The Role of Bone Morphogenetic Protein-4 in Mammalian Reproduction

By

Pradeep Singh Tanwar

(Bachelors of Veterinary Sciences and Animal Husbandry)

October 2006

A thesis submitted for the degree of

Doctor of Philosophy

Of the

University of New England

i

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Pradeep Singh Tanwar

Acknowledgements

I wish to express my sincere thank to Dr James R. McFarlane for his invaluable guidance, enthusiasm, encouragement, and patience throughout my PhD candidature. I would also like to express my sincere gratitude to Dr McFarlane for spending his invaluable time on discussions, sharing experiences and introducing me to an exciting research area of reproductive biology and endocrinology from my original veterinary clinical background.

I would also like express my sincere gratitude to Dr Tim O'Shea for his help, guidance and valuable advice during course of my study, and excellent organizational skills in arranging for sample collection.

Special thanks go to Janelle McFarlane for her invaluable assistance in the care and handling of my experimental mice.

I also wish to acknowledge help of Shalini Panwar for spending her valuable time in stimulating discussions and assisting in sample collections. I would also like to extend my sincere thanks to the members of our lab, Kym Rae, Mark Barnett, Suresh Kumar Mohan Kumar, Bart Verschuuren, Kristy Ford, Michelle Collins and Amanda Lang, for creating relaxed and enjoyable environment.

My special thanks also go to my former teacher and mentor Professor Naresh Kumar Rakha for his friendship and support. I would also like to thank Dr Om Johrar and his family for their love and support during my stay in Armidale.

I would like to thank my parents and brother for their love and support during my overseas study.

Table of Contents

ACKNOWLEDGEMENTS	II
LIST OF CONTENTS	
PUBLICATIONS ARISING FROM THIS THESIS	VI
ABBREVIATIONS	VIII
LIST OF FIGURES	XI
LIST OF TABLES	XVII
ABSTRACT	XVIII

CHAPTER 1: GENERAL INTRODUCTION	1
1. 1. Following are the some of the important members of the BMP family –	3
1.1. 1. BMP-1	
1.1. 2. BMP-2 (BMP-2A or BMP-2- α)	4
1.1. 3. BMP-4 (BMP-2B or BMP-2- β)	
1.1. 4. BMP-5	
1.1. 5. BMP-6 (Vgr-1)	8
1.1. 6. BMP-7 (Osteogenic protein-1 or OP-1)	
1.1. 7. BMP-15 (GDF-9B)	
1.1. 8. GDF-9	11
1.2. BMP Signaling	14
1.2. 1. Receptors	17
1.2. 2. SMAD proteins	
1. 3. FACTORS AFFECTING BONE MORPHOGENETIC PROTEINS SIGNALING	27
1.3. 1. Intracellular factors	27
1.3. 2. Extracellular factor	29
1.4. LOCAL REGULATORY FUNCTIONS OF BMPS IN REPRODUCTION	36
1.4. 1. Pituitary	36
1.4. 2. Ovary	38
1.4. 3. Granulosa cells	41
1.4. 4. Thecal cells	45
1.4. 5. Primordial germ cell (PGC)	46
1.4. 6. Oocyte and oocyte derived factors	49
1.4. 7. Sheep breeds with a high ovulation rate	52
1.4. 8. BMPs and Testis	58
1.4. 9. Embryo development	59
1. 5. Aim of the project	61

CHAPTER 2: MATERIAL AND METHODS	
2. 1. Antiserum production	
2.1. 1. Immunization of sheep	62
2.1. 2. Enzyme-linked immunoabsorbent assay (ELISA)	62
2.1. 3. Antibody purification from sheep plasma	

2.1. 4. Biotinylation of antibody	65
2. 2. IMMUNOHISTOCHEMISTRY	
2.2. 1. Tissue preparation, embedding and sectioning	66
2.2. 2. Immunostaining	
2. 3. Western analysis	
2. 4. IMAGE PROCESSING	69
2. 5. Animal ethics	69
2. 6. STATISTICS	
CHAPTER 3: <i>IN VIVO</i> EVIDENCE OF ROLE OF BMP-4 IN THE MOUSE OVARY	
3. 1. Introduction	70
3. 2. Materials and Methods	73
3.2. 1. Reagents and hormones	73
3.2. 2. Animals	
3.2. 3. Histological analysis and follicle counting	73
3. 3. Results	
3.3. 1. Effect of anti BMP-4 on ovarian weight	75
3.3. 2. Effect of anti BMP-4 treatment on follicular development	75
3. 4. DISCUSSION	

4. 1. INTRODUCTION	83
4. 2. MATERIAL AND METHODS	89
4.2. 1. Tissues and sections preparation	
4.2. 2. Enzyme-linked immunoabsorbent assay (ELISA)	89
4.2. 3. Immunohistochemistry	89
4.2. 4. Western blotting	89
4. 3. RESULTS	
4. 4. DISCUSSION	

5. 1. INTRODUCTION	
5. 2. MATERIALS AND METHODS	
5.2. 1. Tissues and section preparation	
5.2. 2. Passive immunization against BMP-4	
5.2. 3. Immunohistochemistry	
5.2. 4. Testosterone assay	106
5. 3. RESULTS	107
5.3. 1. BMP-4 immunolocalization in testis, epididymis, vas deferens, prost	ate and
seminal vesicles	
5.3. 2. Passive immunization against BMP-4 and testosterone secretion	
5. 4. DISCUSSION	114

6. 1. INTRODUCTION	
6. 2. Material and methods	
6.2. 1. Tissue and section preparation	
6.2. 2. Immunohistochemistry	
6.2. 3. Western blotting	
6. 3. RESULTS	
6. 4. DISCUSSION	

7. 1. Introduction	120
7. 1. INTRODUCTION	
7.2. 1. Animals	
7.2. 2. Active immunization of ewes against BMP-4	141
7.2. 3. Determination of antibody titer and cross reactivity	142
7.2. 4. Determination of Progesterone concentration	142
7. 3. Results	
7.3. 1. Antibody titers	144
7.3. 2. Effect of active immunization on ovulation rate and follicle number	144
7.3. 3. Effect of active immunization on progesterone concentration	145
7. 4. DISCUSSION	151
CHAPTER 8: GENERAL DISCUSSION	154
REFERENCES	160
APPENDIX	213

Publications arising from this thesis

Research papers

- Tanwar PS and McFarlane JR. Immunolocalization of Bone Morphogenetic Protein - 4 in reproductive organs of mice. (Submitted to *Reproduction*).
- Tanwar PS and McFarlane JR. Immunolocalization of BMP-4 protein is developmentally regulated in mouse testis. (Submitted to Reproduction, Fertility and Development).
- **3.** Tanwar PS, O'Shea T and McFarlane JR. **Active immunization against BMP-4 decrease ovulation rate in ewes.** (Submitted to *Reproduction*).
- Tanwar PS, O'Shea T and McFarlane JR. In vivo evidence of role of Bone Morphogenetic Protein -4 in mouse ovary. (Accepted by Animal Reproduction).

Conference abstracts

- Tanwar PS and McFarlane JR. In vivo evidence for a role of Bone Morphogenetic Protein -4 in ovarian function. Proceedings of the Thirty Sixth Annual Conference of Australian Society for Reproductive Biology. 4-7 September 2005, Perth, WA, Australia (page 89).
- 2. Tanwar PS and McFarlane JR. Bone Morphogenetic Protein-4 immunolocalization is developmentally regulated mice testes. Proceedings of the Thirty Seventh Annual Conference of Australian Society of Reproductive Biology. 20-23 August 2006. Gold Coast, Queensland, Australia (page 47).
- 3. Tanwar PS, O'Shea T, Almahbobi G and McFarlane JR. Vaccination against BMP-4 reduces ovulation rate in ewes. Third Congress of the Australian Health

and Medical Research Congress. 26 November- 1 December 2006. Melbourne, Australia.

4. Tanwar PS and McFarlane JR. Role of BMP-4 in early follicular development.
Proceedings of School of Biological, Biomedical and Molecular Sciences
Postgraduate Conference. 10 February 2006. University of New England,
Armidale, NSW, Australia (Page CL1)

Abbreviations

aa	Amino acids
ActR	activin receptor
ALK	activin receptor like kinases
AMHR	anti-mullerian hormone receptor
AMH	anti-mullerian hormone
ANOVA	analysis of variance
APS	3-aminopropyltriethoxysilane
BAMBI	BMP and activin membrane bound inhibitor
BCIP	5-bromo-4chloro-3-indolyl phosphate
BMPs	bone morphogenetic proteins
BMPR	BMP receptor
BRE-Luc	BMP responsive promoter constructs
cAMP	cyclic adenosine monophosphate
COC	cumulus oocyte complex
Co-smad	common smad
CL	corpus luteum
CYP11A1	cytochrome P450 side chain cleavage
CYP17	cytochrome P450 17 ά hydroxylase
CTGF	connective tissue growth factor
COX-2	cyclooxgenase 2
Dan	differential screening selected gene aberrative in neuroblastoma
dbcAMP	dibutyryl cyclic adenosine monophosphate
DNA	deoxyribonucleic acid
E2	estradiol
eCG	equine chorionic gonadotrophin
EGF	epidermal growth factor
ELISA	enzyme linked immunoabsorbent assay
FCA	Freunds complete adjuvant
FGF	fibroblast growth factor
bFGF	basic FGF

Freunds incomplete adjuvant
follicle stimulating hormone
FSH-releasing factor
follistatin related protein
growth differentiation factor
glial cell derived neural cell factor
gonadotrophin releasing hormone
glycosylphosphatidylinositol
hyaluronan synthase 2
human chorionic gonadotrophin
hepatocyte growth factor
human ovarian theca tumor cells
3β hydroxysteroid dehydrogenase
17β hydroxysteroid dehydrogenase
insulin-like growth factor
international units
inhibitory smad
dissociation constant
kilodalton
keratinocyte growth factor
kit ligand
luteinising hormone
leukemia inhibitory factor
mitogen activated protein kinase
MAD homologous region
mullerian inhibiting substance
messenger RNA
molecular weight
p-nitrophenyl phosphate, disodium salt hexahydrate
normal rabbit serum
ovine FSHbeta promoter linked to a luciferase reporter gene
ovarian surface epithelium
P450 cholesterol side chain cleavage
phosphate buffered saline

PCR	polymerase chain reaction
PDE	phosphodiesterase
PDGF	platelet derived growth factor
PEG	polyethylene glycol
PGC	primordial germ cell
PMSG	pregnant mare serum gonadotrophin
PRDC	protein related to Dan and Cerberus
RGM	repulsive guidance molecule
RIA	radioimmunoassay
R-smad	receptor regulated smads
SDS	sodium dodecyl sulphate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
smurf	smad ubiquitination regulatory proteins
SPARC	secreted protein acidic and rich in cysteine
STAR	steroidogenic acute regulatory protein
SF-1	steroidogenic factor-1
TEMED	N,N,N',N'-tetramethylenediamine
TGF	transforming growth factor
TSC-36	TGF β stimulated clone-36
Tsg	twisted gastrulation
uPA	urokinase plasminogen activator
VEGF	vascular endothelial growth factor
Vg-1	vegetalising factor-1
Wnt	wingless-type MMTV integration site family

List of Figures

Figure 1. 3. Phylogenetic relationship of paralogous TGF- β / GDF/ BMP ligands, as well as characterized receptors and signaling pathways for individual ligands. The alignment of 35 TGF β -related ligands was performed using the C-terminal region containing the cystine knot structure, starting from the first invariant cysteine residue. Based on published literature, the type II and type I receptors as well as the intracellular signaling smad proteins for individual ligands are listed. Dashed lines indicate orphan ligands under investigation. Reproduced from (Mazerbourg et al., 2005). ______ 20

Figure 1. 4. Members of the activin/TGF- β receptor serine/threonine kinase receptor superfamily. Left: dendrogram representing the different type I and type II receptors. Right: graphic representation of the structure of the TGF- β receptor superfamily members. Number in parenthesis (right side) represents the number of amino acids for each receptor. The percentages of homology in the ligand binding domain and in the cytoplasmic kinase domain are indicated inside the sequence of the receptors and are relative to the ALK4/ ActR-IB. The signal peptide sequence and the transmembrane domain of the receptors are represented in black, and the N-glycosylation sites on the extracellular domain are marked as follows (Y). The horizontal dotted line in the center separates the type I receptors from the type II receptors. MIS, mullerian inhibiting substance. Reproduced from (Lebrun et al., 1996). ______ 22

Figure 1. 5. The smad family. Listed members are from vertebrates unless otherwise indicated. Vertebrate smads are highly conserved between human and Xenopus. The dendrogram indicates the relative level of amino acid sequence identity between vertebrate smads. The highly conserved MH1 and MH2 are indicated. Receptor regulated smads are directly phosphorylated by TGF- β family type I receptors, and this phosphorylation allows association with a collaborating smad (co-smad). Antagonistic smads inhibit this smad activation process. Reproduced from (Massague, 1998). 25 Figure 1. 6. Smad domains and their functions. In the basal state, smads form homooligomers and remain in an inactive state through an interaction between the MH1 and MH2 domains. Receptor-regulated smads interact with activated type I receptors via the MH2 domain and become activated by receptor mediated phosphorylation at the Cterminal SS(V/M)S motif. In the activated state, smads associate with smad-4 and with the DNA-binding protein by the MH2 domain. The MH1 domain of some smads also participates in DNA binding, and the MH2 domain participates in transcriptional activation. MAP kinases phosphorylate some smads in their linker region, inhibiting smad accumulation in the nucleus. Reproduced from (Massague, 1998). 26

Figure 1. 7. A model of the two-cell, two gonadotrophin theory of follicular estrogen biosynthesis. The diagram combines known events taking place in the granulosa and theca-interstitial cells: (+) stimulatory; (-). Reproduced from (Erickson et al., 1985). 45 **Figure 2. 1.** This graph shows the binding of anti-BMP-4 antibody to BMP-4 peptide in competition with increasing amount of BMP-2 and BMP-4 peptide. The amounts of BMP-2 and BMP-4 peptide used to compete with BMP-4 peptide coated on plate are indicated on X-axis. 64

Figure 3. 1. The in vivo effects of anti BMP-4 treatment on ovarian weight in the presence or absence of eCG. The data are shown as mean \pm SEM for individual ovaries of five mice of each treatment group repeated 3 times. Different lettered subscripts represent significant differences in ovarian weight of each treatment group (P < 0.0001). ______ 77 **Figure 3. 2.** The effects of anti BMP-4 treatment on follicular development in the presence or absence of a low dose of eCG. The data are displayed as percent of total follicle number per ovary in each treatment group. The data are shown as mean \pm SEM for five mice in each treatment group repeated 3 times (P < 0.0001). ______ 78 **Figure 3. 3.** Representative ovarian sections from pubertal mouse ovaries after 7 days of treatment with anti BMP-4, eCG with or without anti BMP-4 or non immune serum. Each panel displays a partial view of ovarian section of each treatment group at 200X magnification. (A) Ovarian section from anti BMP-4 treated group (B) Ovarian section from control group (C) ovarian section from anti BMP-4 with eCG treated group (D) Ovarian section from eCG treated group. Primordial follicle (pr), Primary follicle (pa), Developing follicle (de) ______ 79

Figure 4. 1(A). Expression of BMP-4 protein in primary (Pra), preantral (Pan) and antral (An) but not in primordial (Pri) follicle of mouse ovary (200 X) 92 *Figure 4. 2(B). Expression of BMP-4 of tertiary follicle (Granulosa cells: G: Theca cells: T*; Surface epithelium: SE; Stromal tissue: S; Oocyte:O) (200 X) 92 Figure 4. 3(C). Expression of BMP-4 in granulosa and theca cells of tertiary follicle (Granulosa cells: G; Theca cells: T) (1000X) _____ 92 *Figure 4. 4(D). Expression of BMP-4 in atrectic follicle (Granulosa cells: G; Theca cells: T; Surface epithelium: SE; Oocyte: O) (200X)______93 Figure 4. 5*(*E*). Localization of BMP-4 in corpus luteum (400X) 93 Figure 4. 6(F). Expression of BMP-4 in oviduct (Epithelium: Ep; Connective tissue: Ct; Blood vessels: Bv) (200X) -93 Figure 4. 7(G). BMP-4 protein localization in uterus (Blood vessels: Bv; Surface epithelium of endometrium: Sep; Endometrial gland: Eg)(200X) _____ 94 *Figure 4. 8*(*H*). Negative control (200X) 94 Figure 4. 9. Western blot analysis of mouse ovary for detection of BMP-4. The samples were subjected to 12.5% SDS-PAGE under non-reducing (lane A) and reducing conditions (lane B). The membranes were treated with equal concentration of anti BMP-4 antibody (lane A and B) and non specific purified sheep Ig (lane C and D). The approximate molecular weight of bands detected is shown. 95 Figure 5. 1(A). BMP-4 protein was localized in epithelium of epididymis, while no expression was observed in testis at 1 wk of age (100 X) (E: epididymis; T: testis). 109 Figure 5. 2(B). BMP-4 protein was detected in pachytene spermatocytes at 2 wk of age (200 X)______ 109 Figure 5. 3(C). Expression of BMP-4 protein was detected in spermatocytes at 4 wk of age (200 X) ______ 109

 Figure 5. 4(D). BMP-4 protein was detected in spermatocytes and some interstitial cells

 (arrow) at 7 wk of age (200 X)
 110

adult mice (200 X)	110
Figure 5. 6(F). BMP-4 protein expression in epithelium of epididymis	was observed
throughout postnatal development (200.X)	110
Figure 5. 7(G). BMP-4 protein was detected in luminal epithelium of vas d	'eferens (400 X)
	. 111

Figure 5. 8(H). Expression of BMP-4 protein was observed in epithelium of prostate gland (200 X) 111

Figure 5. 9. Effect of anti BMP-4, antiBMP-4 and eCG, eCG and non immune serum treatment on testicular testosterone concentration of prepubertal mice. Distinct letters above bars represents statistically significant differences between groups (P < 0.05). 112 **Figure 5. 10.** Effect of anti BMP-4, antiBMP-4 and eCG, eCG and non immune serum treatment on testicular testosterone concentration of adult mice. Distinct letters above bars represents statistically significant differences between groups (P < 0.05). _____ 113 **Figure 6. 1**(A). Expression of BMP-4 protein in fetal ovary (Oocyte: Oc; Pregranulosa cells: Pg; Basal membrane: Bm; Stroma: S; Primordial: Pri and Primary follicles: Pra) (400X). ______ 125

 Figure 6. 2(B). No expression of BMP-4 in primordial and primary follicles of adult

 ovary (Primary follicles: Pra) (400X).
 125

 Figure 6. 3(C). Expression of BMP-4 in preantral follicle (Pan) of adult ovary

 (Granulosa cells: G; Theca cells: T; Blood vessels: Bv; Oocyte: O)(400X).
 125

 Figure 6. 4(D). Expression of BMP-4 in large antral follicle of adult ovary (400X)
 126

 Figure 6. 5(E). Localization of BMP-4 in ovarian surface epithelium (OSE) of adult ovary
 126

 Ovarian surface epithelium: OSE; Primordial: Pri)(400X)
 126

 Figure 6. 8(H). Expression of BMP-4 in fetal uterus (Blood vessels: Bv; Surface

 epithelium of endometrium: Sep) (200X)
 127

Figure 6. 9(*I*). *BMP-4 expression in adult sheep uterus (Surface epithelium of endometrium: Sep; Endometrial gland: Eg) (200X)*______127

8,
Figure 6. 11(K). BMP-4 expression in pituitary gland, arrowhead showing staining in
basophilic cells while arrow indicate acidophilic cells (1000X) 128
Figure 6. 12(L). BMP-4 expression in epididymis (Basal cell: Ba)(400X) 128
Figure 6. 13(M). