# THE IMPACT OF LOCAL PLANT DENSITY ON PLANT-POLLINATOR INTERACTIONS AND PLANT REPRODUCTION IN A FRAGMENTED LANDSCAPE: A COMPARATIVE APPROACH



Simone Simpson B.Env.Sc (Hons) University of New England

A thesis submitted for the degree of Doctor of Philosophy Faculty of Sciences

School of Environmental Sciences and Natural Resources Management UNIVERSITY OF NEW ENGLAND ARMIDALE, NSW AUSTRALIA

May 2007

## DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged.



Simone Simpson May 2007

#### ACKNOWLEDGEMENTS

This dissertation was made possible with the assistance of APA scholarship funding and the financial support of the School of Environmental Sciences and Natural Resources Management, University of New England; for which I am very grateful.

I would like to forward my heartfelt gratitude to my supervisor Ass. Prof. Caroline Gross who unfailingly nurtured all facets of my academia. She will forever remain a valuable friend and a positive influence.

Jim Fittler, Paul Lisle and Caitlin Maher frequently accompanied me during long and sometimes arduous periods of fieldwork; their input to the tasks at hand and their company were truly invaluable. I am also grateful to Ed Witkowski (University of Witwatersrand, Johannesburg), the students of EM425/525 (2006), Imogen Edmunds, Kraig Sutherland and Lucy Rosser for their field assistance. Also attendant in the field was my best little mate Yoda who, though his utility as a field assistant was limited by the lack of an opposable thumb, performed the unenviable task of distracting myriad bush flies and selflessly loaned a furry ear to my confabulations; he preserved my sanity and brightened my days. Thankyou also to lan Telford (UNE) and Dave Britten and colleagues (Australian Museum, Sydney) who provided expert botanical and entomological taxonomic advice. I was extremely fortunate to have the willing and competent assistance in the laboratory of my friend and colleague Penny Nelson, who like myself, can now attest to the joys of working with numerous and tiny seeds. Without Mo Fatemi, I wouldn't know what my field sites look like from space!

I thank my fellow students and the staff within the Department of Ecosystem Management (and indeed the School) for furnishing my workplace with friendship, humour and scholarly advice. It is my privilege to have had the opportunity to spend my days in such a rich and spirited environment.

I sincerely thank my partner Kerry Maher for his support and encouragement, for his rescue efforts (I can always rely on the "NRMAher"), and his assistance with fieldwork and equipment. I thank him for his learned input throughout all my scholarly pursuits and for being patient and understanding when the midnight oil was burning.

Finally, I would never have realised any of my ambitions without the love, guidance and support of my parents Lionel and Cheryl and my sister Natasha; they have imparted to me the best aspects of themselves, providing me with the necessary fibre to pursue my goals.

#### ABSTRACT

In the study of the "fragmentation paradigm" researchers variously measure parameters such as isolation, connectivity, patch size or population size, at different spatial and temporal scales. All of these aspects have been implicated (both positively and negatively) in shaping species' responses and interactions to fragmentation. Clarity is required here however, about the relative importance of ecological factors that can influence species' resilience and persistence. In addition, studies are often zoologically inclined. A problem with plant-based studies has been the bias towards herbaceous temperate species that exist in European landscapes, which have experienced Pleistocene glacial episodes and subsequent agrestral activities. The utility of ecological work from these ecosystems to for example, Australian ecosystems requires close scrutiny.

The study of plant and pollinator responses to fragmented and altered landscapes in the last two decades has shown that the landscape context and time since fragmentation is important in shaping species persistence and resilience. Furthermore, local density effects may in fact be more influential on plant performance than currently assumed. This study focuses upon the effects of local patch density (sparse versus dense) on floral visitation and plant fecundity within naturally occurring populations in a fragmented landscape occurring on the New England Tablelands in New South Wales, Australia.

