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Abstract

The continuous need for improved agricultural production efficiency requires that a

greater quantity and quality of information is available for producers to base their

decisions upon. This information pertains to current production circumstances (e.g.

production levels, price structures and environmental conditions) as well as the

outcomes from scientific research. The incorporation of scientific findings into

decision support systems (DSS) is increasing the use of available production

information and allowing different production scenarios to be explored in order to

help improve the quality of decisions made. However, most current DSS do not have

the capacity to determine what decisions would be optimal for a given production

system. Instead they simply support decisions by predicting possible outcomes that

are not immediately obvious and/or obtainable. Scientific outcomes can be

incorporated into DSS in the form of simulation models that describe the system

under consideration. In the context of beef cattle production, decisions relating to

drafting, feeding, marketing, logistics and breeding could be optimised based on the

output from a feeding and growth model. The successful application of a DSS of this

nature would rely on how indicative the model is of animal growth and development

in a variety of production environments and for different animal types.

Predictive Ability of Feeding and Growth Models

Developing mathematical equations to represent the growth of animals is not a new

science and has taken many forms during the last century. These range from single

equations that fit growth as a function of time to growth simulation models that

consider information relating to age, feed intake, feed quality, environmental

influences and genetic capacity of animals. Chapter 3 uses a number of criteria to

narrow down the models available in the literature and test the capacity of the

remaining growth models to predict weight changes, when age and feed intake

information is available. The accuracy of model predictions was determined by

comparing observed body weights with predicted body weights. This was achieved by

keeping breed and sex as well as the nutritional and external environments constant

while using model input parameters estimated in external populations. The robustness

of the models was determined by testing how accurately models predicted body

XXI



weights uSIng data sets that differ in nutritional and external environments but

contained the same breed and sex (i.e. Angus steers).

Parameter estimation to test model accuracy revealed that models of a more simplistic

nature (polynomial, Gompertz (1825)) and that only consider limited information (e.g.

age) provided more accurate fits to live weight data than models that are more

complex (Freer (1997), Amer (1998)) and also require larger quantities of information

(e.g. feed intake, feed quality). The difference in ability to fit data between the

simplistic and complex models is a consequence of the more complex models

containing a large number of biological principles which constrains them to follow

what is considered to be sensible growth patterns. In contrast, the simplistic models

contain few biological principles, if any (polynomial), which allows them the

flexibility to alter their shape to match the data. It was also found that the inherently

biologically rich structures of the more complex models resulted in a greater number

of parameter estimates being anchored against search space boundaries. This occurred

as a consequence of the optimisation procedure attempting to achieve the lowest

residual sums of squares possible. This is not a desirable outcome and points toward

the need to increase the amount of information available to the growth model and the

possibility of developing an alternative method for estimating growth model input

parameters.

Model robustness was assessed firstly by using datasets to test the transferability of

parameter estimates between animal populations when environmental, breed and sex

effects were identical. Secondly, other datasets were used for the purpose of testing

the transferability of parameter estimates between animal populations when

controlling breed and sex effects but allowing nutritional components of the

environment to change. In both cases the Freer (1997) and Amer (1998) models were

shown to have greater predictive abilities with this being most evident in the results

obtained when the nutritional environment changed. This was attributed to both the

type of information these models considered, including feed quality (e.g.

metabolisable energy and crude protein content) and the inherently biologically rich

structure of these models.

XXll



Development and Testing of Body Composition Models

The markets serviced by the Australian Beef industry, although different all have

requirements that relate to the physical quantities of carcasses. Thus, to be able to

optimise any decisions that relate to these characteristics a model is required that is

capable of accurately partitioning the whole body into its physical quantities. There is

a lack of such models available in the literature. Chapter 4 attempted to address this

by developing a number of models that are based around allometric equations. The

predictive ability of these models, when empty body weight was given and growth

was occurring ad libitum, was tested in comparison to two models taken from the

literature.

The allometric coefficients (b) estimated for the models developed in chapter 4

represented sensible patterns of body component development The estimated

allometric constants (a) partitioned the empty body into sensible proportions of flesh,

bone, viscera, blood and skin at maturity, e.g. flesh represented the highest proportion

while blood represented the smallest, following ad libitum growth. The first 'chemical

degree of maturity' model developed in this study was found to have a predictive

ability that was inferior to the physical body composition models taken from the

literature. The remaining four models developed in this study had predictive abilities

that were found to be superior to the models taken from the literature. The second

'chemical degree of maturity' model was found to consistently have the lowest

predictive ability of these four models. The hierarchical degree of maturity (HDOM)

model was found to perform at a consistent level, although not always the best The

predictive abilities of the actual empty body weight (ActEBW) and degree of maturity

(DOM) models varied with how data were presented for testing. When data were

presented as bone, flesh and non-carcass the DOM model had a superior predictive

ability compared to the ActEBW model. In contrast, the ActEBW model had a greater

predictive ability when non-carcass was presented as viscera and remainder. Flesh

weight was found to be predicted with the greatest accuracy by all models tested (e.g.

R2 = 0.999 for the HDOM, DOM and ActEBW models).
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Estimating Model Input Parameters for Animal Cohorts

The diversity present in animal growth is a fact that most growth simulation models

do not take into consideration. These models are developed to represent what are

perceived to be 'average' animals without considering between-animal variation. It

has been determined that the responses produced by such models are different to the

average responses of an animal population, because of the non-linear relationship

between model input parameters and model outputs. This has lead to the realisation

that it would be desirable for models to consider between-animal variation

particularly when they are used to represent whole production systems and/or for

economic optimisation. Chapter 5 explored the speed and accuracy of different

methods used for sampling from a simulated population during inverted modelling to

estimate growth model population parameters by matching model outputs to observed

population parameters (mean and standard deviation of body weight at 250, 450, 650

and 1250 days of age).

Stochastic sampling from parameter distributions produces sampling errors that

reduce accuracy unless very large numbers of samples are taken. Deterministic

sampling is a fully repeatable method that offers the opportunity to overcome these

sampling errors. The difference in accuracy between deterministic and stochastic

sampling was found to approach statistical significance (p=0.077) when estimating

growth model input parameters. Greater uncertainty was associated with the

parameter estimates made using stochastic random sampling. The predictive ability of

the parameter estimates made by both methods was tested in comparison to those

estimated in chapter 3, which Estimated Individual animal Parameters (EIP) and

subsequently calculated parameter averages and standard deviations. The parameters

estimated by EIP were found to have the greatest predictive ability, probably because

they used all age and feed intake data available. This predictive ability was reduced

when tested with a second less information-rich dataset. The parameters estimated by

both sampling methods were found to be more accurate for this dataset. \Vhen even

smaller quantities of data were available the parameters estimated using deterministic

sampling had greater predictive abilities than those estimated with either random

sampling or EIP.
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Selective Drafting of Cohorts

The efficiency of animal production is a function of how the available resources are

used to achieve the desired outcomes of a production system. Drafting animals into

cohorts is a practice commonly used to help manipulate animal growth to meet the

physical constraints of production systems. Drafting also offers the opportunity to

take advantage of the diversity that is inherently present in animal growth by

matching animals to the needs of different target markets as well as the opportunity to

use different management options for these markets. The growth and composition

models tested in chapters 3 and 4 along with the input parameters estimated in chapter

5 were combined within a simulated production system to predict growth outcomes in

chapter 6. These predictions formed the basis of a method that uses the random keys

representation (RK) to draft animals into market cohorts that are custom managed to

the market's needs and appropriate for the animals' growth potentials.

Four production scenarios similar to those that have been seen in the Australian

production environment were used to test how drafting with Differential Evolution

(DE) using RK reacts to different prevailing production conditions. DE drafted

animals toward the Heavy Supermarket (HS), European Union (EU) or Japanese 83

(B3) markets under optimal conditions in scenario 1. In scenario 2, when the value of

the 83 market was reduced, DE reallocated animals into either the HS or EU markets.

In response to this reallocation new optimal slaughter ages were determined to

compensate for animals with higher mature protein (Pm) and general growth rate (8*)

parameters being included in the EU market. The lower slaughter age of 590 days also

prevented some animals allocated to the EU market in scenario 1 from achieving the

desired carcass characteristics in scenario 2 resulting in them being reallocated to the

HS market.

The allocation of animals to market cohorts by DE was explored in scenario 3 when

drought conditions reduced pasture availability. A distinct outcome in this scenario

was the depressed growth trajectories of all market cohorts. The animals allocated to

the 83 market were identical to those allocated in scenario 1, indicating that even

though the growth of these animals was suppressed due to the drought conditions they

were able to achieve the carcass characteristics required by the B3 market when
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feedlotted. In contrast to scenario 1, more animals were allocated to the HS and less to

the EU markets. Animals that were reallocated were either unable to attain the carcass

characteristics required by the EU market or the carcass they produced was less

valuable than the carcass they produced for the HS market. Scenario 4 explored what

impact increased costs of production in the B3 market would have on animal

allocation. The profitability of some animals was still at its maximum when allocated

to the B3 market even though the costs of production were elevated. However, the

majority of animals from the B3 market in scenario 1 were reallocated to the EU

market, which caused a reallocation of animals to the HS market, similar to what

occurred in scenario 2. This reallocation occurred in conjunction with the optimal

slaughter age for the EU market being reduced from 740 to 590 days. In scenarios 3

and 4, interactions between individual growth model input parameters along with

interactions between the parameters and optimal slaughter ages had important impacts

on the allocation of animals to market endpoints.

The behaviour of the drafting system was found to be sensible in each of the

production scenarios presented. However, there are possible refinements that could be

made to the predictive models and the optimisation procedure that would increase the

number of production scenarios it could be applied to (e.g. include heifers, cows and

bulls in the drafting process) and the confidence that can be placed in the results

obtained. The most obvious of these changes would involve further development of

linear regressions used to predict P8 fat depth and IMF percentage to include factors

such as nutrition, breed and sex.

The methods developed and results obtained in this last chapter point to the feasibility

of using growth models, animal data and decision support systems with optimisation

engines to help drive a wide range of management decisions to best exploit animal

performance and market opportunities.
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