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5.1. Introduction
Two key factors influence the efficiency of animal production, these being the

efficiency with which individual animals produce the desired product and how
efficiently the system produces these individuals (Kinghorn 1985). Thus, it becomes
apparent that the efficiency of individual animals is a key factor in determining the
overall efficiency of a production system. Recognising this, Knap (1995) discussed
reasons why between-animal variation should be incorporated into growth models
when simulating different production systems. However, many of the growth
simulation models currently used only represent a perceived ‘average’ animal, with no
consideration given to between-animal variation, based on the assumption that the
deterministically simulated response of this animal to a given treatment or condition is
the same as the response of the population (Wellock et al. 2004b) or selected cohort.
This is only possible if all individuals in the cohort have an equal growth potential,
are at the same stage of development and respond in the same manner to all prevailing
stressors. In contrast, Pomar et al. (2003) found that the mean response of a cohort
differed in magnitude and shape to that expected for an ‘average’ individual. This in
turn implies that deviations from mean growth model parameter values have non-
linear consequences due to the non-linear nature of the growth models. Thus, Pomar
et al. (2003) made the conclusion that stochastic models that properly represent
populations or cohorts (i.e. take between-animal variation into consideration) are
needed in circumstances where the models are to be used for predicting nutrient
requirements of different genotypes and sexes or for economic optimisation of

production.

Parameterisation of growth models to obtain the most accurate predictions and thus
their most appropriate application is not an easy process due to the difficulty
associated with measuring the underlying physiological traits (Doeschl-Wilson et al.
2006) let alone repeatedly measuring such traits. For example, the protein content of
an animal at maturity (P,,) is required by the growth model presented by Wellock et
al. (2003a). Methods have been proposed for estimating difficult to measure model
parameters, termed “inverted modelling” by Knap (2003) and “reverse simulation” by

Bourdon (1998). Knap (2003) put forward the method of algebraically reworking
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model equations to make the desired parameters the dependent variables. However,
this method has several shortcomings including that many differential equations
contained in growth models are difficult to invert analytically and problems of this
type are ill-posed, have either no solution, a series of non-unique solutions or unstable
solutions relative to inputs (Tikhonov and Arsenin 1977). Baldwin (1976) proposed
an iterative inverted modelling method for estimating parameters that involves
assigning initial parameter values, computing model outputs, comparing these outputs
with experimental data, obtaining an error estimate, allowing a computer routine to
then systematically adjust parameter values until computed and experimental

differences are minimised (see Figure 5.1).

In one sense this approach was used during model validation in chapter 3 where
growth model parameters were estimated initially for individual animals from growth
and feed intake data and then averaged to obtain growth model parameter means and
standard deviations. This approach has two shortcomings. The first is the time
required to obtain parameter estimates for each individual prior to calculating the
population parameters (e.g. approximately 24 hours per model for 57 animals). The
second is the fact that growth models tend to be developed to represent perceived
‘average’ animals, not individuals. The time required to obtain the parameter
estimates is partly a function of the number of data points used by this technique.
Between 15 and 165 live weight and feed intake data points per animal were used to

estimate the growth model parameters.

There is an alternative that takes advantage of the fact that growth models tend to be
developed to represent perceived ‘average’ animals and allows for between-animal
variation to be incorporated into growth models. This method iteratively tests growth
model parameter means and standard deviations, generating sampled sets of input
parameters for a whole cohort, until differences between predicted model outputs and
production characteristics are minimised. The computational time required by this
method is dramatically reduced for two reasons. Firstly, the quantity of data required
by this method can be much lower because points need only be sampled at given
intervals (e.g. 250, 450 and 650 days of age, rather than every 7 days). Secondly,
there is only one optimisation for the whole cohort rather than one optimisation per

cohort member.
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There are two important steps in the process outlined by Baldwin (1976). They are
how systematic adjustments are made to parameter values and the sampling method
used to calculate the model outputs. The non-linear nature of growth simulation
models as well as the non-linear interactions between the models and their input
parameters requires that a heuristic is used that has the capacity to deal with such
characteristics when systematically adjusting growth model parameters (e.g. DE, GA
or simulated annealing). The sampling method used would influence the accuracy of
any results obtained from it. Sampling error associated with stochastic random
sampling from parameter distributions would result in decreased accuracy of
estimates unless a generous number of samples were taken. Potentially, this problem
could be overcome if stochastic random sampling is replaced by deterministic
sampling, a method proposed by Kinghorn et al. (1993a). This method does not have
the problem of sampling error and requires only a finite number of samples, leading to

robust parameter estimates with zero standard errors.

The aim of this chapter is to compare the accuracy and speed of using deterministic
and random sampling during inverted modelling for estimating average growth model
parameters and their standard deviations for a cohort of animals. The prediction
accuracy of both methods will also be compared to the method used in chapter 3 when
parameters are estimated from all available data and only using partial data. The
method used in chapter 3 will be referred to as Estimating Individual Parameters
(EIP) in the remainder of this study. The phrase ‘deterministic and random sampling’
is referred to as Estimating Population Parameters (EPP) in the remainder of this

study for ease of reading.

