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3.1. Introduction

A principal objective of beef production is to grow animals to a desired endpoint
(weight, fat content) with a high degree of efficiency and uniformity. The purpose of
such a goal at all levels within the beef industry is to help meet the needs of
components further down the supply chain. One possible means of achieving
uniformity in beef production is to manipulate the growth pathways of animals, as
discussed by Ball et al. (1997). However to prevent a compromise in overall
efficiency any manipulation needs to be optimised. Optimisation relies upon the
mathematical functions employed to describe the biological characteristics (eg.
growth, development and energy requirements) and economic characteristics of beef
production systems such that the results of alternative feeding treatments can be

adequately predicted.

In most commercial production environments the main component of animal
performance is live weight gain or growth. Prediction of all other animal performance
attributes (feed intake efficiency, carcass weight, and carcass composition) relies upon
the accurate prediction of live weight gain. Ideally, predictions of live weight gain
would be based on information concerning age, feed intake, genetic information (both
breed and family/EBV), prevailing environment (eg. temperature) and growth history.
However, information from all these sources is generally not available with perhaps
the exception of age. Having recognised that efficiency in beef producing enterprises
can be defined as the ratio of outputs (typically live weight or weight of lean) to
inputs (typically food input in kg or metabolisable energy, ME) (Thompson and
Barlow 1986) it becomes apparent when feed intake is known the accuracy of

prediction increases.

A large number of functions have been developed that could potentially be used for
predicting the growth pathways of livestock. The approach used and the information
required to make predictions of animal growth vary between functions. The well
known Brody (1945) and Gompertz (1825) functions only use information concerning

age to make growth predictions. On the other extreme is the more biological animal
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model used in the GrazFeed (Freer et al. 1997) and GRAZPLAN (Donnelly et al.
1997) decision support tools, that predicts animal growth from current live weight
using information concerning age and the prevailing environment (temperature,
rainfall, wind) as well as feed intake and feed quality (digestibility, crude protein),
that are estimated from pasture characteristics modelled by the GrassGro decision

support system (Moore et al. 1997).

The model developed by Freer et al. (1997) forms part of a group of models referred
to as animal growth simulation models. These also contain the Cornell Net
Carbohydrate and Protein System (Fox et al. 2004) and the BABYBEEF model
(Loewer et al. 1983a), which have been developed with the aim of improving the
accuracy of growth prediction (Wellock et al. 2004a). The backbone of most growth
simulation models is the mathematical function used to determine potential growth.
An assortment of other functions, rules and logistical constraints used to predict
growth (Bridges et al. 1992a; Wellock et al. 2003a) rely on this function to set limits

on growth rate at any size, which predictions can not exceed.

Most growth functions are developed independently often using data from one or
more sources and are subsequently tested using data from other sources, which is a
valid approach, reflecting practical use. Many authors have taken this approach with
Oltjen et al. (1986b), Keele et al. (1992), Di Marco et al. (1989), Wellock et al.
(2003a), and Hoch and Agabriel (2004a) developing their models and then
subsequently testing these models with data taken from selected studies in Oltjen et al.
(1986a), Williams et al. (1992a), Di Marco and Baldwin (1989), Wellock et al.
(2003b) and Hoch and Agabriel (2004b). Arnold and Bennett (1991a) compared
outputs from four growth models when they were presented with hypothetical
production situations, such as different diets (e.g. high concentrate diet vs high
roughage diet). Arnold and Bennett (1991b) then evaluated the usefulness of these
models by comparing experimentally measured growth and chemical body
composition data with model simulated data when the models were given information
concerning the diet and production characteristics (eg. hormone status, sex, breed,
etc). Generally, growth functions are rarely compared in collective groups with the

same dataset(s).
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Any functions used for optimisation of growth pathways must use the available
information sources, to accurately predict animal performance in any production
circumstances before confidence can be placed in such a process. Therefore, the
ultimate test of the models in this study is their ability to use available information
(feed intake and age) and parameter estimates from other sources (average population
parameters) to accurately predict animal performance. The current study uses criteria
A, B and C listed below to narrow down the models available in the literature. The
ability of the remaining models to accurately predict future animal performance is
tested with criteria D, using two independent datasets that contain information
concerning animal age and daily feed intake as well as parameters estimated in

external populations.

3.2. Materials and Methods

3.2.1. Criteria for Selecting Suitable Growth Functions

In the context of optimising tactical management decisions, any functions selected for
predicting animal performance need to contain sufficient flexibility to operate in
different scenarios and need to make predictions that agree with the reality of beef
production. A number of criteria exist that, if satisfied, allow functions to meet these

needs.

A) Model Inputs:
As mentioned above, in an ideal situation information concerning age, feed intake,
genetics, prevailing environment and growth history would be available for models to
use when predicting future growth. Rarely is information of this type available in
extensive production systems. The most basic information required by any model to
make a prediction of growth is a measure of time. Age is the most readily available
and commonly used information source for this purpose. Manipulation of the
nutritional environment is a quicker and easier means than other alternatives, such as
animal breeding, to alter the growth trajectory of animals to improve profit (Meszaros
1999) and efficiency (Ball et al. 1997). Consequently, growth needs to be predicted
for various feeding conditions to ascertain if nutritional manipulations are having the

desired effect on performance and ultimately efficiency and profit.
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B) Growth Prediction from an Early Age:
The efficiency of beef production is determined by performance at all degrees of
maturity, not only later maturities often associated with lot feeding. Consequently,
conception is an ideal starting age for prediction because the potential then exists to
manipulate an animal’s entire growth pathway. However, given the difficulty
associated with measuring and/or manipulating foetal growth, prediction and

subsequent manipulation of performance from parturition would be desirable.

C) Number of Estimable Parameters:
Wellock et al. (2004a) discuss, in the context of predicting potential growth of the pig,
the desirability of a growth function that contains as few parameters as possible. The
ease of understanding and use of such a function along with a decrease in the error
associated with parameter estimation and subsequent use are advantages to be gained
from satisfying criteria of this nature. Having as few as possible estimable parameters
in a growth model is one form of the long established law of parsimony, commonly
referred to as Occam’s Razor (Sweatt 1999) and is related to the following criterion of

robustness.

D) Accuracy and Robustness:
The acceptability of any of the growth models tested during this study is determined
by two components. The first is the accuracy of prediction, which is determined using
a goodness of fit criterion that compares the observed body weights with predicted
body weights. The second component is the robustness of the growth model.
Robustness, in this study, is taken as the ability of a model to accurately predict body
weights across a wide range of production conditions (Gribble 2001). Robustness can
be compromised by using too many parameters, especially where the design and

amount of data are limiting.

3.2.2. Feeding and Growth Data

The testing procedure used during the current study was designed to test both the fit
of individual models to data and the transportability of their parameter estimates for

predictive purposes with other data. In order to achieve this goal two datasets were
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used. The first dataset (Trangie) was used for both fitting the models and testing their
predictive abilities for animals from the same population that were not used for model
calibration. The second dataset (CRC) was used for testing the predictive ability of the
models in a population that is different from the dataset used for model calibration.
This second dataset tests the robustness of the models but their ranking should be
interpreted with caution due to the use of only one external dataset. The details of

each dataset are presented below.

Trangie:

The requirement for functions to consider feed intake when predicting animal
performance demands that data for both feed intake and growth be used to test
functions. The test dataset also needs to span a substantial portion of the growth
trajectory in order to be able to appropriately gauge the fit of the functions. The data
used to test the various functions under consideration was taken from a serial
slaughter experiment conducted by NSW Agriculture at the Agricultural Research
Centre, Trangie, New South Wales. The 106 Angus steers used during the experiment
were born in 1986 and 1987. Details concerning the establishment and maintenance of

the selection lines are reported by Parnell et al. (1997).

Animals were slaughtered at different degrees of maturity throughout the experiment
ranging from birth to maturity. Consequently, only 58 of the original 106 animals
entered the feedlot phase of the experiment due to 24 animals being slaughtered at
birth and another 24 animals being slaughtered at weaning (7 months). Additionally
one animal was also excluded from the analysis due to large quantities of missing
data. Data for the remaining 57 animals consisted of weekly live weights and weekly
dry matter (DM) intakes of steers grown from approximately 7 months of age until
considered mature at approximately 3 years and 8 months. Steers were considered to
have reached maturity when weekly live weight measurements showed they had
effectively stopped growing. These animals were grown on a pelleted diet consisting
of 50% ground Lucerne hay, 45% cracked wheat and 5% cottonseed meal which
provided 10.9 MJ ME/kg DM. Individual animals had access to the diet from an
automatic feeding system (Herd 1991) 24 hours a day, with the programmed

conditions that one kilogram of feed were available per feeding session and any
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animal that had eaten in the previous half an hour was denied access. This potentially
allowed 48 feeding sessions per day. Other details concerning this experiment and

generation of this data are reported by Perry and Arthur (2000).

Beef CRC:

The data used as the external testing set was taken from an experiment established at
the Agricultural Research centre, Trangie, New South Wales, independent from the
experiment described for the Trangie dataset. The 96 Angus steers selected in the
experiment were born in 2001 and were the result of 2.4 generations of selection for
and against residual feed intake (RFI) plus an intermediate unselected line. For details
concerning the establishment of these lines refer to Arthur et al. (2001). The steers
entered the CRC for Cattle and Beef Quality “Tullimba™ Research feedlot (Armidale,
NSW), after backgrounding, at approximately 20 months of age weighing an average
of 462kg (Hegarty et al. 2005). There were 12 steers accommodated within eight
feedlot pens that each contained an automated feed-intake recorder (Ruddweigh,
Guyra, NSW) (Bindon 2001a) allowing individual feed intakes to be recorded. The
steers undertook a standard induction program following which the animals were
given ad libitum access to a finishing ration. The ration consisted of 75% grain, 10%
sorghum hay, 5% protein pellets and molasses with vitamin and mineral supplements.
The diet contained 12.1 MJ ME/kg DM and had a DM digestibility of 82% (Herd
2005, pers. comm.). Individual feed intakes of 91 steers, following the removal of 5
steers due to inappetence, were recorded for a 10-week RFI test with unfasted live
weights recorded weekly. For any further details relating to this experiment and

generation of this data refer to Hegarty et al. (2005).

3.2.3. Growth Functions

Models in the literature that satisfy criteria A and B listed above included those
developed by Parks (1970a), Freer et al. (1997), the model extended from the function
of Kinghorn (1985) and a version of the model presented by Amer and Emmans
(1998) that was extended to include rumen digestion and nutrient partitioning. The
model developed by Soboleva et al. (1999) with heat production extensions (Oltjen et

al. 2000), was not considered due to its inability to predict growth from neither birth
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(Kinghorn 2003, pers. comm.) nor conception and the large number of estimable
parameters. The Brody (1945), Richards (1959), von Bertalanffy (1957) and Logistic
(Robertson 1908) functions as well as the function developed by Moore (1985) were
also not considered due to their inability to consider feed intake. However, to
illustrate the value of adding feed intake data to age data when predicting
performance, the Gompertz (1825) function was included. A polynomial that
considered both age and feed intake was also tested to compare the predictive ability

of linear functions with that of non-linear growth models.

Given the above description of the data used for testing, any components contained
within the original models that consider pasture consumption, lactation,
environmental conditions, mobility (e.g. energy expended grazing) as well as male
and female differences were excluded from the current testing. The differences
between lines in both datasets were not considered; rather the animals within each
dataset were treated as a single population. The form of each growth model/function
used during testing is subsequently presented along with their respective estimable

parameters.

Freer Model:

The growth model developed by Freer et al. (1997) and the updated version (Freer et
al. 2002) contain functions that depend on an animal’s stage of development. The
standard reference weight (SRW) is the starting point from which normal weight (N),
using Brody’s growth rate parameter (C,;) and the allometric scalar of Taylor (1968),

is modelled:

C,.t
= - -Ww, ). . k 3.1
N SRW (SRW ‘/Vls'lrrlr ) exp( SRWu,y ] ( g) ( )

where 1 is time in days from birth and W, is birth weight. SCA (1990) define SRW
as an animal’s base weight (live weight excluding fleece and conceptus) when skeletal
development is complete and condition score is in the middle of the range (Freer et al.

1997). An animal’s stage of development (Z) is then modelled using N and SRW.
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N

The total metabolisable energy intake (MEI7,.,) of an animal is modelled in GrazFeed
using the metabolisable energy intakes of pasture (MEI;) and supplement (MEIy,,),
determined from the quality and quantity of each consumed. The testing process uses

feed intake of a ration, thus only MEI,, is used to model total ME intake.

MEI,,, = MEI =(13.3DMD, +243EE +132).1;, (MJME) (3.3)

where DMD; is the DM digestibility of the supplement (%), EE; is the ether extract of
the supplement (gg'') and I is kg of DM intake in a time period. The ME required for
maintenance (ME,,) is modelled in GrazFeed using the total ME intake in conjunction
with the energy needed for maintenance metabolism (£,.) and grazing (Eg.z.),

consequently only total ME intake and £, are used.

m

E
ME :(kLMJ-FO.OgMEI“”“I (MJ ME day-l ) (3‘4)

13

The ME required for maintenance metabolism is modelled as:

mel

E,,, =0.36W:'7 . max (exp(-8x107.),0.84)  (MJ ME day™) (3.5)

where Wr.; is weight from the previous day. The efficiency of energy use for

maintenance (k) is defined as:

k, =0.5 +[0.()2 M j (3.6)

Sodlid

where

is the ME of DM of the diet. The relative feeding level (L) in excess of

Solid

maintenance is modelled using MEI7,,,; and ME
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MEI
L [

Total _1 37
MEm J ( )

The effective degradability of protein in the diet and composition of gain are
subsequently modified with this term during modelling of growth from the nutrients
available using the equations contained in the Appendix. This information allows the

modelling of empty body gain (EB() and if required composition of gain.

£8G =| M (kg) 3.8
|\ Evg g (3.8)

where NE, is the net energy available for gain and EV(G is the energy contained in
body weight change of growing animals. EBG is then used to increment live weight

for each time period.

Wi, =Wt +1.09(EBG.At)  (kg) (3.9)

where At is the number of days in a time period, Wt,.; is the live weight prior to At and

Wt, is the live weight after At.

Extended Amer and Emmans Model:

The prediction of body weight, using the model presented by Amer and Emmans
(1998), is based on the body being divided into four chemical components, these
being protein, fat, water and ash. The unconstrained growth of each of these
components is expressed as a function of the degree of maturity of protein contained
in the body. The degree of maturity of protein in the body is represented by the

following form of the Gompertz equation:

u = exp(—exp (G,-(B. t))) (3.10)

where u, is the degree of maturity of protein in the body, ¢ is time, G, is the initial

condition derived from the ratio of the initial protein content (P,) and mature protein

80



Chapter 3: Models for Predicting Body Weight

content (£,,). By is the scaled rate parameter used to express the general rate parameter

in metabolic time. GG, and B, are derived as follows:

G, = log(,[—logc [%D (3.11)

(day™) (3.12)

where B* is a general rate parameter. The initial body protein is estimated using the
Newton-Raphson iteration method as presented in the Appendix and used in the pig
growth model developed by Wellock et al. (2003a). The potential weights of each
chemical body component depend upon the relationship defined by Emmans (1988),
that states the degree of maturity of one chemical component is a power function of
the degree of maturity of another chemical component and relies on the premise that
B* is identical for each component. This allows for the weights of the chemical body

components to be predicted using:

P=u.P, (kg (3.13)
A =5.r (kg) (3.14)
L =u"QP, (kg) (3.15)
H =u"RP, (kg) (3.16)

where P,, A,, L, and H, are the weights of protein, ash, lipid and water in the body at
time, ¢. The ratios of ash, water and lipid to protein at maturity are represented by S,
and R respectively, with S and R taking the values of (.25 and 3.2, respectively (Amer
and Emmans 1998). The power constants for lipid and water in the relationships
described above are b/ and bh with the values of 3 and (.855, respectively (Amer and

Emmans 1998). The derivatives of the above functions correspond to the

t max t max

. . . (dP dA
unconstrained maximum growth rates of protein | — , ash | — and water
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) . .. . i
(%—I— J while the derivative of equation (3.15) corresponds to the desired rate of
At max

lipid deposition (£ j These are given by:

1 des

ild—}t_)mux =B.P u,.ln (i} (kg day") (3.17)
%m =B.S.P,u,.ln (%] (kg day™) (3.18)
f]—l;dw =B Q.P, .uf”.ln (%J (kg day™ ) (3.19)
i’%m =B_.R.P,u" In [u%) (kg day™) (3.20)

where B and u, are as defined in equations (3.12) and (3.10), respectively. The degree
of maturity of ash in the whole empty body is modelled in parallel to the degree of
maturity of protein. During periods of nutritional limitation where protein is
catabolised due to insufficient supply to meet maintenance needs desired protein
deposition is predicted as above. When nutritional limitations are removed and a
protein deficit relative to ash weight exists the desired protein deposition rate is
modelled as a function of the degree of maturity of ash until this discrepancy is
removed. The desired protein deposition is modelled in this manner to allow ash
growth to occur at its normal rate whilst corrections in protein and lipid deposition are

occurring, following Kyriazakis and Emmans (1992c).

dt max A ”14

{

dr :[Bs.l’m.uA,.ln[ij+(ActA{.(A:P”—A:I{l)) (kgday') (3.21)

where 1A, is the degree of maturity of ash in the empty body, ActA, is the actual ash
content of the empty body, A:P, is the current ash to protein ratio in the empty body

and A:P, is the desired ash to protein ratio, taken as ().25.
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The effective energy scale (Emmans 1994) is used for determining both the quantity
of energy available in the feed eaten and the quantity of energy required by the animal
to achieve its desired protein and lipid growth rates. The quantity of energy required

on day, t (EN,) is predicted with:

EN,:MR,+(;,.‘-’£ J+(z,ﬂ.d—L j (MJ day™) (3.22)
des

( t max

where zp and z; are the energy costs of protein and lipid deposition on the effective

L . .
energy scale provided dar is positive and are taken as 50 and 56 (MIJ/kg),

des
respectively. MR, is the predicted maintenance requirement of the animal at time, ¢
(Emmans and Fischer 1986). To allow comparison of maintenance requirements
between animals of different mature sizes, the maintenance value is made
proportional to P,""* (Emmans 1997) following Brody’s (1945) rule for scaling

mature maintenance needs.

m

MR =z,.P0"u, (M day") (3.23)

where zy is the energy constant for maintenance, given as 1.65 and is considered to be
constant across animals and diets. The quantity of effective energy (EE) contained in

a kilogram of feed is determined using:

EE =1.15ME -3.84—4.67DCP MJ (3.24)
kg DM

where ME is the metabolisable energy and DCP is the digestible crude protein content
of the feed. The ideal protein derived from feed is based on the ideal digestible crude
protein (IDCP) scale similar to that used by Wellock et al. (2003a) and the rumen
degradable protein system used by Freer et al. (1997) and SCA (1990). The quantity
of ideal protein needed to meet the potential protein growth and maintenance needs is

calculated as:
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dr
+ L= (kg day”) (3.25)

DPLS

P =P

reg Muin

where kpprs is the efficiency of use of ideal protein for growth (0.7) (SCA 1990) and
prediction of protein maintenance (Py,) needs follows the same form as that used for

predicting maintenance energy needs:

P,

Muain

=7, Py, (kgday") (3.26)

where zyp is the protein constant for maintenance given as 0.004 and is also
considered to be constant across animals and diets. The actual protein growth and
consequently whole body growth of an animal is determined by the quantity of
digestible protein that leaves the stomach in the form of either microbial protein or
undegraded protein, which can include protein from milk that bypasses digestion in
the rumen. The quantity of digestible microbial protein (DPLS,,) synthesised during
fermentation is predicted from the metabolisable energy intake (MET), calculated as
the product of ME content and feed intake (/;), and the digestibility of the microbial
protein, taken as 0.6 (Freer et al. 1997).

8.4MEI
wep =\ ) ( kg ) (3.27)
1000 MJ ME
kg
DPLS, =0.6MCP (3.28)
MJ ME

The quantity and quality of protein that leaves the rumen undegraded is subsequently
calculated as the difference between total crude protein intake and protein degraded in

the rumen.

k
RDPI = RDP%.CP%.1. & (3.29)
kg of feed intake
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UDPI = CPI — RDPI ke (3.30)
kg of feed intake

where RDP% is the rumen degradability of the feed protein and CP% is the crude
protein content of the diet. The contribution each protein pool makes to total

digestible protein leaving the stomach is calculated from:

udp udp® m*Y mep

DPLS =(v,,.D,, UDPI)+(DPLS, v, ) (kg) (3.31)
where v,q, is the biological value of the undegraded protein, vy, is the biological

value of microbial protein, taken as 0.8 (McDonald et al. 2002) and D4, is the

degradability of the undegraded protein component of the feed protein.

p., =0 1-{ 4222 632

where ADIP; is the acid detergent insoluble protein (g/g DM) and UDP; is the rumen

indigestible protein (g/g DM) content of the feed. The biological value of the
undegraded protein is calculated from the estimated amino acid profile of the
undegraded protein. This amino acid profile is calculated from the UDP% of each
feed component (Freer et al. 1997) and its amino acid profile is taken from NRC
(1996). The DPLS is subsequently used to predict the quantity of protein deposition

that will be supported by the protein available from the animal’s diet.

drP

— =k, (prLs-r,,) (kgday') (3.33)
with the constraint that if ﬁ > —41—) then E = E . In the situation where
dt dt max dt dt max

DPLS is inadequate for protein maintenance then protein is catabolised to meet these

needs.

dr L(LP%.MEE, )

— = +MP (kg day" 3.34
dr 23.8 ] - (keday) (-39
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MEE, is the quantity of effective energy needed for maintenance above that provided
by the diet, MP, is the quantity of ideal protein needed for maintenance above that
provided by the diet, 23.8 is the heat of combustion of protein and LP% is the

proportion of effective energy for maintenance obtained from protein catabolism.

LP%=—(( al J.EI(,]+0(P (3.35)

PMain
where al is the proportion of energy in the animal that is contained in protein, Elpasain
is the effective energy needed for protein maintenance and E1, is the actual quantity of
effective energy eaten by the animal in the current time period. The surplus or
deficiency of energy after maintenance and protein deposition needs have been taken

into consideration is used to predict lipid deposition.

) (Elu ~MR —(b,,.‘;—f)j (

dt b

kg day") (3.36)

where bp is the cost of protein retention (MJ/kg) and is assumed to be 50. When lipid
deposition is positive by is the cost of lipid retention (MJ/kg) with the value of 56,
however when lipid deposition is negative, b; assumes the value of 39.6 MJ/kg, which

is the heat of combustion of lipid (Emmans 1994). In the situation where protein

catabolism takes place (Z—P negative) lipid retention is predicted using:
t

@ (MEE, —(23.8(%1;.MP,DJ (

dt 39.6

kg day™ ) (3.37)

A lipid to protein ratio is used to prevent lipid catabolism from depleting lipid stores
below a minimum quantity required for survival i.e. that needed for cell membranes,
hormone and ATP production (Frandson et al. 2003). The ratio used to constrain
empty body lipid content, L: P

min

used by Bridges et al. (1992a) and Wellock et al. (2003a) and is stated as the ratio of

=0.2P , is intermediate to the values of 0.4 and 0.1

lipid to protein in the protoplasm of the cell (Frandson et al. 2003). This value is also
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similar to the average lipid to protein ratio of new born calves (Haigh et al. 1920),
which would be expected to have minimal quantities of excess lipid. If lipid
catabolism takes the lipid to protein ratio below this constraint, protein deposition is

adjusted to maintain the minimum ratio.

The deposition of water and ash is predicted from the deposition of protein. In the

case that protein deposition is positive, ash deposition is predicted as:

dA dpP

—=0.25— kg day”' 3.38
" o (keday”) (3.38)
Whenever protein deposition is negative or during periods of rehabilitation following

negative protein deposition, ash deposition is predicted as:

dA dpP

— =0.045— (kg day' 3.39
dt dt ( s ) (339
Regardless of whether protein deposition is positive or negative, the deposition of

water is predicted as:

hh—1
dH dP ActP
— =—Rb,. ' kg day™ 3.40

a [P] (ke ay”) 40
The mass of each chemical body component at the beginning of the current time
interval is incremented by the predicted growth of the component during the current
time period, where 4t is the number of days in a time period. Empty body weight at

the end of the current time period is predicted by summing each of the body

components.

ActP = ActP +(d[—P.At (kg) (3.41)
dt

ActL, = Actl, +(‘;—L.At (kg) (3.42)
t
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ActA, = ActA, +(%.Atj (kg) (3.43)
at
ActH, = ActH, + [dTH.At) (kg) (3.44)
dt
ACtEBW, = ActP + AciL, + AciA, + ActH,  (kg) (3.45)

Following Wellock et al. (2003a), full body weight is predicted by:

ACtEBW,
Wi, = 2"

1 093 (kg) (3.46)

The untested nature of some of the assumptions made in the extensions added to the
base model of Amer and Emmans (1998) could suggest that the model may not
function sensibly. However, in an attempt at demonstrating that the model does
indeed function sensibly, the partitioning of ME as ME intake increases from 0 to ad
libitum, between maintenance, protein deposition, lipid deposition and heat loss is

presented in Figure 3.1.

Figure 3.1 is based on a 300 kg animal with a mature weight of 750 kg. The diet
provided adequate protein when fed ad libitum and was based on diets commonly
used throughout Australian feedlots for short-fed markets. The diet consisted of 80%
grain (60% Sorghum, 20% Barley), 15% roughage (Sorghum hay), 2.5% protein
supplement (Cottonseed meal), 1% molasses and 1.5% mineral supplement (Savage
2005, pers. comm., 5 November). The diet was estimated to have a dry matter (DM %)
content of 88.8%, DM digestibility of 77% and to contain 11.84 MJ ME/kg DM,
10.6% crude protein that had a rumen degradability of 78% using the feed

characteristics contained in GrazPLAN (Freer et al. 1997).
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Figure 3.1: Partitioning of ME with increasing ME intake for a 300 kg steer

consuming a short-fed feedlot ration commonly used in Australian feedlots.

At maintenance ME intake (25 MJ/d) the model predicts a gain in body protein and a
loss in body lipid, which is a shortcoming of many partitioning models (Emmans and
Kyriazakis 1997). The ME intake at which point protein deposition ceases and protein
catabolism begins is approximately 13 MJ/d. As ME intake decreases below 13 MJ/d
towards 0 MJ/d the quantity of energy obtained from protein catabolism to meet
animals requirements increases according to equation (3.35) presented above. When ()
ME intake occurs the proportion of energy required for maintenance that is obtained
from protein catabolism is equal to the proportion of total energy in the whole body
that is contained in protein. Increasing ME intake above maintenance increases the
rate of protein deposition until the point where lipid deposition begins at an ME intake
of approximately 34 MJ/d. The consequences of changing ME intake on a 300 kg
steer appear to agree in broad terms with the concepts presented by Black (1974)
(Figure 2a) and Fowler (1978) (Figure 2) for a 5 kg lamb and a 60 kg pig,
respectively. The form ME partitioning takes, as seen in Figure 3.1, is generally the

same regardless of body weight.

89



Chapter 3: Models for Predicting Body Weight

Kinghorn Model:

A standard reference growth curve (analogous to the “Standard Reference Weight”
found in SCA (1990)) is formed from the base function developed by Kinghorn
(1985) and is defined as:

W, =0.000065 {Lm{l —exp [—[%ﬂ]m (kg) (3.47)

m

where ¢ is age in days from conception, Wi, is weight at time, ¢. The power parameter,
3.337 was estimated from Taylor’s (1980) mean growth curves of nine mammalian

species, and L,, is mature length, which is defined as:

"1 0.000065

L :(——Aim—j(ﬁ) (cm) (3.48)

where A, is mature weight. With relative ease the base model can be converted to a
time-step model that predicts weight at time, ¢ as a function of the previous weight

(Wt,.)) and the time elapsed between Wt, and Wr,.;:

| 3.337

Wi, =0.000065 [L]m”+exp —0.4ar| 0¥ (kg) (3.49)
0.000065 L

m

where At is the number of days in the time period between Wt, and Wr,.,. The term

(0.4¢)

exp(——] in the base model is defined as the animal’s “drive to grow” that varies

m
between one at conception and zero at maturity. During restricted feeding, an animal’s

drive to grow can be based on its age or weight.

Growmax Time = exp[—(()[;ﬁjj (kg) (3.50)
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m

0.4¢,
Growmax Weight =exp[—(—L[""i‘—)] (kg) (3.51)

where age as expected from weight (tpecr) during ad libitum feeding is defined as:

L L_
e = _1(6.%)'10'(;(1_[2’—1)] (days) (3.52)

where L., is an animal’s length at time, #-1. A linear interpolation between

GrowmaxTime and GrowmaxWeight determines an animal’s overall drive to grow:

Growmax=MatCoe.GrowmaxTime+(1—MatCoe).GrowmaxWeight (kg) (3.53)

where MatCoe is a maturation coefficient. Appetite increases when animals have

restricted intake for a period of time, are modelled by:

Growmax W = Growmax+ AppFact.(l - CS) (kg) (3.54)

where AppFuact is the appetite factor which scales the relation between CS and
Appetite. A value of 1 was found to give sensible patterns of response to previous

nutritional restriction. CS is an animal’s condition score modelled by:

Wt
CS =t —— (3.55)
0.000065L>3Y

(k1)

Replacing CXP[—L—) in the time-step model with GrowmaxW and subtracting the

m

previous weight (Wt,.;), models ad libitum growth.

| 3.337

Wi, J3‘3”+(0.4Gr<)wmaxw.At) ~Wt_,  (kg) (3.56)

AdlibG =0.000065 (—
0.000065
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The feed intake required to realise this ad libitum growth is modelled by the sum of
the maintenance requirements of average body weight and the product of net food

conversion ratio and ad libitum growth within a time period.

AdlibG

0.75
AdlibF = At.m.(Wz,_l + ] +NFCRT.AdlibG ~ (kg)  (3.57)

where the convention used by SCA (1990) for estimating maintenance needs in

relation to body weight (W""°) is followed, with m and NFCRT being defined as:

me 003 (3.58)
DMD
necrT = NFCR (3.59)
DMD

where NFCR is the net food conversion ratio parameter and DMD is the digestibility
of the nutrient intake. A linear extrapolation is made between ad libitum growth and

maintenance to produce a measure of the weight loss when no food is eaten.

. 0.75
ZemFoodGrowth:-—l( AdlibG ) At.m.(%J (kg) (3.60)
NFCRT .AdlibG 2

This relationship simplifies to give weight loss during starvation modelled as:

, At.mWe" T
ZeroFoodGrowth = —1AdlibG. L (kg) (3.61)
NFCRT .AdlibG

Ad libitum growth and feed intake are then used with starvation weight loss in a linear

interpolation to model growth in a time period.

Growth = ZeroFoodGrowth +( AdlibG — ZeroFoodGrowth).( Adil\'}bF ) (kg) (3.62)
i
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where [ is feed intake (kg) in a time period. The weight of an animal following this

growth is simply the addition of growth and the previously calculated weight.

Wi, =Wt

=1

+Growth (kg) (3.63)

The increase in length of an animal over time is modelled, in a similar manner to
weight, and used for estimating age as expected from weight during ad libitum

feeding. Firstly, ad libitum growth in length is modelled:

AdlibLGrow = 0.4Growmax.At ~ (cm) (3.64)

Following which the increase in length possible from actual feed intake is modelled

and added to the previously calculated length (L,.,).

L=L_+ AdlibGrow.( (cm) (3.65)

AdlibFood J

Parks Model:
Weight (Wt,) at time, ¢ predicted by the Parks (1982) model is defined as:

Wt =(A —W,).[l—exp{——(A—i—)f'—D+W, (kg) (3.66)

where A is mature weight, W, is birth weight, AB is a growth efficiency factor and F,

is feed intake defined as:

F =c.{t-t*.(l—-gj.{1_exp(-§j]} (ke) (3.67)

where ¢ is time in days from the start of the feeding and growth data, C is mature feed
intake, D is feed intake at time zero and ¢* is Brody’s (1945) time constant. The feed
intake function described above indicates that feed intake data is not used in the same

manner by the Parks model as it is used by the Freer, Amer or Kinghorn models to
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predict growth. The Parks model uses a fitted curve to describe feed intake and

predicts growth from this function rather than using real feed intake data.

Polynomial Function:
Weight (Wt,) predicted by the polynomial function was defined as:

Wt =a+bt+ct’ +dd +el’ (kg) (3.68)

where ¢ is age in days from conception and /; is feed intake of a time period.

Gompertz Model:
Weight (W) predicted by the Gompertz (1825) function is defined as:

Wt = A.(exp(—exp(Gu —(B.t)))) (kg) (3.69)

where ¢ is age in days from birth, A is mature weight, B is a growth rate parameter and

G, is defined as:

W,
G, =ln[—ln(7)) (3.70)

where W, is birth weight.

The growth models described above contain different numbers of total and estimable
parameters (Table 3.1). The Gompertz and Freer models both contain 2 estimable
parameters with these two being the only parameters contained in the Gompertz

model while the Freer model contains 50 parameters in total.
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Table 3.1: The number of constants, fitted and total parameters contained in each of

the growth models described above.

Model No. No. Fitted Fitted Parameters Total No.
Constants Parameters Parameters
Polynomial 0 5 a,b,c,d, e 5
Gompertz 0 2 A B 2
Parks 0 5 A, AB, C, D, t* 5
Kinghorn 6 3 An, MatCoe, NFCR 9
Amer 20 3 P.., B*, Q 23
Freer 48 2 SRW, C,, 50

3.2.4. Model Validation

Model performance testing adopts the approach of using training and test datasets to
assess the ability of each model to satisfy the two components of criterion D. The feed
intake and growth data from the training dataset are used for making model parameter
estimates on an individual animal basis and assessing the goodness of fit achieved
with these parameters. The ability of a model to predict future animal growth is
assessed using an animal’s age and feed intake data from the test dataset and average
parameter estimates from the training dataset. The testing procedure is a replicated
process with each being initiated by randomly allocating 28 and 29 animals to the

training and test datasets, respectively.

Parameter Estimation:
The non-linear nature and complexity of some of the models under consideration

make it difficult to develop algebraic solutions for parameter estimates. These
difficulties were overcome by using a Differential Evolution (DE) algorithm (Price
and Storn 1997), which has the ability to make unbiased parameter estimates for non-
linear problems and can use a goodness of fit criterion (e.g. residual sums of squares
(RSS) in the current applications). The parameter estimation process was made an
iterative process due to missing weight records in the dataset. An Expectation

Maximisation (EM) algorithm was constructed to overcome this problem.

95



Chapter 3: Models for Predicting Body Weight

EM Algorithm:
Prior to the EM algorithm being initiated the feed intake and growth data were

averaged by age and parameters estimated using the DE for the average population
data. Missing weight records, for each animal, were replaced during the first EM
iteration by predictions made with these initial parameters. Given these expected
values, parameters were re-estimated for the growth and feed intake functions. The
missing weight records were replaced in subsequent EM iterations by predictions
made with parameter estimates from the previous iteration. Twenty iterations per
animal were allowed for each model, after which the parameter estimates and fitness

criterion remained unchanged with subsequent iterations.

Differential Evolution:
DE was used in both steps during the parameter estimation process. DE was used to

make parameter estimates prior to the EM algorithm being initiated during which DE
was found to always converge following 30,000 generations. DE was also used to
make parameter estimates during the EM process. An adequate level of DE
convergence was considered to occur after 3,000 generations per EM iteration, giving
a total of 60,000 generations per animal for each model. The fitness criterion used by
the DE to generate parameter estimates based on individual animal data was the RSS,

defined as:

RsS =Y (V. -v) 3.71)

where ¢ is time, )% is model predicted weight at time, ¢ and Y, is weight data at time, ¢.

Parameter Constraints:
A potential problem associated with using DE for making parameter estimates is

interdependency between parameters. When DE is given free reign in the parameter
space it will explore areas that result in either illegal functions being evaluated (e.g.
log(-1)) or unrealistic parameter estimates being made (e.g. mature weight estimates
in the range of 100,000 kg), simply in an attempt at minimising the objective function.

In an attempt at resolving this issue constraints were placed on the parameter space of
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all models explored by DE, with the exception of the polynomial for which no
‘biologically sensible’ limits could be defined. To maintain consistency between
models, common parameters were treated in an identical manner, mature weight (A,
A,, SRW) being the most obvious was constrained between 100 and 1200 kg. An
effort was also made to keep any constraints on parameter estimates as least stringent

as possible to allow as large a parameter space as possible to be searched.

Model Prediction:

Comparison of the predictive abilities of the models tested was separated into two
stages. The initial stage includes dividing the Trangie dataset into training and test
datasets as discussed above. This prediction procedure uses prior information
concerning average parameter estimates made using the training dataset and
information contained in the test dataset (i.e. individual feed intake and age data).
Twenty replications of this prediction procedure were performed to provide an
indication of the predictive abilities of each function when applied to different
animals in the same population, for which common parameter values might be
expected. The second stage uses a second dataset, the CRC dataset, whose
information was obtained from a feedlot experiment conducted at the CRC for Cattle
and Beef Quality “Tullimba” Research feedlot (Armidale, NSW). This second testing
procedure was designed to test the transferability of parameter estimates made during
parameter estimation to unrelated animals grown in unrelated experimental
conditions. To remove any confounding effects of sex or breed, the data used during

this stage of testing was obtained from Angus steers alone.

During testing of the Amer model a constraint was placed on the starting protein
condition to prevent it from exceeding the average estimated mature protein content
(P, in the Amer model, described above). The main purpose of this constraint was to
allow the model to run completely without committing any illegal mathematical
operations. It was envisaged that this constraint would not improve this model’s
predictive ability; if anything it was considered that it would reduce it, because
animals are constrained to lower body protein contents than would be expected for

their body weight.
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Model Fit Across Individual Animals:
Comparison of models during the parameter estimation and prediction procedures was

conducted in an identical manner. The Mean Squared Error (MSE) was used to
compare the fit of the models across animals to take into account the different

quantities of data used for different animals. MSE is defined as:

X(7-v) ]

n—np

MSE (3.72)

mod ¢l =

where f: is the model predicted weight at time, ¢, Y; is the observed weight data at

time, ¢, n is the number of data points for each animal and np is the number of
parameters fitted in the model under consideration. The MSE was averaged across
animals to make a comparison of the average fit of each model tested. An adjusted R*
(Rx?), following Kinghorn (1987) was also calculated and averaged across animals to

compare the fit of models.

Rf=l—( df j.(SSE) (3.73)
‘ df —np ) \ SST

where SSE is the sum of squares of error, SST is the total sums of squares, df is the
degrees of freedom (number of data points for each animal). Confidence intervals of
95% were generated around the average prediction of each model for comparison with
averaged live weight from both datasets in the following manner (Hogg and Craig
1995):

w{

Cl = Xbﬂ.%("e J (3.74)

where Xb represents the average model prediction, o, represents the error standard

deviation (SD) which is given by:
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o = (3.75)

where df, is the degrees of freedom minus the number of parameters in the model (df -
np) and w, is a weighting used to take into account changing error SD as live weight

increases over time, given by:

WL (3.76)

()
max Wt

where Y, is weight data at time, ¢ and maxWt is the maximum predicted weight

achieved across the growth trajectory.

3.3. Results

3.3.1. Parameter Estimation
The parameter estimation procedure was an exercise designed to establish how

accurately the selected feeding and growth functions fit feeding and growth data of
individual animals. The polynomial model provided the best average fit to the live
weight data (Table 3.2). As the complexity of the growth model increased (moving
down through Table 3.2) it can be observed that the level of fit to the live weight data
decreased, with the exception of the Parks model which had a superior fit to the
Gompertz model. A comparison of models with similar levels of complexity but
different degrees of freedom (eg. polynomial vs Gompertz or Amer vs Freer) reveals
that models containing more estimable parameters produced higher average fits to the
live weight data. Comparison of models with similar degrees of freedom reveals that
model complexity reduces their capacity to fit data (eg. Gompertz vs Freer). The SD
of MSE also supports these trends with the Parks and polynomial models having the
lowest variances and the Freer model having the largest variance. These trends are
also supported by the average error SD of the predicted weights (6.). The adjusted R*
values possess limited variation indicating all models have a high level of fit to the

live weight data.
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Table 3.2: The MSE, SD of the MSE, adjusted R* values and error SD (,) averaged
across animals from parameter estimation are presented for each model tested along

with their respective degrees of freedom (df).

o)

Model df Average MSE SD Ry~ s
MSE

Polynomial ] 23312 144.67 0.9991 16.34
Gompertz 2 389.46 242.53 0.9984 21.61
Parks 5 212,07 139.04 0.9988 18.31
Kinghorn 3 737.64 1757.04 0.9975 23.77
Amer 3 1547.30 2113.26 0.9928 36.22
Freer 2 331175 4956.23 0.9874 52.65

The average error SDs are reproduced in Figure 3.2 to illustrate the confidence
intervals associated with fitting the data and for comparison of the average curve of
each model with the average data from the Trangie dataset. The polynomial, Parks
and Gompertz functions form a tight band around the average data. The Kinghorn
model has a slightly wider band with the Freer and Amer models having the widest
bands. Figure 3.2 suggests that the models all tend to have average predictions that
under-estimate the average data with the exception of the Amer model which slightly

over-predicts.

+ Ave Weight
— Polynomial
Gompertz
Parks
— Kinghorn
— Amer
— Freer
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Age (Days)

Figure 3.2: Average confidence intervals of fitted models in comparison to the

Trangie data averaged across animals.
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3.3.2. Model Prediction
The first stage of the model prediction procedure was designed to test the ability of

the selected models to predict growth given age, feed intake data and average
parameter estimates derived from a different population. The polynomial model
produced the poorest average predictive ability when compared to the Trangie live
weight data (Table 3.3). All other models predictive abilities were substantially better
with the Kinghorn model producing the most accurate predictions followed by the
Amer, Freer, Parks and Gompertz models respectively, when comparing MSE. The
degrees of freedom of the models appear to have a small effect on their predictive
abilities. Generally, models with lower degrees of freedom have higher predictive
abilities (eg. polynomial vs Gompertz) but the effect of degrees of freedom on
predictive ability is less significant than the effect of model complexity (eg. Gompertz
vs. Freer). The SD of MSE supports this trend with the polynomial model having the
greatest SD and the Kinghorn model having the smallest. The adjusted R values tend
to agree with these trends except for a small amount of re-ranking, between the Amer
and Freer models and the Gompertz and Parks models, which can be attributed to the
degrees of freedom of the models. In general models that take larger quantities of
information into consideration (eg. age and feed intake vs. age alone) produced

superior predictions, which is what was expected at the beginning of the study.

Table 3.3: The MSE, SD of the MSE, adjusted R* values and error SD (g,) averaged
across animals and replicates from model prediction testing using the Trangie,
training and test datasets, are presented for each model tested along with their

respective degrees of freedom (df).

Model df Average MSE SD Rp™ o
MSE

Polynomial 5 20129.68  21342.25 0.8899 128.81
Gompertz 2 5940.51 7606.41 0.9667 72.54
Parks 5 5341.77 7983.75 0.9666 65.06
Kinghorn 3 3169.19 3228.17 0.9861 53.49
Amer 3 4302.40 4182.82 0.9815 65.22
Freer 2 4568.50 5746.52 0.9829 61.86
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The average error SDs are reproduced in Figure 3.3 to illustrate the confidence
intervals associated with the predictive ability of each model in comparison to the
average data from the Trangie dataset. In contrast to Figure 3.2, the Polynomial
produces the widest confidence interval that also follows an inappropriate trajectory
in comparison to the average Trangie data. The remaining models produce smaller
confidence intervals that follow trajectories that agree with the average data. Within
these models the Kinghorn model produces the tightest confidence intervals followed
by the Freer, Parks, Amer with the Gompertz having the largest. Figure 3.3 suggests
that the Kinghorn, Freer and Gompertz mddels under-predict the average data
particularly as an animal’s age increases whilst the Parks model tends to over-predict
as age increases. The Amer model has the most accurate predictions at older ages but

it tends to over-predict growth at ages below approximately 700 days.

1400 -

— // T [ Aw Weight
_;1000 1 // — Polynomial
— : Gompertz

Parks
— Kinghorn
— Amer
— Freer
0 l I T , . ,
200 400 600 800 1000 1200 1400

Age (Days)

Figure 3.3: Average confidence intervals from model prediction testing using the
Trangie, training and test datasets in comparison to the Trangie data averaged across

animals.

The second stage of the model prediction procedure was designed to test the
transferability of parameter estimates between unrelated populations of animals
grown in an unrelated set of experimental conditions. The general trend was for

prediction accuracy to increase as the complexity of the growth models increased
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(Table 3.4), with the exception of the polynomial and Gompertz models. The degrees
of freedom of the models appear to have little effect on their predictive abilities. The
best and worst performed models both have 2 degrees of freedom with the remaining
models dispersed between these. The adjusted R* values and weighted SD agree with
this general trend. The SD of MSE also tends to agree with this trend with the
exception of the Amer model. One explanation for this discrepancy is the restriction

placed on initial protein content during the testing procedure, as discussed above.

Table 3.4: The MSE, SD of the MSE, adjusted R* values and error SD (a,) averaged
across animals and replicates from model prediction testing using the Beef CRC

dataset are presented for each model along with their respective degrees of freedom

(dp).

o]

Model df Average MSE SD RA™ G,
MSE

Polynomial S5 6313.02 7807.67 (0.9839 72.39
Gompertz 2 7311.89 739391 0.9816 79.81
Parks S5 5025.29 2970.89 (.9863 70.00
Kinghorn 3 2845.62 1915.56 0.9922 52.15
Amer 3 2192.92 3338.69 0.9947 41.01
Freer 2 1680.68 1478.00 0.9954 38.70

The average error SDs are once again used to illustrate the confidence intervals
associated with the predictive ability of the models (Figure 3.4). The overwhelming
characteristic of the confidence intervals in Figure 3.4 are the flat trajectories of the
Kinghorn, Parks, Gompertz and Polynomial models. At younger ages the average
predictions of these models seem to agree well with the average CRC data, however,
as age increases they underestimate weight. The Amer and Freer models are the only
models that have predictive trends that are in agreement with the averaged data.
However, in a similar manner to Figure 3.3 these models tend to predict more
accurately at different ages. The Freer model seems to over-predict at older ages
whilst the Amer model seems to under-predict at younger ages and have more

appropriate estimates when the experiment ceased.
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Figure 3.4: Average confidence intervals from model prediction testing using the Beef
CRC dataset and parameters estimated from the Trangie dataset in comparison to the

Beef CRC data averaged across animals.

3.4. Discussion
The purpose of selecting and testing various functions was to identify a model that

had the ability to accurately predict performance given information relating to
individual animal age and feed intake. The results from the parameter estimation
procedure reveal the more simplistic models (polynomial, Gompertz) provide a higher
level of fit than the more complex feeding and growth models (Freer, Amer). A
plausible explanation for this occurrence is the inherent structure that exists in the
feeding and growth models. These types of models are developed based on the growth
and feeding characteristics of groups of animals almost always from many
experiments and thus have a structure that broadly agrees with the average
performance of such animals. However, a model such as the polynomial has no
defined structure, and so it has the flexibility to fit to virtually any growth trajectory
given sufficient parameters. Although the Gompertz function does have a defined
structure, this structure is more simplistic than those of the Freer and Amer models,

apparently allowing it more flexibility to fit growth trajectories.
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When considering ad libitum growth, Wellock et al. (2004a) indicated the Parks
model satisfied all their criteria but did not consider it further because it includes a
food intake parameter. The valid reasoning behind this decision was they consider
food intake is a consequence of potential growth rather than a contributor (Emmans
and Kyriazakis 2001). In the current study the animals may not have actually achieved
ad libitum feed intakes due to external influences (eg. high summer daytime
temperatures) and inclusion of feed parameters in the Parks model may have allowed
it to compensate for this to produce a better fit than the Gompertz function. Another
explanation may be the degrees of freedom of the model. The Parks model contains 5
parameters whilst the Gompertz contains 2, which may allow the Parks model more
flexibility to fit to the live weight data. The Kinghorn model produced an intermediate
fit which is probably a result of the model’s complexity being intermediate to the two

groups of models discussed above.

Although parameter estimates made during model testing are not considered a
criterion for selecting models, an interesting result was the number of animals whose
parameter estimates were anchored against the search space boundaries, particularly
for the Freer model (Table 3.5). The explanation for this occurrence maybe that the
form of the model tested here was not developed for extended feedlot use (Freer,
2005, pers. comm.) and thus the DE attempts to compensate by estimating unrealistic
parameters. This highlights the importance of setting parameter boundaries, but, as
discussed previously, consistent boundaries were set across models. Also, this should
not be taken to mean the Freer model is inappropriate for use in growth pathway
optimisation but rather that this is one issue that could be addressed to take the model

one step closer to the real system.
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Table 3.5: The number of animals, out of the 57 animals contained in the Trangie
dataset, whose estimates were anchored against the search space boundaries for each
parameter in the models tested along with the number of animals who had more than
| parameter anchored against the search space boundaries. The parameter numbers
below represent the order that the parameters are listed in Table 3.1 (e.g. Freer

Parameter No. | below is SRW from Table 3.1).

Model Parameter No. More than |
| 2 3 4 5 Parameter

Polynomial 0 0 0 0 0 0
Gompertz 0 0 - - - 0
Parks 5 0 0 0 9 5
Kinghorn 10 0 9 - - 1
Amer 2 38 28 - - 28
Freer 37 47 - - - 28

This type of issue is related to the concept discussed by Michalewicz and Fogel
(2000), when using heuristics such as DE, that you are only finding a solution for a
model and any shortcomings of the model will be exploited to find a solution that
minimises (or maximises, depending on the objective) the evaluation function. Thus, a
model’s structure is central to its optimisability; i.e. the model’s ability to find
sensible optimal parameters. Application of this concept to the optimisation of growth
trajectories requires that models have internal limitations preventing unrealistic
outcomes. An example is a model that contains no limitations on feed intake and thus
when attempting to maximise biological efficiency allows a heuristic to nominate the
outcome, “feed an animal nothing until the last moments prior to slaughter and then
feed massive quantities to achieve the desired outcomes”. Other internal limitations
that models use to describe cattle growth may need to contain are maximum daily
growth rates of components (e.g. protein), the maximum quantities of dietary
components an animal can safely consume (e.g. maximum urea quantities in a ration
(Gondro 2005)) and minimum feed intakes (e.g. preventing negative pasture intakes
to allow greater concentrate intakes (Gondro 2005)). Another example of how a
model’s optimisability can be compromised that is specific to this study relates to
which parameters are fitted during parameter estimation. If parameters that would

normally act as internal constraints were selected for optimisation this could

106



Chapter 3: Models for Predicting Body Weight

potentially compromise the validity of the model reducing its ability to fit data and

estimate sensible optimal parameters.

The predictive abilities of the models were tested using data from two independent
experiments. The purpose of using the Trangie information was to test the
transferability of parameter estimates between animal populations when controlling
environmental, breed and sex effects. The most obvious result is the inaccurate
predictions made by the polynomial and the limited agreement in the shapes of the
average Trangie and polynomial predicted growth trajectories. This type of result is
not unexpected as polynomials lack structure and parameters that have been sensibly
inspired by the biological nature of the prevailing problem. Polynomials often behave
rather badly at the periphery of the trajectory and extrapolation is generally
considered a risky exercise. This means that they are much less likely to fit sensibly
outside the range of the training data, especially due to the high-power functions

involved.

The predictive ability of the remaining models was substantially higher than the
polynomial. Within these models, generally those of higher complexity produced
more accurate predictions (Freer more accurate than Gompertz). The exception is the
Kinghorn model which is less complex than either the Amer or Freer models but
produced more accurate predictions. The performance of this model is not surprising
as firstly the model is based on a series of sound biological assumptions (Kinghorn
1985) related to growth characteristics of an average animal. Secondly, the model
assumes that the diet is homogeneous, which is the case in the current scenario with
the training and test datasets containing the same diet. Thus any influence nutritional
factors had on the estimated parameters did not impede the functioning of this model.
A conclusion that could be drawn from this result, and tested, is the possibility that
the potential curve contained in this model, analogous to the Gompertz curve in the
Amer model, could prove to be an appropriate basis for other feeding and growth

models.

