dramatic increase in the amount of genomic data gen-
erated, with some studies incorporating whole genome scans with millions of markers
(see for example Wong et al. (2004); Zimdahl et al. (2004)). It is anticipated that
these data will be used to predict the genetic value of animals more accurately at an
earlier age than is currently being achieved (Schaeffer, 2006; Meuwissen et al., 2001).

Locating quantitative trait loci (QTL) has been the subject of considerable re-
search, but recently the focus has moved towards using information from the whole
genome to predict genetic value. Meuwissen et al. (2001) compared the accuracy
of prediction of best linear unbiased prediction (BLUP) and Bayesian analysis when
relatively few individuals were genotyped for many markers from a whole genome

scan. A hierarchical model was suggested by Gianola et al. (2003) and the model

50



CHAPTER 5. KERNEL REGRESSION OF SNP DATA TO PREDICT BV o1

was incorporated into BLUP and Bayesian analyses to utilize marker information to
infer phenotype marker associations. Similarly, Xu (2003) used a Bayesian method
whereby each marker was assigned a normal prior with the prior variance to be de-
termined from the data to simultaneously evaluate marker effects from the entire
genome. Woolaston et al. (2007) (Chapter 3) used principal components regression
on single nucleotide polymorphisms (SNPs) from the whole genome to predict molec-
ular breeding value in a dairy population.

All of the aforementioned methods can be broadly classified as parametric tech-
niques, whereby the modeler determines the function relating the phenotypic response
variable and genotypic explanatory variables. It is difficult to model the inherently
complicated nature of the genome with these parametric models. Hence, the use of
non-parametric methods may be sensible, whereby the data determine the shape of the
relationship between phenotypes and genotypes. Gianola et al. (2006) demonstrated
that non-parametric techniques such as kernel regression could be incorporated to
predict genotypic merit via reproducing kernel Hilbert space (RKHS) regression. In
the RKHS model presented by Gianola et al. (2006) the intrinsically discrete marker
data was treated as a continuous variable. However, the effect of treating intrinsically
discrete marker data as continuous is unclear.

In this chapter kernel regression is applied to simulated and real data from a
dairy cattle population. The aim of the kernel regression is to predict the molecular
breeding value (MBV) of an animal, using only its genotypic information and both
the phenotypic and genotypic information of other animals. The effect of treating
the discrete genotypic information as a continuous trait is examined by comparing

the predictive performance of different forms of kernel regression that accommodate
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discrete and continuous data.

5.2 Materials

5.2.1 Real Data

These are the data which were the subject of Chapters 3 and 4. The details are
restated here for context of the new analysis. These data are comprised of 15,380
SNPS recorded from n,, = 1, 546 dairy sires. However, 298 SNPs showed no variation
and were removed from these data, so ng, = 15,082 SNPs are retained. These data

are arranged into a matrix, X, xn,, Where

0 if the jth SNP for the ith animal is aa
Xij = q 1if the jth SNP for the sth animal is aA (unordered) (5.1)
2 if the jth SNP for the ith animal is AA .
A total of 6.89% of all the SNPs were missing values and these were replaced
with 1’s to be consistent with Mendel’s first law. Table 5.1 gives a breakdown of the

percentage of SNPs missing per animal.

able 5.1: Distribution of the percentage of missing SNP values per animal.
% of missing SNP values | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35

Number of animals 1447 &5 7 3 1 1 2

The dairy sires were born between 1955 and 2001 and estimated breeding values

(EBVs) for milk protein percent were estimated as a part of the Australian Dairy
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Herd Improvement Scheme. Table 5.2 gives a breakdown by years of the EBVs.
These EBVs are highly reliable.

Table 5.2: Summary of the EBVs of the dairy sires.

Year of Birth Before 1972 | 1972-1981 | 1982-1991 | 1992-2001 || All animals
Number of animals 10 82 457 997 1546
Mean of EBVs (%) -0.176 -0.079 -0.038 0.020 -0.004
sd(EBV) 0.120 0.108 0.108 0.123 0.123
Mean Reliability of EBVs 0.778 0.940 0.918 0.874 0.890

5.2.2 Simulated Data

These simulated data are similar to the data simulated in Chapter 3 but only 200
chromosomes are used to generate the base population and the number of known
chromosomes is varied here. A population comprising 1,204 animals was simulated.
Animals consisted of two copies of one chromosome of length 20 million base pairs.
The simulation process can be divided into 5 steps, which are explained below. The

algorithm is displayed in Appendix A.1.

(i) Location of SNPs and probability of mutations at the SNP loci SNPs
were placed on the chromosome, with their base pair positions randomly sampled
from the integers between 1 and 20 million without replacement. Either (i) n, = 10,
(i) ny, = 100 or (iii) ny, = 1,000 SNPs were assumed tc be known. Of these SNPs,
(a) n, = 10, (b) n, = 100 and (c) n, = 1,000 (n, < n,) were simulated to have an

additive effect and these effects were sampled from a Gamma distribution with shape
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parameter 0.59 and scale parameter 7.1 (Hayes and Goddard, 2001). Each effect was
randomly assigned to be positive or negative with probability 0.5 (Meuwissen et al.,

2001). The minor allele frequeny at the ith site, p;, was randomly sampled between

0 and 0.5.

(ii) Base population of chromosomes In order to simulate the effect of Linkage
Disequilibrium (LD), a small number of chromosomes (200) were created in order to
generate the base population. The haplotype values for the jth chromosome in the

ith position is given by:

By = 0 with probability 1 — p; (5.2)

1 with probability p;.
(iii) Base population The top 60 of the rows of the matrix B were paired to form
30 males and the remaining 140 paired up to form 70 females. Random mating was
performed to produce the first generation of 500 individuals. The distance between
cross-overs in the breeding process was sampled from a Poisson distribution with

parameter 1 million, so that each chromosome is 20 Morgans long. No mutation was

simulated.

(iv) Subsequent generations The population structure was intended to be a
simplified representation of the breeding structure in place in the dairy industry
in Australia. The initial population of 500 animals was split into 40 males and 460
females and random breeding was once again simulated to form 395 new animals. Ten
of these animals were assigned to be male and 385 were female. Thirty of the males

and 75 of the females were retained from the previous generation and were added to
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the current population of 10 males and 385 females to form the next generation. This

process was repeated for 10 generations and the last three generations were stored.

(v) Calculate MBVs and phenotypes The MBV for each animal stored in the

last three generations was calculated as:

j=1000
MBV = > ga; (5.3)
i=1
and the phenotypic values calculated as:
y = MBV +¢, (5.4)

where ¢; is the number of minor alleles (0, 1 or 2) at SNP position 4, a; is the
allelic substitution effect of the ith polymorphism and ¢ is sampled from a N(0,052)
distribution. The allele effects were additive. The predefined heritability (h? =

0.1,0.4 and 0.7 ) and the additive genetic variance (02) determined o2 via the equation

2
W= g
o2+02"

5.3 Kernel Regression

The aim is to predict the MBV of the ith animal, M BV;, from the SNP values of

that animal, x;, with some regression function, g(.):

MBYV; = g(x;).

Using kernel regression the data determines the shape of the function, g(.), by
assigning weights to each data point according to its proximity to the focal point, x;.

The kernel regression function can be written as:
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g(x;) = zwijyj, (5.5)
J#
where w;; is the weight for the jth animal in the regression and y; is the EBV or

phenotypic record of the jth animal.

A common method of determining the weights, w;;, was proposed by Nadaraya

(1964) and Watson (1964):

__ K(dxi x5]/k) |
Y K(dxi,x;]/k))

J#i

i (5.6)
where K(.) is a kernel function, d[.,.] is a (pseudo-quasi) metric and k is a smoothing
parameter.

Upon substitution of the w;; term in equation (5.5) with equation (5.6), the

Nadaraya-Watson estimator of the regression function is obtained:

> K(d[zi, z;]/k)y;

g(xi) = 225 ‘
> K(d[zi, z;]/k)

J#

The important choices here are that of the metric, d[., .| and kernel function, &(.).
Three different combinations of the kernel function and metric are examined here.

In the following sections, the term focal genotype is used to refer to the genotype
of the animal whose MBYV is to be estimated. The observed genotype, x;, refers to

the ith individual in the training set.