5.2. Materials and Methods

5.2.1. Feeding and Growth Data

Trangie

The data used during this study were the same data used in chapters 3 and 4. The data

were taken from a serial slaughter experiment conducted by NSW Agriculture at the

Agricultural Research Centre, Trangie, New South Wales. The 106 Angus steers used
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during the experiment were born in 1986 and 1987. The animals were slaughtered at
different degrees of maturity throughout the experiment ranging from birth to
maturity. Consequently, only 58 of the original 106 animals entered the feedlot phase
of the experiment due to 24 animals being slaughtered at birth and another 24 animals
being slaughtered at weaning (7 months). One animal was also excluded from the
analysis due to large quantities of missing data. The 58 animals that entered the
feedlot were grown on a pelleted diet which provided 10.9 MJ ME/kg DM via access
to an automatic feeding system (Herd 1991) 24 hours a day, with the programmed
condition that any animal that had eaten in the previous half an hour was denied
access. This feeding system allowed animals to eat to appetite and thus the animals

could be considered to have attained ad libitum growth.

The growth data collected from the remaining 57 animals consisted of live weights
from approximately 7 months of age until considered mature at approximately 3 years
and 8 months. The steers were considered to have reached maturity when weekly live
weight measurements showed that they had effectively stopped growing. Other details
concerning this experiment and generation of these data are reported by Perry and
Arthur (2000). The live weight data were averaged across ages to obtain estimates of
live weights and standard deviations at 250, 450, 650 and 1250 days of age. The
phenotypic correlations between the live weights at thesé ages were also calculated.
The lack of a recorded pedigree within this experiment meant that no genetic
parameters were able to be estimated and so these data only represent phenotypic

parameters.

CRC

The CRC dataset used in chapter 3 was also used in this study to test the
transportability of the parameters estimated using EPP. These data were taken from an
experiment established at the Agricultural Research Centre, Trangie, New South
Wales, independent from the experiment described for the Trangie dataset. The 96
Angus steers in the experiment were born in 2001. The steers entered the CRC for
Cattle and Beef Quality “Tullimba” Research feedlot (Armidale, NSW), after
backgrounding, at approximately 20 months of age weighing an average of 462kg
(Hegarty et al. 2005). There were 8 pens of 12 steers accommodated in the feedlot.
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The steers undertook a standard induction program following which the animals were
given ad libitum access to a finishing ration containing 12.1 MJ ME/kg DM and a DM
digestibility of 82% (Herd 2005, pers. comm.). For any further details relating to this

experiment and generation of this data refer to Hegarty et al. (2005).

5.2.2. Parameter Estimation

Growth Model

The most desirable growth models contain few parameters (Ferguson and Gous 1993),
which helps reduce error likely to be associated with parameter estimation. The
growth model presented by Amer and Emmans (1998) and tested in chapter 3 was
chosen for comparing EPP. This model contains only three parameters that are
affected by genotype (i.e. that are not biological constants) (Amer and Emmans 1998;
Wellock et al. 2004b) and assumes that these parameters explain the biological
variation seen when animals are exposed to environmental conditions that are not
limiting (possible ramifications of this assumption are discussed in the discussion
relating to environmental temperatures). These are mature protein content (£,,), lipid
to protein ratio at maturity () and a general rate parameter (B*). The model takes the
same form as that presented in chapter 3 in equations (3.10) to (3.16). The Newton-
Raphson iteration method used to estimate initial body protein content takes the same

form as equation (3.101) in the Appendix.

Estimation of Model Parameters

As briefly outlined above, the parameter estimation procedure is an iterative process
that follows the system proposed by Baldwin (1976). It proceeds as follows: “assign
initial values to unknown model parameters; compute, using these parameters and
input data, model outputs (i.e. body weight means, standard deviations and
correlations in the current study); compare these computed estimates to experimental
data to calculate an error; iteratively adjust parameter values in a systematic manner
until the differences between computed estimates and real data are minimised.” This
process is shown graphically below in Figure 5.1. The parameters being estimated in

this study were the mean and standard deviations of input parameters from the growth
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model described above. The parameters were used to minimise the differences
between the predicted means, standard deviations and correlations of growth model

live weight outputs and experimental data at the above mentioned ages.

Begin Estimation Terminate when
Process By differences are
Assigning Initial minimised
Parameter Values )
Adjust
Parameter
Values

Input Data
-\ Criterion

Growth Model

Production Data
Model Output

Figure 5.1: Graphical description of the parameter estimation process followed when

testing deterministic and random sampling.

Generating Growth Model Outputs

The mean and standard deviations of the growth model input parameters were used to
produce a simulated population and live weight outputs (e.g. means and standard
deviations) from the growth model that are then compared to those of the Trangie

data. The parameters for each observation taken during EPP were derived using:

E,=p+x;.0 (5.1)

where P . is the value of the ith growth model parameter for the jth observation, g, is

Y

the population mean for the ith growth model parameter, x; is the jth observation,

generated using deterministic or random sampling as described below in ‘Sampling

Methods’ and o, is the standard deviation of the ith growth model parameter. The
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comparison between sampling methods conducted in this study was based on 2000
observations and 729 observations being taken by random and deterministic sampling,

respectively. A constraint, P_. >0 where P,

? in Tmin; 15 the value of the ith parameter for
the minimum observation, was imposed to prevent parameter estimates falling below
zero. This constraint prevented biologically and mathematically illegal operations
from occurring. The constraint on the mature protein parameter (£,,) was increased to,
P _. . >P where P, is initial protein content, to prevent mature protein content from

i.min j

being estimated as lower than the initial protein content.