In this thesis, I use three plant species with different breeding systems and floral morphology as vehicles for examining the impacts of local density on floral visitation rates, fecundity and offspring fitness; *Dillwynia sieberi* (Fabaceae), an obligate outcrossing shrub, *Wahlenbergia luteola* (Campanulaceae), a facultative outcrossing herb and *Thesium australe* (Santalaceae) a hemiparasitic herb which displays high levels of selfing. Fruit: flower ratios, seed: fruit ratios, and components of offspring fitness such as seed weight and germinability were included as performance indicators in this study.

Thesium australe lacks obvious visitors, but cryptic species such as thrips (Thysanoptera) may contribute to pollination. A diverse assemblage of native bees was observed visiting both *W. luteola* and *D. sieberi*; the introduced honeybee *Apis mellifera* was a common visitor to *D. sieberi* but was not observed on *W. luteola* flowers. Hoverflies (Syrphidae) were also regular visitors to *W. luteola*. For these two plant species, density was an important influence on floral visitation rates, particularly for *W. luteola* where dense patches consistently received significantly higher visitation rates than sparse. This

pattern, although less obvious, was also observed for visitation to *D. sieberi*. Intra-specific visitor behaviour on *D. sieberi* individuals was also influenced by density.

The lack of visitors to *T. australe* may be promoting inbreeding depression. High levels of autogamous fruit production were observed for the strongly self-compatible *T. australe*, thus conferring reproductive assurance in a system where an apparent lack of visitors precludes outcrossing. However, a high incidence of partial seed fill and a lack of germinability, which are characteristic of inbreeding depression, were observed in these populations. There was little suggestion that fecundity or fitness was density-related in *T. australe* populations. However, viability was slightly higher in seed from dense plots, which may indicate an influence of underlying environmental or genetic effects.

*Wahlenbergia luteola* is self-compatible, and its protandrous condition coupled with negligible pollen limitation in this system appears to release it from any negative effects, which may be associated with density-dependent visitation. Seed and seedlings from both densities performed equally as well in germination and glasshouse experiments, but significant site differences for these factors were manifest. For the obligate outcrossing *D. sieberi*, FR: FL ratios were significantly higher in dense compared with sparse individuals, but this relationship did not extend to seed production (S: FR), which was similar between densities. There was evidence to suggest that density-induced intra-plant behaviour influenced the proportion of 1- and 2-seeded fruit production in *D. sieheri* (the flowers of which produced two ovules). The mean mass of seed from 1-seeded fruits was greater than that from 2-seeded fruits, and heavier seeds produced larger offspring in glasshouse experiments. This suggests that visitor behaviour may exert some influence on offspring fitness and that this can be shaped by density.

There is little doubt that visitation can be influenced by density in these systems however, the extent to which this influences reproductive output and offspring fitness for both *W. luteola* and *D. sieberi* was difficult to ascertain. To conclude unequivocally that density-dependent visitation is *not* a differential driver of reproductive success for these species would be shortsighted, especially considering the aforementioned results obtained for *D. sieberi*; other factors may be clouding what was anticipated to be a relatively clear relationship. Compared with the facultative outcrossing *T. australe* and *W. luteola*, the obligate outcrossing *D. sieberi* showed the greatest utility for measuring density-related visitation and subsequent reproductive responses. Furthermore, the utility of the indicators used to assay responses varied greatly depending on the species, and it is recommended that a suite of indicators be used to adequately interpret results.

# TABLE OF CONTENTS

| Declaration           | i   |
|-----------------------|-----|
| Acknowledgements      | ii  |
| Abstract              | 111 |
| Table of Contents     | v   |
| List of Abbreviations | xii |