5.3.1 Binomial Kernel

Gianola et al. (2006) suggested that the number of disagreements between the focal
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genotype, X, and observed genotype, X;, be used as the metric. That is, the metric

d[.,.] is defined to be:

axx] = 2% 3 Usgy (). (5.7)

where :
[ 0it 20) = )
| 1it () # 0

We note that the scaling factor of 2 makes no difference when using the metric in

Uy (zi(j)) = -

equation 5.7, but this factor is included to be consistent with the method described

by Gianola et al. (2006). The kernel function is defined to be:

K (x, %, k) = k=il (q — pydbexi]

with § < k <1 and p is the maximum value of d[x, x;].
The Nadaraya-Watson estimator of -he MBV at the focal point, x (which may or

may not be equal to any x;,7 = 1,2...n) is given by (Kernel 1):

Z kl)*d[x,xi](l . k)d[x,xi] Ui
g(x) = =, : (5.8)
Z kP*d[x,xi}(l _ k)d[X,Xi]

1=1

5.3.1.1 Missing Data

The metric defined in equation (5.7) s not robust to missing values in the data.
The approach of assuming all missing values to be heterozygotes tends to shrink the

‘genetic distance’ between animals from their true values. Hence, the quasi-pseudo
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metric d*[.,.] is used:

d*[x, x;] = ____nsd[x*, xi] ,
n

s
where x} and x* contain the common known SNPs in x; and x and n} is the number
of such SNPs. The idea is to find the ‘distance’ between animals for the known SNPs
and scale this distance according to the total amount of SNPs. The d*[.,.] metric could
easily be replaced with the d[.,.] metric, with x and x; replaced by their respective
conditional expectations X and X; (Gianola et al., 2006). However, in this study we
do not assume a known pedigree, or thet the animals are related.

The Nadaraya-Watson for the d*[.,.] metric with the binomial kernel becomes

(Kernel 1*):

i=1

9(x) = = '
z k‘p*d* [x,%4] (’1 . k)d*[x.)(i}
i=1

5.3.2 Gaussian Kernel

Under a Gaussian framework, the vectors of SNP values are assumed to be continu-
ously valued, although strictly, they are discretely valued. The Gaussian kernel is of

the form (Silverman, 1986):

X, — X L ammxyx=x
K( ) = (‘)ﬂ)ge[ 7 (=) ()] (5.10)

The Nadaraya-Watson estimator of the Gaussian kernel function for a genotype

x is (Kernel 2):
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n
S e HEE
i=1

g9(x) = =5 :
3 A

1=1

5.3.3 Predicting MBV of Each Animal From All Other Ani-

mals

Each of the 1,546 animals in these real data have their MBVs estimated from the
remaining 1,545 animals using the 3 different forms of the Nadaraya-Watson estimator
introduced above (equations (5.8), (5.9) and (5.10)).

The smoothing parameter, k, is varied and the accuracy of prediction is calculated

as:
accuracy = p(g(x;), EBV),

where p denotes the correlation, g(x;) is the vector of estimated MBVs and EBV is

the vector of EBVs, or in the case of the simulated data, true MBVs.

5.3.4 Predicting a Group of Animals From All Other Ani-

mals

In practice, the optimal value of the smoothing parameter, £, is not known and needs
to be calculated from a training set. The animals are partitioned into those with
EBVs, K, and those to have their MBVs estimated, U. The smoothing parameter is
found by performing a search on the parameter space using animals in the set X and

choosing the k which minimizes the mean square error of prediction (Gianola et al.,
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2006). The MBVs of animals in the set, U, are then estimated by kernel regression
using the animals in K and the estimate of the smoothing parameter obtained from
the training set. This procedure is repeated for the different (pseudo-quasi) metrics
and kernel functions introduced above.

In the case of these real data, n, = 150 animals are randomly assigned to form
the set of animals, U. A different set of animals is randomly chosen 100 times for
cross validation. For these simulated data, the youngest generation comprising of 396
animals form the set of unknown animals, U and the remaining 808 animals are the

training set.

5.4 Results

5.4.1 Simulated Data

Table 5.3 displays the accuracy for Kernels 1 and 2 for predicting MBV, with the
number of recorded SNPs, number of SNPs with an additive effect and at different
heritabilities. Kernel 2 (kernel regression with a Gaussian kernel) is superior to Kernel
1 in all instances.

Of the variables studied, heritability has the largest impact on the accuracy of both
methods of kernel regression. If all other factors are held constant, a low heritability is
associated with low accuracy of prediction and high heritability is coupled with high
accuracy. This is hardly surprising, since if all animals are unrelated, the accuracy
of the Nadaraya-Watson estimator is proportional to the square root of heritability
(see Appendix A.2). There are small departures from this relationship here because

the animals are related.
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The number of known SNPs also influences the accuracy of kernel regression. A
smaller number of known SNPs is associated with better accuracy and a larger amount
of known SNPs is associated with lower accuracy, all other factors held constant.

The number of SNPs with an additive effect has minimal impact on the accuracy
of kernel regression in estimating MBV if the number of SNPs and heritability are
held constant. For example when there are 1,000 known SNPs and a heritability of
0.4, the respective accuracies for Kernel 1 are 0.461, 0.467 and 0.467 when 10, 100
and 1,000 SNPS have an additive effect.

The optimal value for the smoothing parameter in Kernel 1, k, is influenced by
the heritability and the number of kncwn SNPs. Lower values of k£ are associated
with low heritabilities and larger numbers of known SNPs.

Similarly, the optimal value for the smoothing parameter in Kernel 2 is also in-
fluenced by the heritability and the number of known SNPs. Lower values of &k are

associated with high heritabilities and smaller numbers of known SNPs.
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Table 5.3: Mean accuracies (standard error) of prediction and mean optimal smooth-

ing parameters for binomial kernel regression (Kernel 1) and Gaussian kernel regres-

sion (Kernel 2) for these simulated data (100 replications for each simulation).

Kernel 1 Kerne] 2
ns  ng h? Accuracy k Accuracy k
10 10 0.1 | 0.245 (0.005) 0.656 | 0.262 (0.005) 0.71
0.4 | 0.548 (0.005) 0.724 | 0.572 (0.005) 0.56
0.7 | 0.770 (0.004) 0.796 | 0.792 (0.003) 0.48
100 10 0.1 0.197 (0.005) 0.517 | 0.216 (0.006) 2.19
0.4 | 0.469 (0.006) 0.526 | 0.510 (0.006) 1.79
0.7 | 0.679 (0.007) 0.534 | 0.707 (0.006) 1.58
100 100 0.1 |0.192 (0.006) 0.517 | 0.221 (0.005) 2.18
0.4 | 0.461 (0.005) 0.526 | 0.502 (0.006) 1.82
0.7 | 0.667 (0.005) 0.546 | 0.724 (0.004) 1.59
1000 10 0.1 0.188 (0.005) 0.502 | 0.203 (0.006) 7.00
0.4 | 0.461 (0.005) 0.503 | 0.510 (0.005) 5.90
0.7 | 0.670 (0.006) 0.504 | 0.702 (0.005) 5.00
1000 100 0.1 | 0.196 (0.006) 0.502 | 0.231 (0.005) 7.05
0.4 | 0.467 (0.005) 0.503 | 0.519 (0.005) 5.91
0.7 | 0.669 (0.005) 0.504 | 0.705 (0.004) 5.00
1000 1000 0.1 | 0.198 (0.006) 0.502 | 0.220 (0.005) 7.09
0.4 | 0.467 (0.006) 0.503 | 0.507 (0.005) 5.89
0.7 | 0.673 (0.004) 0.504 | 0.705 (0.004) 5.00

ns is the number of known SNPS, n, is the number of
SNPs with an additive effect, h? is the heritability and k is

the smoothing parameter.
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5.4.2 Real Data
5.4.2.1 Predicting the MBV for Each Animal

Figure 5.1 displays the accuracies of the 3 kernels as each of the respective smoothing
parameters vary. The best accuracy obtained is 0.546 when Kernel 2 is used with
a smoothing parameter of 18 and the optimal value of the smoothing parameter is
clearly identified for this kernel from the plot (Figure 5.1(b)).