Differential Evolution
The systematic adjustment of the growth model parameter means ( 4 ) and standard

deviations (o, ) in equation (5.1) above was conducted using Differential Evolution
(DE) (Price and Storn 1997). The criterion used by DE for determining the error
between predicted model outputs and the experimental data was weighted residual
sums of squares (WRSS).

4 —Y,.))’ (5.2)

WRsS = ¥ (2.

where Y; is the model predicted component, i, Y; is component i taken from the
experimental data, and z; is the weighting applied to component, i. The weightings (z;)
were used to remove bias associated with the difference in scale between live weights
and correlations e.g. a difference of 20 kg between experimental and model predicted
live weights has 100 times the influence on an unweighted criterion than a difference
of (0.2 between correlations. The weightings applied were 107, 6.67 x 107 and 1 for
average live weights, standard deviations and correlations between the live weights.
Parameter estimation using EPP was replicated 10 times and the values presented in
the results for the growth model parameters, model outputs, criterion and runtime
were averaged across these 10 replicates. Experience showed that an acceptably low
level of between replicate variation in DE convergence was achieved following 5,000

DE generations.
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Sampling Methods

The successful application of estimating growth model parameter means and standard
deviations using this process is reliant on the sampling of observations from the
assumed distributions of the model parameters. The methods tested for sampling the

observations (x;) in equation (5.1) are discussed below.

Random Sampling

Simple stochastic random sampling was used where n observations were selected
from the assumed normal distribution of each parameter given by the parameter’s
mean and standard deviation (Figure 5.2a). Once sampled, each observation (x;) had

an equal influence on the ensuing parameter estimation process.

(a) (b)

Figure 5.2: Comparison of random (a) and deterministic (b) sampling from a true

normal distribution.

Deterministic Sampling

Deterministic sampling is a fully repeatable method that gives the properties of an
infinite population but only requires finite computational resources (Kinghorn et al.
1993b). It is an alternative to stochastically selecting many observations and
calculating parameter estimates. Deterministic sampling systematically samples
observations from an assumed true distribution and weights the observations by the
number or density of observations at that point (Mackinnon et al. 1996) to eliminate

bias in the parameter estimates. It draws values of a variable, X, at fixed points, x;
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across the true distribution of X (Figure 5.2b). The expected number or density of
observations with the value x; equals the height of the density function at x; multiplied
by the interval between x; and x;,; and the number of observations in the population.
An example would be if a population of size 100 with a distribution of N(0,1) were
sampled at intervals of 0.1 between -7 and 7, then the expected number of
observations at x; is equal to 100 x 0.1 x &, where h; is the height of the normal
distribution at x; (Mackinnon et al. 1996), calculated from the standard normal
density. During this study observations were taken at 1 standard deviation intervals
and it was found that sampling to 4 standard deviations either side of the growth

model parameter means (as shown in Figure 5.2b) produced robust results.

The assumption that the input parameters of the growth model have true normal
distributions is made. However, deterministic sampling is not constrained to function
only in environments that contain parameters with normal distributions. Deterministic
sampling could be applied equally successfully in circumstances where parameter

distributions take other forms, such as uniform distributions.

Using stochastic methods in objective functions during search processes has the
inevitable property that certain parameter values may appear to have superior
performance but in reality are not the global optimum for the problem. These values
could be considered “lucky” as they have a more variable impact on model outputs,
giving greater potential for selection bias, as a search algorithm will always seek to
maximise the prevailing criterion. Deterministic methods do not suffer from this
problem when used in objective functions because they are fully repeatable and thus
replicates give identical answers. Figure 5.3 illustrates how stochastic methods can
produce variable outcomes that can result in selection bias (blue diamonds) compared
to the consistent outcomes of deterministic methods (black line). Deterministic
methods identify the true global optimum (purple dot) while stochastic methods can

identify those that are not (green dots).
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Criterion

Parameter Value

Figure 5.3: Variable criterion values produced by stochastic random sampling (¢) that

produces upward selection bias (®) in comparison to deterministic methods (===).

Computing Platform

All analyses were programmed using Microsoft Visual Basic .NET in the Microsoft
NET Framework 1.1 (Copyright © Microsoft Corporation, 2003) and were run on a
3.06 GHz Mobile Intel Pentium personal computer with 512 MB of RAM to allow

runtime comparisons between EPP.

5.2.3. Predictive Ability

The predictive ability of the parameters estimated by EPP was compared to those
made using EIP. This contained two steps that used two independent datasets. The
first step used prior information concerning average parameter estimates made using
the sampling procedures described above along with feed intake and age information
contained in the Trangie dataset. The second step used the parameter estimates

described above but tested them with the Beef CRC dataset. This second step was
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designed to test the transferability of parameter estimates to unrelated animals grown
in unrelated experimental conditions. To remove any confounding effects of sex or
breed, the data used during this step of testing were obtained from Angus steers only.
The results obtained using the Beef CRC dataset should be taken with some degree of
caution as this was the only suitable alternative dataset available. Testing of

alternative datasets could well lead to different conclusions.