#### CHAPTER 1:

#### INTRODUCTION

| <b>.</b>           |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTRO              | ODUCTION                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                             |
| THES               | IS AIMS                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                             |
| THES               | IS OUTLINE                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                             |
| Васк               | GROUND TO STUDY SPECIES                                                               | 8                                                                                                                                                                                                                                                                                                                                                                             |
| 1.4.1 <i>The</i> . | sium australe R. Br (Santalaceae)                                                     | 8                                                                                                                                                                                                                                                                                                                                                                             |
| 1.4.2 <i>Wal</i>   | hlenbergia luteola P.J. Smith (Campanulaceae)                                         | 9                                                                                                                                                                                                                                                                                                                                                                             |
| 1.4.3 <i>Dill</i>  | wynia sieberi Steud. (Fabaceae-Faboideae)                                             | 10                                                                                                                                                                                                                                                                                                                                                                            |
| BACK               | GROUND TO THE STUDY REGION                                                            | 12                                                                                                                                                                                                                                                                                                                                                                            |
| Васк               | GROUND TO STUDY SITES                                                                 | 14                                                                                                                                                                                                                                                                                                                                                                            |
|                    | INTRO<br>THES<br>THES<br>BACK<br>1.4.1 The<br>1.4.2 Wah<br>1.4.3 Dill<br>BACK<br>BACK | <ul> <li>INTRODUCTION</li> <li>THESIS AIMS</li> <li>THESIS OUTLINE</li> <li>BACKGROUND TO STUDY SPECIES</li> <li>1.4.1 Thesium australe R. Br (Santalaceae)</li> <li>1.4.2 Wahlenbergia luteola P.J. Smith (Campanulaceae)</li> <li>1.4.3 Dillwynia sieberi Steud. (Fabaceae-Faboideae)</li> <li>BACKGROUND TO THE STUDY REGION</li> <li>BACKGROUND TO STUDY SITES</li> </ul> |

## Chapter 2:

# SPATIAL AND HABITAT ATTRIBUTES OF EXPERIMENTAL STUDY PLOTS

| 2.1 | ]     | INTRODUCTION                    | 21 |
|-----|-------|---------------------------------|----|
| 2.2 | 1     | Aims                            | 22 |
| 2.3 | I     | Methods                         | 22 |
|     | 2.3.1 | Experimental Plot Establishment | 22 |
|     | 2.3.2 | Habitat Attributes              | 24 |
|     |       |                                 |    |

1

21

| 2.4   | S       | STATISTICAL ANALYSES                                         | 24 |
|-------|---------|--------------------------------------------------------------|----|
| 2.5   | I       | Results                                                      | 24 |
|       | 2.5.1   | Estimated population sizes, study plot densities and mapping | 24 |
|       | 2.5.1.1 | Thesium australe                                             | 27 |
|       | 2.5.1.2 | Wahlenbergia luteola                                         | 29 |
|       | 2.5.1.3 | Dillwynia sieberi                                            | 31 |
| 2.5.2 | 2 1     | HABITAT ATTRIBUTES                                           | 33 |
|       | 2.5.2.1 | Overview of study sites                                      | 33 |
|       | 2.5.2.2 | Thesium australe                                             | 33 |
|       | 2.5.2.3 | Wahlenbergia luteola                                         | 34 |
|       | 2.5.2.4 | Dillwynia sieberi                                            | 34 |
| 2.6   | I       | DISCUSSION                                                   | 39 |

# Chapter 3:

# BREEDING SYSTEMS 40

| 3.1 | 1       | INTRODUCTION                                                  | 40 |
|-----|---------|---------------------------------------------------------------|----|
|     | 3.1.1   | Breeding Systems of the Study Families-An Overview            | 43 |
|     | 3.1.1.1 | Breeding Systems of the Santalaceae                           | 43 |
|     | 3.1.1.2 | Breeding Systems of the Campanulaceae                         | 44 |
|     | 3.1.1.3 | Breeding Systems of the Fabaceae (Faboideae) [Papilionoideae] | 44 |
|     | 3.1.2   | Investigating Breeding Systems                                | 47 |
| 3.2 | A       | AIMS                                                          | 48 |
| 3.3 | Γ       | Methods                                                       | 49 |
|     | 3.3.1   | Autogamy bagging in the field                                 | 49 |
|     | 3.3.1.1 | Thesium australe                                              | 49 |
|     | 3.3.1.2 | Dillwynia sieberi                                             | 50 |
|     | 3.3.2   | Use of pollen to ovule ratios to estimate breeding system     | 50 |
|     | 3.3.3   | Preparation of Pollen Standards                               | 53 |
|     | 3.3.4   | Ovule Counts                                                  | 53 |