Figure 5.1(a) displays the accuracies for Kernel 1 and 1*. A global maximum
accuracy of 0.519 is observed when a smoothing parameter of 0.5006 is used for Kernel
1. However, there is another local maxinium observed when the smoothing parameter
is 0.5013 for Kernel 1. Similarly, there are 2 local maximums in accuracy for Kernel 1*
that almost occur in the same locations as for Kernel 1. However the peak observed
when the smoothing parameter is 0.5013 is less pronounced. The maximum accuracy
for Kernel 1* (0.535) is higher than the maximum obtained by Kernel 1.

For Kernel 1, when the smoothing parameter is greater than 0.6, the accuracy
approaches 0.459. When k in Kernel 1* is between 0.6 and 1, the accuracy is 0.417 and
for small k (k < 0.5) the accuracy of Kernel 2 is 0.438. In all of the abovementioned
cases, the estimates of MBV for each animal approach the EBV of the ‘genetically
closest’ animal, where ‘closest’ is defined by the metric used in each respective kernel

function.
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Figure 5.1: Accuracy of prediction for real data for varying smoothing parameter, .

(a) Binomial kernels (b) Gaussian kernel.
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5.4.2.2 Predicting the MBV for a Group of Animals

Table 5.4 displays the accuracy of prediction and the mean optimal smoothing pa-
rameter for the three kernel regression methods when the MBVs of a group of 150
animals are predicted from the remaining 1,396 animals. The standard deviations for
the mean optimal smoothing parameter in Kernels 1 and 1* are less than 0.0001 and
less than 0.1 for Kernel 2. The mean accuracies for Kernel 1 and 2 are the same as
when each animal had its MBV estimated from all other animals. However, the mean
accuracy for Kernel 1* is significantly lower for predicting a group of animals MBVs
compared to predicting each MBV individually. This would suggest that this kernel

is not robust to a drop in the number of animals in the training set.

Table 5.4: Accuracy of predicting the MBV of 150 animals randomly sampled from
the remaining 1,396 animals (100 replicates).

Kernel 1 Kernel 1* Kernel 2
Accuracy | 0.519 (0.005) | 0.518 (0.005) | 0.542 (0.005)
k 0.5006 0.5005 18.0

Kernel 1 is binomial kernel regression, Kernel 1* is
binomial kernel regression adjusted for missing values

and Kernel 2 is Gaussian kernel regression.
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5.5 Discussion

The smoothing parameter, k, has to be close to 0.5 in Kernels 1 and 1* when there are
a large number of SNPs, or the estimate at a focal point tends towards the EBV (or
phenotypic value) of the ‘genetically closest’ animal. To demonstrate this, equation

(5.8) can be re-written as:

n

1—k S N
Z( )d[x’Xi]yi Ym + Z(T)d[ il md'yi

= lk - = AL — , (5.11)
__:__ d[xuxz] — d[x,xi]fmd

where my is the minimum value of d[x, x;] for ¢ = 1,2,3...,n, ¥, is the EBV of the
corresponding animal and % < k < 1. Tt has been observed that d[x,x;] >> 0 for
7 # j, which implies that equation (5.11) tends towards y,, when k is only fractionally
larger than 0.5. Similar calculations can be performed to show that small values of
k in Kernel 2 lead to estimates of MBV approaching that of the ‘genetically closest’
animal. Consequently, an examination of the accuracy of prediction for large values
of k in Kernels 1 and 1* and for small values of £ in Kernel 2 gives further indication
as to which notion of ‘genetic distance’ is most plausible. Surprisingly, the df, ., ]
metric gives the best correlation between an animals EBV and that of its ‘genetically
closest’ animal.

The increase in the optimal smoothing parameter value in the binomial kernel
with heritability is due to a decrease in noise. The left hand side of equation (5.11) is
useful to determine why this is the case. For lower heritabilities, there is an increase in
noise, so animals genetically ‘further’ from the focal animal require a higher weighting
in the regression, i.e. the smoothing parameter has to be closer to 0.5. Conversely,

for a highly heritable trait, there is less noise in the regression so that the MBV of an
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animal can be estimated with a high weighting on the animals genetically ‘close’ to
it. That is, the smoothing parameter can be higher than 0.5 to place more emphasis
on the genetically ‘close’ animals when there is less noise in the system.

The existence of 2 local maximums in accuracy for Kernels 1 and 1* when these
real data are used (Figure 5.1(a)) is probably an artifact of missing SNP values.
The use of the d*[.,.] metric as opposed to the d[.,.] metric in the binomial kernel
function increases the accuracy of the global maximum and does little to the accuracy
of prediction at the local maximum on the right. This would imply that when the
smoothing parameter is 0.5013, the local maximum occurs because assuming missing
SNP values are heterozygotes tends to deflate the genetic distance between animals,
so that a higher value of k is locally optimal.

The superiority of Kernel 2 in all comparisons examined here indicates that assum-
ing SNPs are continuous rather than discrete is acceptable. The accuracy of prediction
of the binomial kernel when the d*[.,.] metric is used is significantly higher than when
the d[.,.] metric is used, indicating that there are considerable improvements to be

made by adequately modeling the missing SNP values in kernel regression.



Chapter 6

Spatial Effects in cDNA

Microarray Slides

6.1 Introduction

Spatial trends can accumulate in the various stages of a microarray experiment. The
final intensity reading of each spot is the result of a complex process involving ar-
ray fabrication, sample preparation, cDNA synthesis and labeling, hybridization and
microarray quantification (Nguyen et a.., 2002).

There are multiple possible causes for spatial trends on a slide within each step of
a microarray experiment, not all of which are fully understood. However, the problem
is similar to issues encountered in geostatistics and field experiments in that the data
are arranged in a regular grid. In geostaristics a common approach to modeling spatial
variation is a two sweep procedure (Cressie, 1993). The large scale trend is removed
in the first sweep and the small scale vibrations are removed in the second sweep. In

agricultural field experiments it is suggested that the large scale trends be modeled

68
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with splines and that time series models be used to remove vibrations (Cullis and
Gleeson, 1991; Gilmour et al., 1997). A irst order autoregressive (AR1) correlation is
suggested as a suitable time series model for both rows and columns, with the overall
correlation structure being the Kronecker product of the row and column correlation
matrices (AR1 x AR1). An advantage of this approach is that it fits within the
restricted maximum likelihood (REML) framework and estimates of the parameters
of interest can be gained simultaneously with estimates of the nuisance spatial effect.
Burguertio et al. (2005) use an AR1 x ARI correlation structure with some success
in spatial prediction for microarray slides. Baird et al. (2004) use AR1 x ARI with
splines in spatial linear mixed models to account for the nuisance spatial trends that
arise in microarray experiments.

Many of the methods for spatial corrections in cDNA microarrays are done using
the log ratio of red (R) to green (G) intensities. Yang et al. (2002) propose a lowess
adjustment within each printing block group to account for intensity bias and spatial
bias. The implicit spatial correction s removing the printing block effect. This
approach is extended by Cui et al. (2003) by fitting a lowess curve for the ratio as
a function of the mean intensities, row position and column position. They combine
spatial and intensity adjustments in a lowess function. Spatial detrending is done by
fitting a smooth surface to the intensity, I = (log(R)+1log(G))/2 over the grid of spots
defined by rows and columns. In fittirg a surface, Cui et al. (2003) recognise that
the spatial effect be represented as a smooth trend over the slide and that there be
a local correction due to spot position. This comparison is analogous to comparing
the spatial models of Cullis and Gleeson (1991), Gilmour et al. (1997) and Baird

et al. (2004) with classical incomplete block analysis. A semi-parametric model is
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proposed by Fan et al. (2005) to account for spatial trends. This too relies on the
assumption that hidden spatial effects can be represented as a smooth surface. All
of the above studies apply to intensity ratios. Other authors (e.g. Jin et al. (2001)
and Kerr and Churchill (2001b)) caution against complete reliance upon the ratios
as they may mask important information. Jin et al. (2001) use the individual log
intensities to allow direct comparisons of the different sources of variation. Kerr and
Churchill (2001b) point out that not all relevant information can be captured by the
ratio of intensities at a spot. This woulcd imply that spatial adjustments on the ratios
may not be ideal to capture all relevant information.