The purpose of using the CRC information was to test the transferability of parameter
estimates between animal populations when controlling breed and sex effects but

allowing the nutritional components of the environment to change. It should be noted
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that only a single suitable alternative dataset was available. Other such datasets might
well have led to different conclusions on model suitability and the following
comments are made with caution. The Freer and Amer models were the only models
capable of using average parameter estimates to produce growth patterns that were in
general agreement with average growth data. Predictions of the remaining models
followed a trajectory that indicated growth had reached a plateau. These results are
somewhat expected given the estimated parameters are a function of the feed intake,
including diet characteristics (MJ ME/kg, CP %), used to estimate them. The Amer
and Freer models are the only models that consider dietary characteristics thus it
would be expected that the effect diet characteristics have on parameter estimates is
removed. Consequently, predictions using these models would be expected to have
higher accuracy, meaning their parameter estimates are more transferable than the
parameters of the other models. The Kinghorn model produced slightly lower
prediction accuracy than the Amer and Freer models (Table 3.4). This result shows
the potential for this model to perform more accurately if extensions were made,
primarily to allow the model to more fully consider energetics of growth, dietary
characteristics and nutrient partitioning or to use its core growth function within a

model such as the Amer model.

The value of using feed intake information is also highlighted by the results from both
model prediction tests. The Gompertz model that does not consider feed intake data
performed consistently worse than the other models that do consider feed intake data,
with the exception of the polynomial whose poor performance has been discussed
above. The nature of the data used during testing, where animals were given access to
ample feed to attain ad libitum feed intakes does not fully illustrate the value feed
intake offers when predicting growth. The difference in predictive ability between the
Gompertz model and the other models would be expected to increase if predictive

testing were carried out with data where animals were feed restricted.

One shortcoming of the current study is the assumptions made in the models tested,
particularly the extensions made to the Amer model. Within this model the digestion
of feed protein and efficiency of use for growth could be treated in different manners.
An alternative approach for pigs proposed by Kyriazakis and Emmans (1992a; 1992b)
and tested both qualitatively and quantitatively by Sandberg et al. (2005a; 2005b) uses
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the relationship between ME and digestible crude protein content of the diet
represented by a linear-plateau model that asymptotes at 0.814 to calculate an
efficiency of protein use parameter. The Freer model tested above contains a function
that adjusts feed intake for the level of feeding to account for changes in residence
time (Freer et al. 1997) and thus rumen degradation of protein. This type of scenario
is not currently considered in the extended Amer model and would be a desired
addition. Improvements of this nature are a continual process and the ultimate for a
feeding and growth model used during growth pathway optimisation would be to take
advantage of a dynamic rumen model like the Cornell Net Carbohydrate and Protein
System model (Fox et al. 2004) or the CSIRO ruminant model (Nagorcka and Zurcher
2002) that have the capacity to consider hourly variation in rumen activity. This type
of improvement could also allow lag effects associated with diet changes to be
modelled more accurately than past attempts, such as Keele et al. (1992). However,
the quantity of information required by such a model may prevent it from predicting

long term trends (e.g. growth over a week).

This study based prediction of growth on knowledge of age and feed intake. Other
types of information, such as genetic information (both breed and family/EBV),
prevailing environmental information (temperature, rainfall, wind speed) and growth
history could also be used to predict future growth. The amount of information
concerning the prevailing environment can be enormous and the manner in which this
information is used is often difficult to discern. Few models, except the Freer model
and the pig simulation models presented by Knap (1999) and Wellock et al. (2003a),
consider this type of information when predicting animal performance. However, in
the Australian environment this type of information can be especially important,

particularly when beef cattle production is occurring in different climatological zones.

An attempt was made to take into account the effect summer temperatures were
having on animal growth at Trangie. Figure 3.5 contains two animals whose weight
data were smoothed with a 5™ order polynomial using Sigmaplot version 7.0 (SPSS
Inc, Chicago, ILL, USA) as a means of identifying if the animals were experiencing
periodic (annual) depressions in weight gain, due to the effects of high summer

temperatures. The arrows in Figure 3.5 highlight points in the trajectories where
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depression of growth appears to be occurring; however in both cases the time between

these arrows exceeds an annual cycle (365 days).
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Figure 3.5: Smoothed weight and feed intake curves in comparison to actual data of 2

steers grown at the NSW Agriculture Research Centre, Trangie, New South Wales.

Visual inspection of Figure 3.5 shows some resemblance to a cyclic pattern in feed

intakes can be discerned, with depressions corresponding approximately to the arrows

indicated in the live weight figures. In an attempt at taking these patterns into

consideration a 4 parameter sine curve was fitted to the feed intakes, using Sigmaplot

version 7.0 (SPSS Inc, Chicago, ILL, USA), similar to that done in other studies
(Thompson and Parks 1983; Thompson et al. 1985b).
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where f; is feed intake at time, ¢, f, is the initial feed intake, ¢ is the amplitude of the
. 27 . . . .
sine curve (kg/week), 5 is the frequency of the sine curve (radians/week) and c is

the phase shift of the sine curve (radians). The animals depicted in Figure 3.5 were
selected to demonstrate the extreme differences found in smoothing patterns. The
addition of linear and quadratic terms to equation (3.77) did not in fact improve the
goodness-of-fit. Based on the results of such smoothing the decision was made that a
cyclic pattern of feed intake may exist but this pattern does not occur uniformly
around an accepted feed intake curve of maximum intake reducing to an equilibrium
intake at maturity (Kyriazakis and Emmans 1999) and thus was unable to be modelled

appropriately.

Past feeding and growth of animals is important information in terms of the impact it
has on future growth and in determining appropriate parameter estimates used during
prediction of future growth. Testing the ability of functions to accurately predict
growth given information concerning previous growth is an avenue that needs to be
explored because of its direct relevance to optimising growth pathways. Any
decisions made during an optimisation process are dependent upon predicted
performance made using previous performance under given conditions that may
include different feeding levels. Genetic information would also play an important
role in predicting animal performance. The current study used only data from Angus
steers, however the effects that sex and breed of an animal would have on their
performance are not hard to envisage. Thus modelling these influences would be
integral in determining if animals of different breeds and even sexes would have the
capacity to follow desired growth trajectories. The expected impact such genetic
factors would have on model parameter estimates can also be envisaged, for example
expected mature body weights of cows would be lower than those of the steers used in
this study and the mature lipid ratio (Q) in the Amer model would also be expected to
be higher. Information from within breeds (eg. EBV of bull A vs EBV of bull B)
would also help determine if animals of a particular lineage are capable of meeting
desired endpoints and ultimately should also be used for predicting animal

performance.
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3.5. Conclusion
The model testing procedures used throughout this study show that functions with no

or little inherent structure (polynomial, Gompertz) have a greater capacity to fit beef
cattle growth data compared to feeding and growth models (Amer and Freer) whose
internal structure is inherently rich. However, when the predictive abilities of these
models are tested, internally rich models have the capacity to make more robust
predictions when their estimated parameters are transferred to different populations.
Given that only one external dataset was used for testing model robustness, the
conclusion that feeding and growth models (Amer and Freer) are more appropriate
than the other functions for predicting growth during optimisation of growth pathways
is made with caution. Based on these conclusions and the irregularity of the parameter
estimates made for the Freer model, the extended Amer model will be used in

following chapters involving growth trajectory optimisation.

3.6. Recommendations
The limited availability of appropriate growth and feed intake datasets was a

limitation in this study. Identification and/or development of more such datasets
would improve this model testing process. Datasets of this type could also be used to
validate the extensions made to the Amer and Emmans (1998) growth model for beef
cattle. The models tested in this study had all information available to them during the
parameter estimation process. The performance of these functions under limited data
conditions needs to be tested and would shed more light on which function would be
most appropriate for predicting animal performance during growth pathway
optimisation. Future research also needs to explore the effect that genetic factors (e.g.
sex, breed and EBV) have on growth model parameter estimates and if they could be

used to assist the estimation process.
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