The importance that previous growth of animals has on future growth has been
highlighted in chapters 2 and 3. The predictive ability of parameters estimated by EPP
was compared in this context. EIP was used to make parameter estimates when using
only the first 37 data points for each animal in the Trangie dataset. The predictive
ability of the estimated parameters was then tested across all the data points for each
animal. Five of the 57 animals were excluded from this process due to only 15 data
points being recorded for these animals. The maximum age reached in the first 37
data points by any of the 52 animals tested was 530 days. Consequently, to avoid the
influence of data from extreme ages, EPP only used average body weights and
standard deviations at 250 and 450 days of age, along with the correlation between

these two ages, to obtain growth model parameter estimates.

Growth Model

The growth model used to test the predictive abilities of each set of parameter
estimates was the extended version of that used to make the parameter estimates
(section 5.2.2). The model takes the same form as that presented in chapter 3 in
equations (3.10) to (3.46). The Newton-Raphson iteration method used to estimate

initial body protein content takes the same form as equation (3.101) in the Appendix.

During predictive testing a constraint was placed on the starting protein content to
prevent it from exceeding the estimated mature protein content (/?, in the model,
described above). The main purpose of this constraint was to allow the model to run
completely without committing any illegal mathematical operations. It was envisaged
that this constraint would not improve predictive ability; if anything it was considered
that it would reduce it, because animals are constrained to lower body protein contents

than would be expected for their given live weight.
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Model Fit Across Individual Animals

The Mean Squared Error (MSE) was used to compare the predictive abilities of each
set of parameters, as predicted by optimising equation (5.2), averaged across animals
to take into account the different quantities of data available for each animal. MSE is

defined as:

()]

n—-np

MSE = (5.3)

where I}, is the model predicted live weight at time, ¢, Y, is the observed live weight

data at time ¢, n is the number of data points for each animal and np is the number of
input parameters in the model under consideration (3 in the growth model used during
this study). The MSE was averaged across animals to make a comparison of the
predictive ability of each set of estimated parameters. An R* was also calculated and
averaged across animals to compare the predictive ability of the estimated parameter

sets.

Rf:l—( af J.(SSE] (5.4)
' df —np )\ SST

where SSE is the sum of squares of error and SST is the total sums of squares.
Confidence intervals of 95% were generated around the average predictions of each
set of parameters for comparison with averaged live weight from both the Trangie and

Beef CRC datasets in the following manner (Hogg and Craig 1995):

w

t

I =Xbil.96(0“] (5.5)

where Xb represents the average model prediction, o, represents the error standard

deviation (SD) which is given by:
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o, = ' (5.6)

where df, is the total degrees of freedom minus the number of parameters in the model
(df - np) and w, is a weighting used to take into account changing error SD as live

weight increases over time, given by:

R S (5.7)

()
max Wt

where Y, is weight data at time, ¢t and maxWe is the maximum predicted weight

achieved across the growth trajectory.

5.3. Results

5.3.1. Parameter Estimation
The testing of EPP was conducted to compare the performance of each method in

terms of the required computational time, the difference between observed and
predicted data as well as the variation in model outputs and estimated parameters
between replicates. Table 5.1 displays the average parameter estimates and the
between replicate variation along with the WRSS for each sampling method. The
WRSS indicates that deterministic sampling performed with a higher accuracy that
approached statistical significance (p=0.077) than random sampling. All the
parameters estimated by random sampling had higher variation between replicates
which indicate it performed less consistently reducing the confidence that can be

placed in these estimates.
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Table 5.1: Weighted residual sums of squares (WRSS), growth model parameter
estimates and standard deviations averaged across 10 replicates presented with the

between replicate variation.

Sampling Method
Parameters Deterministic Random
Pm 120.143 £ 0.053 120 + 0.458
Pm SD 20.64 + 0.02 31.276 £+ 0.561
Q 0.3707 £ 0.0011 0.3724 + 0.002
QSD 0.0008 £ 0.0005 0.0043 + 0.0056
B* 0.01781 + 0.0000185 0.0179 + 0.000072
B* SD 0.0012 £ 0.000022 0.0018 + 0.000048
WRSS 0.019 % 0.0000026 0.01917 £ 0.00036

The patterns of protein and lipid accretion predicted by the parameter means given in
Table 5.1 are illustrated in Figure 5.4. Predictions made by the parameters estimated
by deterministic sampling are obscured by the predictions made by random sampling.
The variation seen around these patterns was produced by taking parameter values
that are two standard deviations either side of the parameter mean (e.g. X +2SD ) and
then appling all possible combinations of these values for each sampling method.
Greater variation for both protein and lipid accretion rates is clearly evident for the
parameters estimated by random sampling. The greater amount of variation produced
by random sampling reduces confidence in the parameter estimates as it allows
parameter values to reach levels that would be unexpected in cattle. This is
particularly the case for P, where values of approximately 25 kg are within three
standard deviations of the mean and would not be expected to be seen in Australian
production conditions. The early maturing pattern of protein and late maturing pattern
of lipid evident for both sets of parameters estimates are sensible and what would be

expected.
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Figure 5.4: Comparison of the predicted protein (a) and lipid (b) accretion patterns
and their variation produced by using parameter estimates 2 standard deviations from

the means given in Table 5.1 for random (==) and deterministic (==) sampling.