The sources of variation in a microarray slide may not act continuously, so may
be fractal in dimension. Methods assuming separability and smoothness such as AR1
x ARI, splines and lowess adjustments may not be as efficient as other methods of
removing spatial dependencies such as wavelet decomposition when the data are of
fractal dimension. Huang and Cressie (2000) use a thresholding method of the discrete
wavelet transform (DWT) to recover signal from noisy data, but little has been done
with wavelets involving microarrays. A Gaussian filter of the Fourier transform of
microarray images is used by Shai et al. [2003) to eliminate spatial trend. but wavelets
have an advantage over the Fourier trarsform where there are discontinuities (Huang
and Cressie, 2000).

In this chapter, a correction of spat.al effects using the wavelet transformation is
proposed. The multiresolutional nature of wavelets permits the estimation of both
large and fine scale spatial effects simultaneously and accommodates the fractal na-
ture of the data. After intensities are corrected for spatial effects, a set of over-

expressed genes is identified. A comparson of different methods of spatial correction,
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(i) wavelets and (ii) splines plus AR1 > ARI, is given and the sets of differentially
expressed genes for each method are coinpared. Control genes are a set of genes that
are not expected to be differentially expressed in an experiment. Thus, control genes
allow us to estimate spatial variability within a slide. Since the choice of control
genes will influence estimates of error and spatial trends, two schemes for selecting a
set of control genes are explored. The first approach is to take a pre-determined set
of genes to be control genes and the second approach is to use genes whose relative

expression is approximately constant throughout the experiment as control genes.

6.2 Materials and Methods

6.2.1 Data
6.2.1.1 First Phase of the Experiment

The data used in this study came from FENA extracted from mice livers in experiments
conducted by Harry Noyes at The University of Liverpool. The treatments that were
applied to the microarray were determined by strain of mice, challenge, replicate
and time. Two strains of mice were used, AJ (A) and C57BL6 (B). The mice were
further divided into challenges, challenge 1 and challenge 2. From combinations of
mouse strain and challenge, two indep2ndent biological replicates were taken. The
biological samples were applied to the microarrays at time points of 0. 4, 7, 10 and
17 days. Fifteen slides were used in total, with two biological treatments (each is an
interaction between strain of mouse, challenge and time) applied to each, one coloured
red and the other green. Figure 6.1 is a graphical representation of the experimental

design (Kerr and Churchill, 2001a), where the nodes represent the cDNA and an
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edge between nodes indicates a slide. The edges are directed from the samples that
were associated with the red dye, to the samples that were associated with the green
dye. The nodes are labeled in the order challenge, mouse type and time point, so

that for example 1A7 comes from challenge one, strain AJ and time 7 days.

Figure 6.1: Representation of the experimental design.
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6.2.1.2 Second Phase of the Experiment

Each slide was divided into four metacoluinns and twelve metarows, forming 48 print-
ing blocks. There were twelve rows within each metarow and sixteen columnns within
each metacolumn yielding, 9,216 spots per array. Thus with 15 slides, 2 colours
and 9,216 spots there were 276,480 data points, however there were 2,040 missing
readings. The total munber of genes in the experiment was 11,218, so clearly not
all genes were printed on each array. However 14 of the 15 slides had an identical
pattern of printed genes. In all, 73 pre-determined control genes were used. In this

experiment the pre-determined control genes were printed in the first and last row of



CHAPTER 6. SPATIAL EFFECTS IN CDNA MICROARRAY SLIDES 73

each metarow and the third row of each metarow contained some empty cells, which

served the same function as control genes.

6.2.2 Statistical Models

In this section we outline two statistical models for interpreting the microarray data.
The spatial mixed linear model has been proposed by Baird et al. (2004) drawing
on the work from Wolfinger et al. (2001). We propose the wavelets model as an
alternative. The response to be analyzed is y = logs(intensity).

The techniques used are variations on those that have been successfully applied
in the analogous models for field experiments. These techniques seek an efficient
estimate of the random components associated with correlated data so that infer-
ences about the fixed effects are reliable and efficient. Efficiency is essential in gene
expression data lest informative genes be unrecognised.

A hierarchical approach developed in the context of field experiments is to first
fit the systematic part of the model and examine the residual components through
variograms (Gilmour et al., 1997). The variogram identifies spatial components and
the observations corrected for spatial positions. Thus the estimates of the true error
components are improved by the removal of the nuisance spatial effects.

The first model considered is in the style explained by Gilmour et al. (1997)
and Baird et al. (2004) in that spatial efects are estimated using splines. This model
assumes that the spatial correlation can be represented as a smooth, separable process.

That is, the correlation matrix R can be written in the form:

R=R.®R,,
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where R, and R, are the correlation matrices for the smooth underlying one dimen-
sional column and row processes. The second model does not assume that the spatial

correlation can be expressed as the Kronecker product of two smooth processes.

6.2.2.1 Spatial Mixed Linear Model

A spatial mixed linear model (Wolfinger et al., 2001; Baird et al., 2004) is fitted for

each colour on each slide. The model for y is:

1

X3 ] ) + !i Z1

X2

y:|:X1

where
- 71 contains the fixed site effects.
- T9 contains the linear row and column effects.
- 73 contains the effects of the cont-ol genes.

- u; is a random vector which contains the test gene effects and is a sample from

a normal distribution.
- uy contains spline terms.

- E is the grand error term, which can be decomposed as E = £ + ¢, where £ is a

spatially dependent error term and e is the pure error term.
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Furthermore:
U, 0 \ G, (’Yl) 0 0 0
uz | N 0 o 0 Ga(y2) 0 0
13 0 0 0 R(¢) O
€ I 0 ) 0 0 0 01

The model is fitted with:

(i) no spatial correlation assumed (Splines), so that:

R(¢) =1

and

Gl(fyl) = /\I7

(i) auto-correlated rows and auto-correlated columns (AR1 x Splines), so that:

R(¢) =R.®R,
and
Gi(m) = AL,
with the symmetric matrix:

1
Pe 1

Re=1 p2 »p 1

et pi e

and R, is similarly defined for correlation between rows. That is, there is a one step
correlation between rows and a one step correlation between columns. Fixed linear

row and column effects are also fitted in the AR1 x Splines model.
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Once the spatial trends are found, they are subtracted from the original data to
give adjusted intensities y§ jines @0d YA R1xSplines-

A mixed linear model that ignores spatial effects is also fitted as a benchmark.
That is, a model of the form y = X7 4+ Zu + ¢, is fitted where 7 is the vector of the
fixed effects site and control genes and u contains the test gene effects. As before,

e ~N(0,0%I), u ~ N(0,AI) and u and € are orthogonal.

6.2.2.2 Wavelets

The idea here is to perform a discrete wavelet transform (DWT) to the data and
threshold the coefficients in the wavelet domain to remove the spatial trend. The
Daubechies wavelet basis function (Daubechies, 1988) is chosen for the DWT. The
multiresolutional attributes of wavelets allow decomposition of the spatial components
in the frequency domain (Huang and Cressie, 2000). Wavelet coefficients below a
threshold correspond to noise and the larger scale wavelet coefficients correspond to
the spatial trend. Thus the larger wavelet coefficients corresponding to spatial trends
could be removed in the wavelet domain and the remaining coefficients transformed

back to the original scale. That is, fit a model of the form:
Dy = DX7 -- DZu + D¢ + De,

where 7 is the vector of the fixed effects due to site and control gene, u is the vector
of test genes random effects, £ is the spatial trend and e is the pure error term.
The matrix representation of the discrete wavelet transform is D, which is a two
dimensional version of the pyramid decomposition algorithm (Mallat, 1989; Meyer,
1993). The best linear unbiased estimator (BLUE) of 7, the best linear unbiased

predictor (BLUP) of u and the spatial components are to be found. However, the
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structures of DX7, DZu and D€ cannot be simultaneously determined in the wavelet
domain with certainty (Huang and Cressie, 2000). Hence, the BLUE for 7, 7 and the
BLUP u for u are found on the original scale assuming no spatial dependency and

subtracted from the original data, to yicld the grand error term, E.
E=y-X7-2Zu.

The DWT is applied to E and thresholding of the wavelet coefficients is performed

for each colour on each slide to separate the spatial trend from random noise.
DE = D€ + De.

A hard thresholding method is used. If E* are the wavelet coefficients of E after

the DWT is applied, then the hard thresholding value is given by:

EY o if|E5 | > A

Jik1,k2 Jik1,k2 ’
T(E;,kl,k’z) = .
0; if B2yl < A

The choice of thresholding parameter, A is the universal threshold parameter given
by Donoho and Johnstone (1994), ov/Zlogn, where o is the noise parameter and n
is total number of points in the image. Wavelet coefficients above the threshold
are considered to correspond to a spetial trend and smaller coefficients to noise.
The correction of the nuisance spatial effects is done by thresholding the wavelet
coefficients, applying the inverse DW'[ and subtracting that entity from the raw

data:

y?avavelet = y - D-I(T(E;,kl,kg))'
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6.2.3 The Sample Variogram

A sample variogram of € is computed and plotted for each model to compare the
models. The variogram ordinates are g.ven by 7y;; = %[ei — €;]* (Cressie, 1993). The
sample variogram is the triple (|77 — 77|, |7f — 75|, v;;), where 7] is the row position
of the ith point, 77 is the column position of the ith point and v;; is the mean of
the variogram ordinates with a distance of (|7] — 77|, |7f — 7¢|), between them. A
flat variogram with a low plateau illustrates that the model has efficiently removed
spatial trends. The sample variogram is also calculated as a function of the absolute

distance between points, v(|7]).

6.2.4 Control Genes

The model fitted so far has used pre-specified control genes to indicate the spatial
variation. It could be argued that the control genes should be determined by the
data rather than a priori (Schadt et al., 2001; Tseng et al., 2001; Speed, 2003). In
this section the robustness of spatial adjustments using the Wavelets and AR1 x
Splines models is investigated when the control genes are (a) chosen a priori and (b)
determined from the data as being stable with rank invariant selection. Under the
rank invariant selection scheme, the renk for each gene is found independently for
each sample on a slide. If the gene is not differentially expressed, then the rank of the
gene should be relatively unchanged between samples. Thus, genes whose rank varies
by less than a threshold value, d, on a given slide are taken and the intersection of

all such genes on all slides are the new control genes.
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6.2.5 Analysis of Variance

Before an analysis of variance is conducted the intensity dependent dye bias is re-
moved. This is done for each array by fitting a lowess curve to the RI plot which is
a plot of the log, intensity ratio of red to green (‘R’) against the mean log intensity
(‘I') (Yang et al., 2002). The lowess curve is added to the logy of the green intensities
so that the intensity dependent dye bias is accounted for.

A typical ANOVA model for microarray data is (Kerr and Churchill, 2001a,b):
y%kl = U+ Ai + Cj + Ty + G+ (AG)II + (CG)Jl -+ (TG)kl + €ijki,

where A is the array effect, C' is the colour (dye) effect, G is the gene effect and 7T is
the treatment effect. The gene by treatment interaction is the effect of interest. It is
assumed here that genes do not interact with colour or array. The treatment effect
is confounded with the colour by array effect, so the treatment effect is also dropped
from the model.

The model fitted is:
y?jkl =p+A+C+ G+ (AC); + (TG + €ijkl-
The ANOVA is conducted on the data adjusted by the Wavelets and the AR1 X

Splines models.

6.2.6 Separability and Fractals

For a separable field, the covariance matrix, 3 can be expressed as ¥ = ¥, ® X,
where X, and X, are the variance matrices of the underlying one-dimensional pro-

cesses (Adler, 1981; Scaccia and Martin, 2005). Such a separation ensures that the
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determinant and inverse of 3 can be casily calculated because of the properties of
the Kronecker product. Thus, the assumption of separability makes the iterative
maximum likelihood calculations relatively fast.

The fractal dimension gives an indication of the roughness of the signal (Mandel-
brot and Van Wess, 1968; Adler, 1981; Constantine and Hall, 1994). If the signal is
smooth, the fractal dimension is an inseger. In the case of the microarray data at
hand, a fractal dimension of 2 would iadicate a smooth surface and any significant
departure from 2 would indicate that the data are fractal in nature.

A stationary Gaussian field, f(z), is assumed, with a position independent cor-
relation structure, p, so that the correlation between two points is a function of the

distance (7) between the points:

p(7) = E[f(2)f(z +7)]. (6.1)

For such surfaces, the correlation function behaves like 1 —p(7) = |7]?, for small 7,
0 < a < 2 and the fractal dimension of the surface is given by (Adler, 1981; Gneiting
and Schlather, 2004):

D=3-

SRS

If the signal is rough, separability may not be appropriate for the data. The

correlation function in equation (6.1) can be modeled as:

~lrle
?

p(1) =e

with 0 < o < 2. If a separable model is to be used, it is required that:

p(Tr, 7e) = p(7r) X p(7e),
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where 7, and 7, are the row and columr. displacements respectively. That is:

[e?
e~ VIR _ o= (1 rel®) |

These correlation functions cannot be equal unless a = 2, or equivalently unless

the Gaussian field to be modeled is smooth, with fractal dimension 2.

6.2.7 Calculating Fractal Dimension

The fractal dimension of all 15 slides is calculated for both the red and green treat-
ments by box counting, a variogram-based method and using the £dim (de Pison As-

cacibar et al., 2000) package in R (R Davelopment Core Team, 2004).

6.2.7.1 Box Counting Estimator

If a set, S, can be completely covered with a minimum number of cubes, N,(S) of
side length 7, then the box counting fractal dimension is given by (Falconer, 1990):

V()
DBC_}—»O —In(r)

In order to calculate the box counting fractal dimension of each microarray image, a
triple of each row position, column position and intensity is formed. Each microarray
slide is represented as an image in R®. The minimum number of cubes to completely
cover the image is found for a variety of cube sizes and the logarithm of the cube
size is plotted against the logarithm of the number of cubes required. The slope of
the plots for small 7 gives the estimates of the box counting fractal dimension, Dge.

However Hall and Wood (1993) have shown the box counting estimator to be biased.
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6.2.7.2 Variogram-based Estimator

The sample variogram, 7|d|, can be used to estimate the exponent « in the function
for fractal dimension (Constantine and Hall, 1994). Assuming that v|d| o |d|* as

d — 0, then,

In(y|d]) = constant + aln(d) + €.

Thus, the slope of the plot of In(d) and In(v|d|) for small d is used to find an

estimate of o and then an estimate of D is given by:

- &
DVB=3~§‘

6.3 Results

6.3.1 Results of Spatial Models

Figure 6.2 shows the spatial componens and pure error term for the Splines, AR1 x
Splines and Wavelets models for slide 15. This slide has one of the more apparent
spatial trends. It is seen that the Wavelets method accounts for more of the systematic
spatial trend than the Splines and ARl x Splines methods. In particular, the AR1
x Splines and Splines models do a poor job of accounting for the irregularity in the
printing block centered at row 13 and column 8. The sample variograms in Figure 6.3
confirm that the pure error term for the Wavelets model has the least spatial trends.

These variograms are typical of these data.
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Figure 6.2: Decomposition of the grand error term, E, for red, slide 15 with the (a)

Splines, (b) AR1 x Splines and (¢) Wavelets models.
(a) (b) (c)
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Figure 6.3: Sample variograms for red, slide 15 with (a) No spatial trend modeled.
(b) Splines. (¢) AR1 x Splines. (d) Wavelets.
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6.3.2 Control Genes

The rank invariant selection scheme approach finds 11 and 13 control genes when the
Wavelet model and AR1 x Splines models are used respectively. All of these genes
are in the set of 73 pre-determined control genes and nine of these genes are in both
sets found by the rank invariant selection scheme.

Figures 6.4(a) and (b) show where the control genes are spotted on slide 15 when
these genes are determined from the data with both the Wavelets model and a pri-
ori methods of determining housekeeping genes. There are significantly fewer data-
determined control genes than pre-specified control genes and this is reflected in the
contour plots in Figures 6.4(c) and (d). The two contour plots are similar in shape,
but the contour plot for the pre-specified control genes shows a much more sloping

surface to the contour plot for the data-determined control genes.



CHAPTER 6. SPATIAL EFFECTS IN CDNA MICROARRAY SLIDES 85

Figure 6.4: (a) Location of control genes found with the Wavelets model. (b) Location
of the pre-specified control genes. (c) Contour plot of the spatial trend for red, slide
15 using the control genes identified using the Wavelets model. (d) Contour plot of

the spatial trend for red, slide 15 using the pre-determined control genes.
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6.3.3 Fractal Dimension

The distribution of estimated fractal dimensions for each colour and each method
is shown in Figure 6.5. The mean fractal dimension of the red (green) images for
the fdim estimator, Box counting method and variogram-based estimator are 2.17
(2.20) £ 0.05, 2.22 (2.22) £ 0.01 and 2.21 (2.17) & 0.14 respectively. There is a clear
departure from 2 in fractal dimension for the means of all the methods and the means
for all of the methods are tightly grouped. The estimates for the variogram-based
estimator have a high variance because there were few points in the variogram with

a distance small enough for the slope near zero to be calculated.

6.3.4 Analysis of Variance

Intensity dependent colour bias is evident in these data. Figure 6.6(a) illustrates that
for slide 1 the ‘R’ and ‘I’ values are not independent, with the lowess curve being
non-linear. The shape of this lowess curve is typical of these data. Figure 6.6(b)

shows the data after the lowess correction.

Genes that are ranked in the top 10 gene by treatment interactions for each
treatment are taken as genes of interest. This results in 96 genes being taken in the
set of genes of interest for the Wavelets model and 80 genes being taken for the AR1
x Splines model. There are 64 genes contained in both sets. Systematic effects of
arrays, genes, treatments and colour account for 62% of the total variation in the
ANOVA model with spatial variance adjusted by wavelets. The counterpart ANOVA
of AR1 x spline corrected spatial effects attributes 63% of the variation to these

systematic effects.
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Figure 6.5: Distributions of fractal dimension estimates of all 15 slides using (a) The
fdim package for the red images. (b) The fdim package for the green images. (c)
Box counting, red images. (d) Box ccunting, green images. (e) Variogram-based

estimator, red images. (f) Variogram-based estimator, green images.
(a) (b)
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The way in which control genes are determined influences the estimate of gene
expression level. Figure 6.7 shows the a2xpression levels of two genes under different
treatments when the different methods of removing spatial trend and selecting control
genes are used. In both genes there is l'ttle difference in estimated expression for the
AR1 x Splines method when the different sets of control genes are used. However

the Wavelets method is somewhat sensitive to a change in control genes.
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Figure 6.6: RI plots for slide 1 (a) before the lowess correction and (b) after the lowess

correction.
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Figure 6.8 shows which of the 64 genes that are identified as genes of interest
from both the Wavelets and AR1 x Splines models are estiimated to be over- or
under-expressed for each treatment after the ANOVA model is fitted. There are
clear differences between the two models, with different genes identified as being
differentially expressed. In particular, the AR1 x Splines model identifies many
genes for time 4 days, breed B, strain 2 that are not identified after the Wavelets
model is used. Similarly, the Wavelets model identifies genes at time 0 days, breed
B, strain 1 that are not found to be differentially expressed when the AR1 x Splines
model is used to remove spatial bias. There are very few treatments where both the

Javelets and the AR1 x Splines models identify the same differentially expressed

genes.
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Figure 6.7: A Pre-determined control genes. () Data-determined control genes. - --
ARI1 x Splines. — Wayvelets.

(a) Interaction of Gene NM_007414 with challenge one, strain AJ. (b) Interaction of
Gene AB041540 with challenge two , strain C57BL6.
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6.4 Discussion

The difference in the state space diagram and descrepancies between estimates of
gene expression level between the metaods used to model spatial trends illustrates
the large difference between methods; and that care should be taken when choosing
methods for removing spatial effects from data. From the variograms in Figure 6.3,
it can be seen that wavelets are much more successful in removing the spatial trend
than the other methods for these data. The AR1 x Splines and Splines models are

very similar or marginally better than itting no spatial trend.
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Figure 6.8: State space diagram for ecach challenge (1 and 2) and strain (A and B)

combination for the 64 genes that are identified as genes of interest after the —

Wavelets and — AR1 x Splines models are used to remove spatial trends. A line
indicates that the gene is over- or under-expressed at the corresponding time point.
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The selection of control genes is important when removing spatial trends in mi-
croarray data. In these data it is found that the AR1 x Splines model is reasonably
robust against the method of selecting control genes, whereas there are large changes
in estimated expression levels when the Wavelets method is used.

There are large differences in the resulting analysis of variances when the data are
adjusted by the AR1 x Splines model aad the Wavelets model. The way that spatial
trend is modeled has a large impact orn the genes identified as genes of interest for
subsequent studies.

Mathematically, the wavelet analysis is not disparate from the spatial models
proposed by Baird et al. (2004). In both cases, the underlying spatial regression
variables are tensor products of basis functions, i.e. Frow ® Fropumns. Whereas cubic
splines basis functions are associated with smooth functions, Daubechies wavelet bases
accommodate fractal and discontinuous trends. The representation of small scale
‘vibrations’ by AR1 models play the seme role as the high frequency component of
the wavelet analysis. Departure from 2 in the fractal dimension of the data, suggests
that the data are insufficiently smooth for the separable autocorrelation model to
be efficient. The wavelet transform for correcting spatial trends in microarrays is a
generic method for capturing the spatial information irrespective of fractal dimension.
The location-frequency resolution of wavelets allows identification of broad spatial
trends and fine scale vibrations. These properties of the wavelet transform will be

further examined in the following chapter using simulated data.



Chapter 7

A Simulation Study of Spatial
Effects in cDNA Microarray Slides

7.1 Introduction

There are many sources of variation in microarray studies that need to be accounted
for so that gene expression estimates are accurate. One such source of variation is
spatial trends that can accumulate on the microarray slides. This spatial variation
may arise from disparities between printing blocks, pin effects and uneven washing of
the solution over the slide. These spatial trends can significantly change the biological
conclusions of an experiment depending on how they are modeled (see Chapter 6, for
example). Hence, it is important to test methods of removing spatial bias in microar-
ray slides so that a method can be recommended for a particular slide depending on
its properties. Complexities in the procedures and high costs of microarrays mean
that performing real microarray experiments to test methods of removing bias is not

always viable. Simulation is a practical way to test potential strategies in processing

92
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microarray experiments. Previous simulation studies consider sources of variation
such as background noise, expression signals, spot location, spot shape and irregu-
larities on the slide (Wierling et al., 2002; Balagurunathan et al., 2002). Simulation
of spatial trends in the single channel background adjusted signal will be considered
here.

In this chapter, results from a previous murine study (Chapter 6; Woolaston
et al., 2005) are used to generate data to assess the effectiveness of three methods of
modeling spatial noise in microarray slides. Spatial effects of varying roughness or
fractal dimension are also simulated. The methods to be compared are (i) No spatial
modeling (Basic), (ii) Splines with autocorrelated rows and autocorrelated columns

(AR1 x Splines) and (iii) A discrete wavelets threshold model (Wavelets).

7.2 Spatial Models to be Compared

A summary of the 3 spatial models tc be compared is given here. More details of

these spatial models can be found in Chapter 6.

7.2.1 Basic Model

The basic model is a mixed model of the form y = X3+Zu+e¢, € ~ (0,0?), E(u.€) = 0,
u ~ N(0,02), containing no spatial terms with only the control gene and test gene

effects fitted. Control genes are fitted as fixed effects and test genes as random effects.

ASReml (Gilmour et al., 2000) was used to fit the model.
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7.2.2 AR1 x Splines

The AR1 x Splines model is similar to the basic model, with additional terms added.
The fixed effects are due to the control genes, printing blocks, rows and columns.
The random component contains the test gene effects and spline terms with 5 knot
points in each direction to model the long term spatial variation. As in the basic
model the test gene effects are assumed to have come from a N(0,0?2) distribution.
First order autocorrelated rows and first order autocorrelated columns (AR1 x AR1)
are also fitted to account for small scale vibrations in the spatial trend. Once again,

ASReml (Gilmour et al., 2000) was used to fit the model.

7.2.3 Wavelets

The Wavelets model is a two step process. The residuals from the basic model are
transformed to the wavelet domain via the discrete wavelet transform (See for example
Lio, 2003). Large wavelet coefficients are considered to correspond to spatial trend
and small coefficients to noise (Huang and Cressie, 2000). Hence the transformed data
is thresholded in the wavelet domain to find the spatial trend. The discrete wavelet
transform and thresholding was performed using the wavethresh package (Nason,
2004) as part of the statistical program R (R Development Core Team, 2004). The
threshold value used is am (Donoho and Johnstone, 1994), where n is the
number of data points and o is the noise parameter. The spatial trend found by this
approach is transformed back to the original domain and subtracted from the original
intensities to give intensities adjusted for spatial trend. The basic model is then fitted

to these adjusted data.
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7.3 Methods of Simulation

The simulation was a two step procedure, with all values assumed to have undergone
a log, transformation. First the gene effects are simulated and these values are ran-
domly applied to an array. Secondly, the spatial noise is simulated and applied to the
array. The simulation of spatial noise was simulated in two ways: (i) spatial noise
taken to be estimated spatial noise from a real experiment (ii) spatial noise entirely

simulated.

7.3.1 Simulation of Gene Effects

The simulated control and test gene effects were the estimated effects from a real
microarray experiment. In the murine study, 2 strains of mice were infected with 2
challenges of a disease. Biological samples were applied to the arrays at time points
0, 4, 7, 10 and 14 days. There were 14 slides taken from the experiment. Each slide
had 7,444 test genes spotted once per array and 45 control genes spotted between 23
and 192 times per array. The frequency of the simulated intensities that were added
to the simulated spatial noise is displayed in Figure 7.1. The most under-expressed
simulated test gene had an intensity o7 -4.57 and the most over-expressed test gene
had a simulated intensity of 2.95. All other test genes have a simulated value between
-2.1 and 1.9.

The majority of the simulated control genes had an intensity between -2 and 2,
however there was one gene spotted 192 times per array with an intensity of -5. This

corresponded to empty cells in the original experiment.
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Figure 7.1: Simulated intensities of the genes.
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7.3.2 Spatial Noise Taken From Real Dataset

The results from a previous study were used to obtain the simulated background noise
and the test and control gene effects. Wavelets and the AR1 x Splines approach
were used separately in the previous study to remove the spatial trends. Since using
the spatial trend found in one model from the results of the previous study in this
simulation would give that model an advantage in removing spatial bias, both sets
of results were used. For each of the 14 analyzed slides, the test and control gene
effects were randomly arranged over the spatial noise found by the respective model
for accounting for spatial patterns in the arrays. Each slide was then analyzed with
Wavelets, AR1 x Splines and the Basic models. The random application of effects

and analysis was repeated 30 times per slide.
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7.3.3 Simulation of Spatial Noise

A combination of systematic effects and real valued random Gaussian fields were used

to simulate the spatial variation in a microarray slide.

7.3.3.1 Printing Block and Pin Effects

The design of the arrays is illustrated in Figure 7.2. There were 48 printing blocks
arranged in a 4 x 12 grid. Within each printing block there were spots arranged in
a 16 x 12 grid. Each of these spots was associated with the corresponding pin in the
printing block. Printing block effects were modeled as s; ~ N (p;.02), i =1,2,3,...48,
where 1; was sampled from a N(0,0°) distribution and o? was sampled from an
Inverse Gamma distribution with shape parameter v and scale parameter s. Pin
effects were modeled as p ~ N(0,03). The values of v, s. 0° and o> were estimated

from the real dataset and were and 20, 0.083, 0.5 and 0.4 respectively.

7.3.3.2 Spatial Gaussian Effects

A stationary Gaussian process, Z(s), was assumed with a variety of covariance struc-
tures used to simulate spatial noise found in microarray slides that was not ac-
counted for by printing block effects or pin effects. A Gaussian random process,
Z : D — R,D C R? was used to generate realizations of the Gaussian process,

Z(s),s € (1,2,...,144) x (1,2, ...,64), on a 144 x 64 grid.
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Figure 7.2: The layout of printing blocks and printed spots for the simulated array.

21,1 212 21,63 21,64
221 222 "t 22863 22,64
Z(s) =
2143,1 2113,2 °°° 2143,63 <143,64
2144,1 2144,2 " 214463 <144,64

The matrix Z(s) can arranged into a vector Z,(s) with the vec operator so that

the appropriate 9216 x 9216 covariance matrix, C, can be formed for Z,(s).
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Since a stationary Gaussian field is assumed, the covariance function, ¢, depends

only on the distance, 7, between points:

c(zij, ) = (v (i — k)2 + (5 — D)?) = e(I7])
The covariance matrix can be written as:

( ¢(0) c(1) -+ ¢(63) (1) e(V2) - (V632 +1432)

e(1) c0) - c(62) e(v2) (1) - (V622 +143?)
c=rzEneN =]
c(1)
(v2)
c(+/63% +1432) c(0)




CHAPTER 7. MICROARRAY SPATIAL EFFECT SIMULATION 100

Once the covariance matrix is formed it can be decomposed via the Cholesky

decomposition:
C=LL".
Then Z(s) is generated by:
Z(s) = LX,

where X is a vector from a N(0,I) distribution. It is easily shown that Z(s) has
the desired properties (i.e. E(Z(s)) =0 and var(Z(s)) = C) and all that is required
is to choose the covariance function of the spatial Gaussian noise.

Two different correlation functions were used separately to generate the spatial
Gaussian noise, (a) the stable correlation with the Cauchy correlation function to
separate the short term and long terra dependency and (b) the stable correlation

function to model short term depender.cy only.

(a) Separate consideration of short term and long term behaviour. The
simulated spatial noise in a microarray slide was decomposed into short term and

long term behaviour:
p(T) = ps + pr.

The short term dependency was modeled with the stable correlation function:
ps(7) = e "%, (7.1)

with 0 < o < 2 and a variance of 1. The fractal dimension of a realization of such a

field can be calculated as D = 3 — 5. The long range dependency was modeled with
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a stationary Gaussian field with a Cauchy correlation structure
p(r) =1+, 5> 0,

and a variance of 0.5. The parameter [ controls the long range dependency.

(b) Short term dependency only. It may be appropriate to consider only short
term dependency in the correlation function, since the site effects are accounting for
some long range dependency. Once again the stable correlation function (equation

(7.1)) is used to model the short term dependency, with a variance of 1.5.

For both of the correlation functions the parameter a took values between 1 (rough
surface) and 2 (smooth surface) in increments of 0.1. Consequently, the simulated
fractal dimension took values between 2 and 2.5 in increments of 0.05. Woolaston
et al. (2005) found the mean fractal dimension for the data used in this study to be
2.2 (see also Chapter 6). There were 30 replicates for each value of a. For approach
(a) the parameter 3 was set at 0.4, which was the mean value calculated from the

real slides.

7.4 Results

7.4.1 Spatial Noise Taken From Real Dataset

There are significant differences between the three methods of removing spatial trend.
Table 7.1 shows the mean of the standard deviation between the simulated and esti-
mated intensity readings. The simulated intensities for genes and background noise

in Table 7.1(a) are from the estimates from the real data with the AR1 x Splines
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model and Table 7.1(b) are the estimates obtained with the Wavelets model. In both
cases it can be seen that the Wavelets method clearly outperforms the AR1 x Splines
and Basic methods for slides with a high standard deviation between simulated and
estimated intensities (for example slides 2,4,5,10 and 13). The corresponding real
slides have particularly non-smooth surfaces.

In Table 7.1(a) it is seen AR1 x Splines model has more success than the Wavelets
model for slides 1 and 3. These are particularly smooth slides. The Basic model does
not predict the simulated intensity of genes as successfully as the Wavelets model on
most slides, however in some cases the Basic model does outperform the Wavelets

and/or AR1 X splines models.

Table 7.1: Standard deviation of the difference between simulated and estimated
intensity reading. The simulated background noise is found with (a) the AR1 X
Splines model and (b) the Wavelets method from a previous experiment. All standard

errors were 0.01 or less.

Slide
1 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) AR1 x Splines
AR1xSpl [ 0.11 0.38 0.16 0.36 047 031 032 0.12 015 0.40 036 0.18 0.52 0.35
Wavelets | 0.14 0.35 0.17 0.33 043 030 0.30 0.13 015 038 034 0.18 046 0.32
Basic 0.13 0.37 0.17 036 047 030 031 0.12 015 040 035 0.18 051 0.35
(b) Wavelets
AR1xSpl | 0.16 0.40 0.19 034 039 026 023 011 016 038 025 0.17 040 0.43
Wavelets | 0.19 0.38 0.18 0.31 0.37 0.25 0.22 0.10 0.16 037 024 0.16 0.37 0.38
Basic 0.18 039 019 034 039 025 023 010 016 038 025 0.16 041 0.42
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7.4.2 Simulation of Spatial Noise

Figure 7.3 compares the three methods of removing spatial noise by displaying the
standard deviation of the difference between the simulated and estimated intensity
readings for each correlation function used to generate to spatial Gaussian noise.

Figure 7.3(a) shows that when the correlation function is decomposed into long
term and short term behaviour, as the fractal dimension is increased in the stable
correlation function, the estimates from the AR1 x Splines model become further
from the simulated values and the standard deviation of the difference increases.
The estimates from the Wavelets and Basic models have similar deviations from the
simulated values, with the Wavelets model slightly better for all fractal dimensions.
The standard deviation of the difference does not increase with the fractal dimension
for the Wavelets or Basic models.

Similarly, Figure 7.3(b) shows that when only the short term correlation is mod-
eled, as the fractal dimension is increased the estimates that arise from the AR1 x
Splines model become further from the simulated values. The AR1 x Splines model is
comparable the Wavelets model for smeother images, but the Wavelets model outper-
forms the AR1 x Splines model for more jagged images. Once again, the Wavelets and
Basic models produce similar results tc each other, with the Wavelets model slightly
better, and the accuracies of prediction are not dependent on the fractal dimension

of the spatial surface.
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Figure 7.3: Standard deviation of the difference between simulated and estimated
intensity reading. The spatial noise is simulated with Gaussian fields with (a) stable

and Cauchy correlation functions and (b) stable correlation function.
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Figure 7.4: Empirical cumulative distribution function of the estimated value minus
the simulated value for a simulation with stable and Cauchy correlation functions and

with fractal dimension 2.2.
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Figure 7.4 displays a typical empirical cumulative distribution function of the dif-
ference between the simulated and estimated values of the test genes for the Wavelets
and AR1 x Splines models. The spatial noise was generated with the stable and
Cauchy correlation structure with a fractal dimension of 2.2. The plot shows that the
Wavelets model predicts more test gere effects accurately than the AR1 x Splines
model. It is also seen that the AR1 x Splines model severely over-estimates the ex-
pression level of one of the genes, with the difference of the simulated log, intensity

and the estimated [ogs intensity being 2.5.
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7.4.3 Computation Time

Table 7.2 shows the mean computation time for one slide. The AR1 x Splines model
is the slowest and the Basic model is the fastest under all simulations. The Wavelets
model is significantly faster than the AR1 x Splines model, but slightly slower than

the Basic model in all circumstances.

Table 7.2: Mean computation time (seconds) for fitting a spatial model for one slide.
The times given for the simulated spatial noise are for Gaussian fields with a fractal

dimension of 2.2.

Real Background Noise Simulated Spatial Noise

Model AR1 x Splines | Wavelets Stable Stable 4+ Cauchy

AR1 x Splines | 174.95 £ 47.09 | 176.99 £ 56.16 | 41.62 + 9.00 | 48.66 + 9.28
Wavelets 10.47 £ 0.27 10.49 £+ 0.64 6.90 £ 0.23 | 6.88 £ 0.22

Basic 1.02 £ 0.01 1.03 £ 0.11 1.12 £ 0.06 | 1.12 £ 0.07

7.5 Discussion

The AR1 x Splines model may not be as successful as the Wavelets model for rougher
images because this model assumes smoothness in the spatial trend. Hence, the jagged
images may cause under-estimation of the spatial trends and this is reflected in the
estimate of the test gene effects. Similarly for smoother images, the Wavelets model

may estimate the spatial trend to be too jagged, which would also reduce the precision
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of the estimated test gene effects. This could be remedied with a more appropriate
choice of basis function for the discrete wavelet transform.

If the spatial noise in a microarray slide is smooth, the AR1 x Splines model may
be appropriate to account for this spatial bias. However, care should be taken for
more fractal images.

It has been demonstrated here that not accounting for the spatial surface at all
may be better than fitting a model that assumes smoothness, such as the AR1 x
Splines model. The multiresolutional nature of the wavelet function means that this
method is well suited at removing spatial bias regardless of the fractal dimension of
the nuisance spatial effects. Furthermore, because of the simple threshold approach in
the frequency domain, the wavelets approach has another advantage of computational

speed.



Chapter 8

(General Discussion

There has been a huge investment globally on genotyping and related laboratory
tools, which promise to increase the rate of genetic gain and aid in the understanding
of regulatory pathways. It is well accepted that DNA-based selection aids will impact
mostly on traits that are costly or difficult to measure. As the technology becomes
more accessible, it is likely that even larger amounts of genotypic data will be gener-
ated for more traits. This highlights the necessity of statistical methods to at least
keep pace with the development of genetic technologies lest information gathered be
less than optimally utilized.

Some useful statistical techniques to make use of the vast amounts of data available
to geneticists have been demonstrated in this thesis. The major points to be taken

are:

e New technologies, such as single nucleotide polymorphism (SNP) chips and mi-
croarrays, give rise to large amounts of data which require appropriate statistical

techniques, so that useful conclusions can be drawn from studies involving such

108
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methods.

e Data reduction techniques, such as principal component analysis, can be effec-
tive in reducing the dimension of the space in which SNP values are contained.
The resultant principal components can be used in multiple linear regression
to give relatively accurate molecular breeding values for young animals with no

phenotypic records or known pedigree.

e Non-parametric models can be useful in genetic studies, particularly when there
are far more explanatory variables than response variables. However, care
should be taken when applying methods that assume a continuous structure
to marker data. It has been shown empirically that using an intrinsically con-
tinuous Gaussian kernel is more accurate than using the discrete binomial kernel
in a Nadaraya-Watson estimator for predicting molecular breeding value from
SNP data. However, it is important to check the repercussions of treating dis-

crete data as continuous.

e Care should be taken when correcting microarray data for spatial noise. The way
in which the spatial noise is accounted for can alter the outcomes of a microarray
experiment. The wavelets transform is a useful tool for accommodating spatial
noise into the modeling process. Due to the multiresolutional nature of wavelets,
broad and fine scale trends can be modeled simultaneously, making the method

well suited for fractal spatial surfaces in microarray slides.

The use of marker data from the whole genome when selecting young animals
for breeding is an improvement on traditional BLUP methods. The BLUP method

predicts genetic merit as the mean of rhe parents breeding values plus a Mendelian
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sampling term. Marker assisted selection (MAS) allows prediction of breeding value
with the segments of chromosome that are inherited from each parent known, resulting
in better specified estimated breeding values. The inclusion of markers in selection
may also allow greater control of genetic variance in future generations so that further
genetic improvements can be made, whilst managing the level of inbreeding.

Further issues arise when MAS is implemented. First, the question of which ani-
mals to genotype and phenotype so that resources are efficiently employed needs to be
addressed. Second, the transferability of results from one population to another needs
to be assessed. For example, can herds be used from different regions or countries in
the same study; and can animals at different time points in each herd be treated as
equal when estimating breeding values using markers?

Since the chapters in this thesis regarding spatial artefacts in microarray slides
have been completed, the technology has improved, with spatial trends less prevalent
on slides. However, the removal of spatial noise is still a crucial part of the normal-
ization of microarray data. Hence, the discrete wavelet transform is a useful method
for microarray normalization. Furthermore, the tendency toward high throughput
methods to collect genotypic data may mean that further technologies are developed
that stimulate fractal responses. Wavelets are an ideal method for accommodating
such fractal data.

Currently, many of the SNPs used in genotypic studies are located in non-coding
regions of the chromosome, so that it is difficult to combine marker and microarray
experiments. It is envisaged that more SNPs from exonic regions of the chromosome
will be able to be genotyped, allowing studies to readily incorporate expression and

marker data simultaneously. Such studies have been conducted for mice, allowing
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insight into the biological processes underlying phenotypic observations (Schadt et al.,
2003). This methodology could be used extensively within the livestock industries
to aid understanding of biological processes and consequently, further accelerate the

rate of genetic improvement.