|     | 3.3.5   | Field Assessment of Wahlenbergia luteola's Breeding System      | 54 |
|-----|---------|-----------------------------------------------------------------|----|
| 3.4 | 5       | STATISTICAL ANALYSES                                            | 57 |
| 3.5 | l       | RESULTS                                                         | 57 |
|     | 3.5.1   | Autogamy bagging in the field                                   | 57 |
|     | 3.5.1.1 | Thesium australe                                                | 57 |
|     | 3.5.1.2 | Dillwynia sieberi                                               | 58 |
|     | 3.5.2   | Pollen to ovule ratios (P:O)                                    | 58 |
|     | 3.5.2.1 | Thesium australe                                                | 58 |
|     | 3.5.2.2 | Wahlenbergia luteola                                            | 59 |
|     | 3.5.2.3 | Dillwynia sieberi                                               | 59 |
|     | 3.5.3   | Determination of W. luteola's Breeding System-Field Experiments | 61 |
| 3.6 | I       | RESULTS IN CONTEXT                                              | 63 |
| 3.7 | 1       | DISCUSSION                                                      | 65 |

vii

# Chapter 4:

| FLORAL VISITORS | 69 |
|-----------------|----|
|                 |    |

| 4.1 | I     | NTRODUCTION                                      | 69 |
|-----|-------|--------------------------------------------------|----|
| 4.2 | ł     | AIMS                                             | 72 |
| 4.3 | Γ     | Aethods                                          | 72 |
|     | 4.3.1 | T. australe-Field Observations                   | 72 |
|     | 4.3.2 | T. australe-Thrips investigation                 | 73 |
|     | 4.3.3 | W. luteola-Field Observations                    | 73 |
|     | 4.3.4 | D. sieberi-Field Observations                    | 73 |
| 4.4 | S     | STATISTICAL ANALYSES                             | 74 |
| 4.5 | ł     | RESULTS                                          | 74 |
|     | 4.5.1 | T. australe-Field Observations                   | 74 |
|     | 4.5.2 | T. australe-Thrips investigation                 | 75 |
|     | 4.5.3 | W. luteola-Visitor Identification                | 75 |
|     | 4.5.4 | W. luteola-Influence of Temperature              | 78 |
|     | 4.5.5 | W. luteola-Comparison of Flower Numbers in Plots | 80 |

| 4.5.6  | W. luteola-Visitation Rates                                               | 81 |
|--------|---------------------------------------------------------------------------|----|
| 4.5.7  | W. luteola-Influence of Coflowering Species                               | 83 |
| 4.5.8  | D. sieberi-Visitor Identification                                         | 83 |
| 4.5.9  | D. sieheri-Influence of Temperature                                       | 85 |
| 4.5.11 | D. sieberi-Visitation Rates to Plots                                      | 85 |
| 4.5.12 | D. sieberi-Influence of Number of Focal Plant Flowers on Visitation Rates | 88 |
| 4.5.14 | D. sieberi-Influence of Coflowering Species                               | 91 |
| 4.5.15 | D. sieberi-Comparison of Native Bee versus Honeybee Visitation            | 92 |
| 4.5.16 | D. sieberi-Behaviour of Floral Visitors at Focal Plants                   | 94 |
| I      | DISCUSSION                                                                | 96 |

4.6

## Chapter 5:

# REPRODUCTIVE OUTPUT: THE INFLUENCE OF LOCAL DENSITY AND FLORAL VISITATION ON FRUIT AND SEED PRODUCTION

| 5.1 | l       | INTRODUCTION                                                 | 103 |
|-----|---------|--------------------------------------------------------------|-----|
| 5.2 | 1       | Aims                                                         | 106 |
| 5.3 | I       | Methods                                                      | 107 |
|     | 5.3.1   | T. australe FR: FL and S: FR ratios                          | 107 |
|     | 5.3.2   | W. luteola FR: FL, S: FR, S: FL and Seed Abortion            | 109 |
|     | 5.3.3   | D. sieberi FR: FL, S: FR, S: FL, Seed Abortion and Predation | 110 |
| 5.4 | S       | STATISTICAL ANALYSES                                         | 111 |
| 5.5 | I       | RESULTS                                                      | 114 |
|     | 5.5.1   | Reproductive Output                                          | 114 |
|     | 5.5.1.1 | Thesium australe                                             | 114 |
|     |         | • FR: FL Ratios                                              | 114 |
|     |         | • S: FR Ratios                                               | 114 |
|     | 5.5.1.2 | Wahlenbergia luteola                                         | 116 |
|     |         | • FR: FL Ratios                                              | 116 |

103

|         | • S: FR and S: FL ratios                         | 117 |
|---------|--------------------------------------------------|-----|
|         | Aborted Seed                                     | 120 |
|         | Pollen Limitation                                | 120 |
| 5.5.1.3 | Dillwynia sieberi                                | 121 |
|         | • FR: FL Ratio                                   | 121 |
|         | • S: FR and S: FL Ratios                         | 122 |
|         | Proportion of Aborted Fruit                      | 124 |
|         | • Incidence of 1- and 2-Seeded Fruits            | 124 |
|         | • Fruit Predation                                | 126 |
| 5.5.2   | Relationship Between Visitation and Reproduction | 127 |
| 5.5.2.1 | Wahlenbergia luteola                             | 127 |
| 5.5.2.2 | Dillwynia sieberi                                | 127 |
| 5.5.3   | Results Summary                                  | 128 |
| l       | DISCUSSION                                       | 129 |

# Chapter 6:

5.5

| FITNESS COMPONENTS: OFFSPRING AND POLLEN |         |                                                    | 134 |
|------------------------------------------|---------|----------------------------------------------------|-----|
| 6.1                                      | į       | INTRODUCTION                                       | 134 |
| 6.2                                      |         | AIMS                                               | 138 |
| 6.3                                      | ]       | Materials and Methods                              | 139 |
|                                          | 6.3.1   | Seed Germinability, Viability and Offspring Growth | 139 |
|                                          | 6.3.1.1 | T. australe                                        | 139 |
|                                          | 6.3.1.2 | W. luteola                                         | 143 |
|                                          | 6.3.1.3 | D. sieberi                                         | 146 |
|                                          | 6.3.2   | Stigmatic Pollen Loads and Pollen Tube Growth      | 150 |
|                                          | 6.3.2.1 | T. australe                                        | 150 |
|                                          | 6.3.2.2 | W. luteola                                         | 151 |
|                                          | 6.3.2.3 | D. sieberi                                         | 152 |
|                                          |         |                                                    |     |

ix

| v   |
|-----|
| - A |
|     |

| 6.4 | 5       | STATISTICAL ANALYSES                               | 153 |
|-----|---------|----------------------------------------------------|-----|
| 6.5 | RESULTS |                                                    | 154 |
|     | 6.5.1   | Seed Germinability, Viability and Offspring Growth | 154 |
|     | 6.5.1.1 | T. australe                                        | 154 |
|     |         | Seed Germinability                                 | 154 |
|     |         | • Fruit Weight                                     | 154 |
|     |         | Seed Viability                                     | 155 |
|     | 6.5.1.2 | W. luteola                                         | 158 |
|     |         | Individual Seed Weights                            | 158 |
|     |         | Seed Germinability                                 | 159 |
|     |         | Radicle and Cotyledon Emergence Rates              | 160 |
|     |         | Seed Viability                                     | 161 |
|     |         | Offspring Survivorship & Growth                    | 162 |
|     | 6.5.1.3 | D. sieheri                                         | 165 |
|     |         | • Seed Weight                                      | 165 |
|     |         | Seed Germinability                                 | 168 |
|     |         | Radicle and Cotyledon Emergence Rate               | 168 |
|     |         | • Viability of Ungerminated Seed                   | 170 |
|     |         | Survival and Growth Rate of Progeny                | 170 |
|     |         | • Growth Rates of D. sieberi Progeny (GE1)         | 171 |
|     |         | • Growth Rates of D. sieberi Progeny (GE2)         | 171 |
|     | 6.5.2   | Stigmatic Pollen Loads and Pollen Tube Growth      | 174 |
|     | 6.5.2.1 | T. australe                                        | 174 |
|     | 6.5.2.2 | W. luteola                                         | 180 |
|     | 6.5.2.3 | D. sieheri                                         | 182 |
|     | 6.5.3   | Results Summary                                    | 188 |
|     | 6.5.3.1 | T. australe                                        | 188 |
|     | 6.4.3.2 | W. luteola                                         | 189 |
|     | 6.5.3.3 | D. sieheri                                         | 189 |
| 6.6 | I       | Discussion                                         | 191 |

6.6

| Chapter | 7: |  |
|---------|----|--|
|---------|----|--|

| SYNTHESIS AND CONCLUSIONS 1 | 99 |
|-----------------------------|----|
|-----------------------------|----|

| 7.1 | INTRODUCTION                                            | 199 |
|-----|---------------------------------------------------------|-----|
| 7.2 | Study Design                                            | 199 |
| 7.3 | Breeding Systems                                        | 200 |
| 7.4 | THE RESPONSE OF FLORAL VISITORS TO DENSITY              | 201 |
| 7.5 | REPRODUCTIVE OUTPUT, DENSITY AND VISITATION             | 202 |
| 7.6 | FITNESS COMPONENTS                                      | 203 |
| 7.7 | <b>CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH</b> | 204 |
|     |                                                         |     |

#### REFERENCES

207

224

#### APPENDICES

| Appendix A: | Plot maps for study species                      | 224 |
|-------------|--------------------------------------------------|-----|
| Appendix B: | List of plant species recorded in study plots    | 248 |
| Appendix C: | Habitat attributes analysis summary              | 251 |
| Appendix D: | D. sieberi FP visitation analysis summary (2004) | 252 |
| Appendix E: | Seedling growth analysis summary for D. sieberi  | 253 |
| Appendix F: | W. luteola seedling survival analysis summary    | 254 |

# **LIST OF ABBREVIATIONS**

#### GENERAL

| FR: FL | Fruit to flower ratio; the number of fruits that arose per flower. |
|--------|--------------------------------------------------------------------|
| S: FR  | Seed to fruit ratio; the number of seeds that arose per fruit      |
| SW: FR | Seed weight to fruit ratio (surrogate for S: FR)                   |
| P:O    | Pollen to ovule ratio; the number of pollen grains per ovule       |
| HBs    | Introduced honeybees, Apis mellifera                               |
| NBs    | Australian native bees collectively                                |
| FP     | Focal Plant                                                        |
| NN     | Near Neighbour; nearest conspecifics to a focal plant              |
| NND    | Near Neighbour Distance (from the focal plant)                     |
| SC     | Self-Compatible                                                    |
| SI     | Self-Incompatible                                                  |
|        |                                                                    |

# **STUDY SITES**

| ABR | Aberfoyle Rd              |
|-----|---------------------------|
| BM  | Black Mountain Cemetery   |
| MOR | Moray                     |
| OAR | Old Armidale Road         |
| POW | Powalgarh                 |
| UNE | University of New England |

# **CHEMICALS**

FAAFormalin: Acetic acid: Alcohol (fixative)GA3Gibberellic Acid (plant hormone)TTC2,3,5-triphenyl-2H-tetrazolium chloride