Table 5.2 compares the average and standard deviation of live weight at 250, 450, 650
and 1250 days of age, taken from the Trangie experiment data, with the outputs
produced by EPP. The averages and standard deviations are similar for both methods
with a tendency for deterministic sampling to produce results that are slightly closer
to the overall distributions of the experimental data. Also evident in Table 5.2 is the
difference between the predicted live weights and the experimental data particularly at
450, 650 and 1250 days of age. The age-weight correlations produced by both EPP
were essentially identical (Table 5.3) but again there is disparity between some of the

experimental and predicted correlations (e.g. correlations for 250-450 and 650-1250).

Table 5.2: Comparison of the average weight and standard deviation outputs made by

deterministic and random sampling with data taken from the Trangie experiment.

Age (days)
250 450 650 1250

Mean:

Trangie 23161 379.96 498.13 663.33

Deterministic 240.74 + 0.24 41833 +0.24 524.30%0.12 604.17 £ 0.28

Random 240.82+£0.78 41829+ 0.56 524.17+0.37 603.81 +1.34
SD:

Trangie 32.02 57.83 76.30 99.38

Deterministic  25.28 + 0.04 54.69 + 0.03 77.35 0,02 102.16 £ 0.10

Random 2518 £ 0.18 54.58 £ 0.13 7734 2007 102.28: 0,13
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The results shown in Tables Table 5.2 and Table 5.3 illustrate that random sampling
produces greater variation in model outputs between replicates than deterministic
sampling. Generally, the between replicate variation ranges from 1.5 to 4 times
greater for random sampling than deterministic sampling, with a few extreme cases
where it is up to 12 times greater (e.g. correlations for 250-450 and 450-650). This
reinforces the uncertainty that is associated with parameter estimates made using
random sampling. The small amount of variation between replicates seen for
deterministic sampling reflects non-perfect convergence in the DE optimisation

algorithm used.

Table 5.3: Comparison of correlations between weights at different ages produced by

deterministic and random sampling with data taken from the Trangie experiment.

Correlations Trangie Deterministic Random

250-450 0.870 0.928 + 0.0001 0.928 +0.0012
250-650 0.862 0.841 + 0.0002 0.841 = 0.0015
250-1250 0.746 0.716 + 0.0003 0.716 + 0.0012
450-650 0.938 0.979 + 0.00007 0.979 £ 0.0009
450-1250 0.913 0.923 + (.0002 0.923 +(0.0019
650-1250 0.919 (.982 * 0.00003 0.982 + 0.0001

The results presented in the tables above are a consequence of the way each method
samples from the parameter space. Figure 5.5 illustrates that deterministic sampling
provides a much more even coverage of the parameter space preventing any one
segment from being over or under represented. In comparison, the distribution of
observations taken during random sampling is represented by a cluster in the central
area of the parameter space with the extremities being represented by only a few
observations. Although not presented, another important point to note is that Figure
5.5b doesn’t change between replicates where as Figure 5.5a is unique to each

replicate.
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(b)

Pm

Figure 5.5: Distribution of the 2,000 (a) and 729 (b) observations taken across the

parameter space by random (a) and deterministic (b) sampling, respectively.

The patterns of selected observations seen in Figure 5.5 are the result of selecting
different numbers of observations for each sampling method. Deterministic sampling
selected observations at 1 standard deviation intervals for 4 standard deviations either
side of the growth model parameter means (i.e. 9 sampling points per parameter).
Given that three growth model parameters were sampled, the total number of
observations equates to 729 (i.e. 9%). Using 2,000 observations random sampling was
able to obtain a WRSS that was inferior, at a level that approached statistical
significance (p=0.077), compared to the WRSS obtained using deterministic
sampling. Consequently, the greater number of data points required by random
sampling resulted in approximately three times the computational resources being

required (Table 5.4) to perform at this level in comparison to deterministic sampling.

Table 5.4: Number of sampled observations and optimisation runtime (seconds) for
5,000 DE generations when estimating parameters with deterministic and random

sampling.

Sampling Method
Deterministic Random
No. Observations 720 2,000
Time (sec) 10817 31284
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5.3.2. Predictive Ability

The ultimate purpose of procedures such as EPP is to estimate parameters that can be
used to accurately predict animal performance. The predictive abilities of the
parameters estimated during this study were tested by applying the parameters to each
animal in the Trangie dataset. The parameters estimated by deterministic sampling
were found to have a slightly inferior predictive ability than those estimated by
random sampling as illustrated by the MSE, SD of MSE, R? and error SD values in
Table 5.5. However, as might be expected from the amount of raw data used for EIP,
both sets of estimated parameters had inferior predictive abilities compared to the
parameters estimated by EIP. EIP calculated average population parameters and their
standard deviations after firstly estimating the parameters for individual animals from
live weight and feed intake data. The two step nature of this parameter estimation
process and the quantity of data used has implications on the error structure of the
estimated parameters in terms of reducing the amount of error expected compared to

that produced by EPP.

Table 5.5: The MSE, SD of MSE, R and error SD (o.) values averaged across
animals using the Trangie dataset are presented to compare the predictive ability of

the parameters estimated by EIP with those estimated using deterministic and random

sampling.

Average MSE MSE SD R’ O,
EIP 43024 4182.82 0.982 65.22
Deterministic 10886.37 8710.28 0.9508 105.9
Random 10857.78 8693.56 0.951 105.76

The average error SDs are reproduced in Figure 5.6 to illustrate the confidence
intervals associated with the predictive abilities of the estimated parameters in
comparison to the average data from the Trangie dataset. Across the whole growth
trajectory, the confidence intervals for the parameters estimated by EPP are inferior to
the confidence interval produced by EIP. In the initial stages of the growth trajectory
this inferiority is only slight. However, this inferiority dramatically increases along
the growth trajectory particulatly in the upper confidence interval. Towards the end of
the growth trajectory the inferiority tends to decrease in the upper confidence interval

and increase in the lower confidence interval. As would be expected from the results
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in Table 5.5 the confidence intervals for EPP are nearly identical and thus follow very

similar trajectories in Figure 5.6 thus making them hard to distinguish.
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Figure 5.6: Confidence intervals of prediction when using the parameters estimated by
EIP and those estimated with deterministic and random sampling in comparison to the

Trangie data averaged across animals.

Another aspect to the acceptability of growth model parameter estimates is their
transportability between unrelated populations of animals grown in unrelated
environmental conditions. The results that tested this aspect of parameter acceptability
are in contrast to the results presented above. The average MSE, SD of MSE, R* and
error SD values in Table 5.6 indicate both sets of parameters estimated by EPP have
greater predictive abilities in the Beef CRC dataset than the parameters estimated by

EIP, with virtually no difference between those estimated using EPP.
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Table 5.6: The MSE, SD of MSE, R* and error SD (c.) values averaged across
animals using the Beef CRC dataset are presented to compare the transportability of

the parameters estimated by EIP with those estimated using deterministic and random

sampling.

Average MSE MSE SD R" Oc
EIP 2192.92 3338.69 0.9959 41.01
Deterministic 649.34 576.46 0.9985 24.74
Random 649 576.67 0.9985 24.73

The average error SDs are again used to illustrate the confidence intervals associated
with the predictive ability of each set of estimated parameters (Figure 5.7). It can be
seen that the confidence intervals for the parameters estimated by EPP are much
smaller than the confidence interval of the parameters estimated by EIP. The
parameters estimated by EIP tend to under predict weight at younger ages and make
more appropriate estimates towards the end of the experiment. The estimates made
using EPP appear to be in agreement with the experimental data at younger ages and
could be considered to be slight over predictions at older ages. Again because the
error SD’s in Table 5.6 for EPP are similar their confidence intervals are hard to

distinguish in Figure 5.7.

Table 5.7 contains the predictive ability of parameters estimated using the technique
described by EIP and those estimated using EPP when only partial data is available.
In contrast to Table 5.5, the MSE, SD of MSE, R? and error SD values indicate that
parameters estimated using deterministic sampling have a greater predictive ability
than parameters estimated by EIP or random sampling. It can also be seen that the
parameters estimated with random sampling have an inferior predictive ability than
those estimated using EIP. The difference between deterministic sampling and EIP is

smaller than the difference between EPP.
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Figure 5.7: Confidence intervals of prediction when using the parameters estimated by
EIP and those estimated with deterministic and random sampling in comparison to the

Beef CRC data averaged across animals.

Table 5.7: The MSE, SD of MSE, R* and error SD (o.) values averaged across
animals using the Trangie dataset are presented to compare the predictive ability of
the parameters estimated using 37 data points and EIP with those estimated using

deterministic and random sampling when only using data for 250 and 450 days of age.

Average MSE MSE SD R’ o,
EIP 5878.25 5701.69 0.9753 7353
Deterministic 5790.99 5564.63 0.9757 72.89
Random 6423.59 6276.66 0.9731 75.97

The average error SDs are used to illustrate the confidence intervals associated with
using the parameters estimated from partial data by each technique across the whole
growth trajectory of animals in the Trangie dataset (Figure 5.8). The confidence
intervals for each technique are similar in the initial stages of the growth trajectory but
tend to separate towards the later stages with deterministic sampling having the
smallest interval at the termination of the experiment. All parameter sets tend to make

predictions that are relatively close to the average Trangie data up until approximately
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700 days. Beyond this age all parameter sets tend to over predict growth with random

sampling making the most dramatic over predictions.
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Figure 5.8: Trangie data averaged across animals in comparison to the confidence
intervals of prediction when using the parameters estimated by EIP with 37 data
points and those estimated with deterministic and random sampling using only data

for 250 and 450 days of age.

5.4. Discussion
The purpose of this study was to compare the speed and accuracy of using EPP during

inverted modelling for estimating growth model parameters for a population of
animals. The optimisation criteria (Table 5.1) and model outputs presented in Tables
Table 5.2 and Table 5.3 indicate that deterministic sampling had a higher accuracy
than random sampling in relation to the average population data (i.e. average live
weight, standard deviations and correlations at different ages). Figure 5.4 illustrates
the higher amount of variation seen in protein and lipid accretion rates predicted by
random sampling compared to deterministic sampling. This outcome supports the
observation that less confidence can be placed in the estimates obtained from random

sampling. The differences seen between the model outputs and the experimental data
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in Tables Table 5.2 and Table 5.3 for both sampling methods could be taken to
indicate that the model is not sufficiently representative of animal growth. However,
these differences are a consequence of the model used not considering information
from factors that have important influences on growth particularly the environmental
conditions to which animals were exposed. The oscillations seen in the averaged
Trangie data (Figures Figure 5.6 and Figure 5.8) are due to summer temperature
extremes seen in western NSW (discussed in Chapter 3 and again below). The form of
the growth model used during this study did not take feed intake, environmental

temperatures or the interaction between these into consideration.

Tables Table 5.2 and Table 5.3 also reveal that greater variation is present in the
model outputs predicted using random sampling. This is not a desirable outcome as it
places uncertainty around these parameter estimates. This is confirmed in Table 5.1
by the variation around the estimated parameters. It can be clearly seen that the
parameters and their estimated standard deviations have greater variation surrounding
them than those estimated with deterministic sampling. The presence of between
replicate variation around the parameter estimates made using deterministic sampling
is attributable to terminating the sampling runs after 5,000 generations of the DE.
However, the small size of this variation indicates that if given sufficient time the DE

would produce results with zero between-replicate variation.

The reason behind the higher level of variation seen in the parameter estimates and
model outputs produced by random sampling is explained in Figure 5.5a. This figure
reveals that the sampling points taken by random sampling are clustered in the central
portion of the parameter space. This results in large areas that are poorly covered in
the sampling procedure while other areas could be considered as being well covered.
Although not explicitly shown in the results, Figure 5.5a changes between replicates
which the procedure is then forced to accommodate when estimating the parameters
in order to produce a high level of fit during each replicate, thus contributing to the

between-replicate variation.

The distribution of sampling points used by deterministic sampling, shown in Figure
5.5b, is in stark contrast to that seen for random sampling. The parameter space is

sampled in an even manner with all regions being represented and no clustering or
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sparse areas occurring. An important outcome of this sampling method is that the
pattern seen in Figure 5.5b doesn’t change between replicates. Given adequate DE
generations to converge this reduces the variation in parameter estimates and model
outputs to zero between replicates as the procedure is not required to accommodate
sampling variation. Thus, greater confidence can be placed in the parameter estimates

made using deterministic sampling.

The results presented in Tables Table 5.1, Table 5.2 and Table 5.3 for deterministic
sampling were achieved by sampling 729 observations from the parameter space in
comparison to the 2,000 observations required by random sampling. This highlights
the major advantage of deterministic sampling, in that its computing costs are
substantially lower than random sampling. Deterministic sampling required an
average of 10 817 seconds to estimate the above parameters using 5,000 iterations of
DE per replicate where as random sampling required 31 284 seconds (Table 5.4). This
provides scope for deterministic sampling to be used to explore scenarios that would
otherwise be impossible to explore with stochastic simulations that rely on random
sampling (Mackinnon et al. 1996). The higher efficiency offered by deterministic
sampling is particularly useful in combination with optimisation procedures that

contain repetitious calculations.

MacKinnon et al. (1996) pointed out that the computational requirements of
deterministic sampling are increased when sampling occurs from higher orders of
multivariate distributions rather than univariate distributions. Although the efficiency
of deterministic sampling was still apparent during this study when sampling from
multivariate distributions, it should be noted that only 3 parameters were being
estimated. If the number of parameters estimated during these simulations were to
exceed ~12 (e.g. 97 = 2.82E+11 sample points) the efficiency of deterministic
sampling would be lost resulting in random sampling becoming a more attractive

alternative for estimating growth model parameters.

Scope exists for the use of quasi-random numbers during the sampling process to
overcome this constraint of deterministic sampling. Quasi-random numbers are
designed to provide a more uniform coverage of the sample space than random

numbers by minimising the deviation of sample values from uniformity, using a
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criterion called ‘discrepancy’ (Mascagni and Karaivanova 2002). This is achieved by
removing the serial independence of subsequently generated values (i.e. making the
sample points correlated) (Caflisch 1998) which eliminates clumping seen with
random numbers. Mascagni et al. (2002) and Mascagni and Karaivanova (2001) have
found that the convergence rate and accuracy of Monte Carlo methods have been
increased by the use of quasi-random sequences. Using quasi-random numbers with
the weighting strategy employed by deterministic sampling could provide a solution
for simulations that contain too many estimable parameters for deterministic sampling

to maintain its superior efficiency.

Ultimately, the purpose of parameter estimation methods is to find parameters that
have the ability to accurately predict the potential and actual performance of animals
in real production environments. The predictive abilities of the parameters estimated
by EPP were tested in a manner similar to that used during the model testing
conducted in chapter 3. Initially, the Trangie dataset was used to test the predictive
ability of parameters when used in a single population where the environmental, breed
and sex effects were controlled. The average parameters estimated by EIP were found
to have a greater predictive ability than those estimated by deterministic or random
sampling (Table 5.5). This is also reflected in the confidence intervals presented in
Figure 5.6, where it can be seen that the parameters estimated by EPP over-predict
growth across most of the growth trajectory. The higher predictive ability of the
parameters estimated by EIP could be attributed to the greater amount of information
available in comparison to the information available to EPP. EIP used between 15 and
165 live weight and feed intake data points per animal to estimate parameters whereas
EPP only used the average live weights and standard deviations at 250, 450, 650 and

1250 days of age along with the correlations between these ages.

The dataset taken from the Beef CRC was used to test the transferability of parameter
estimates between populations of animals when the nutritional components of the
environment were allowed to change but the breed and sex effects were controlled.
The predictive ability of the parameters estimated by EPP was higher than the
parameters estimated by EIP (Table 5.6). The confidence intervals displayed in Figure
5.7 are much smaller for EPP than for the parameters estimated by EIP. The EIP

parameter estimates tended to under predict live weight across the whole growth
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trajectory with this under prediction being less significant at older ages. In contrast,
the predictions made using the parameters estimated by EPP were in general
agreement with the average live weight data with a slight tendency for over prediction
to occur at older ages. However, these results should be taken with some degree of
caution as this was the only suitable alternative dataset available and other such
datasets may well lead to different conclusions. We have no dataset-level degrees of

freedom to contrast different methods.

This difference in predictive ability of the parameters estimated by EIP and those
estimated by EPP could be associated with the feed intake data used in chapter 3. The
parameters estimated by EIP are directly influenced by the feeding circumstances
animals were experiencing i.e. daily variation in each individuals feed intake directly
affects the parameters estimated (discuss in chapter 3). EPP only used population
estimates of live weights at certain ages which in a sense averaged out the daily
variations in feed intake by only allowing it to influence parameter estimates through
the live weight data. This allowed these parameter estimates more flexibility when

dealing with animals that were experiencing different nutritional circumstances.

Future growth is impacted upon by the feeding levels experienced and growth
achieved in an animal’s past. The ability to accurately predict the growth outcomes of
exposure to different environments given information concerning previous growth is
important for production systems and has direct relevance to the optimisation of

growth pathways, which may include the manipulation of feeding levels.

The predictive ability of parameters estimated by the methods described above when
using partial data was tested. The results in Table 5.7 indicate that the set of
parameters estimated by deterministic sampling had the highest predictive ability
while the parameters estimated by random sampling had the lowest and those
estimated using EIP were intermediate. The difference between deterministic
sampling and random sampling is attributable to the sampling of observations. The
uniform coverage of the parameter space that occurs during deterministic sampling
provides stability where as the clustering and sparseness seen in random sampling has
a greater influence when smaller quantities of data are used. Figure 5.8 demonstrates

that the parameters estimated by each of the methods tend to over predict live weight
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at ages greater than those used to estimate the parameters. This could be interpreted as
indicating that during the initial stages of the experiment animals were attaining their
growth potential and the parameters were estimated to reflect this situation. The over
predictions could then be seen as a result of environmental suppression of growth at
older ages which is not accounted for due to both a lack of environmental data and the
inability of the growth model used to take such information into account. This
scenario has been explored in Chapter 3 when an attempt was made to model the
influence that annual oscillations in summer temperatures in western NSW have on

realised growth (Figure 3.5).

The next logical step would involve the refinement of the parameter estimation
methods to increase accuracy by including information from other sources. An initial
improvement would involve the incorporation of how environmental temperatures
influence feed intake and thus affect growth. This could take a form similar to that
attempted and discussed in chapter 3. This study only used data that were obtained
from Angus steers. Factors such as sex and breed would have important influences on
the estimation of parameters for growth models. Examples of these influences are not
hard to envisage and may include cows having lower mature protein contents (Py,) to
reflect lower mature body weights and higher mature lipid to protein ratios (Q) than
the steers in this study. Genetic information can play an important role in predicting
animal performance. Within breed information would prove beneficial when
augmented with available phenotypes for predicting the growth of different lineages
of animals. Including these factors in the estimation of growth model parameters
would help facilitate the drafting of cohorts for meeting the demands of different

market endpoints.

5.5. Conclusion
The results from the testing conducted in this study demonstrate the impact that both

the form of the growth model used and the information available has on parameters
estimated by all methods tested. In particular the addition of environmental
information (e.g. daily temperatures) would help increase the accuracy of the
predictions made by the growth model. The results also indicate that deterministic

sampling offers a more accurate and computationally efficient means of obtaining
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parameter estimates for growth models than either random sampling or EIP. This is
particularly the case when smaller quantities of recorded animal data are available and

the number of model parameters is moderate (<10).

5.6. Recommendations
Deterministic sampling could be refined to address the loss in efficiency that occurs

when the number of parameters being estimated exceeds approximately 2.
Incorporation of quasi-random numbers with the weighting strategy used by
deterministic sampling could provide a solution to this loss of efficiency. However,
the performance of quasi-random numbers would need to be extensively tested in an
environment such as this study before confidence could be placed in any parameter

estimates and procedures that apply them.
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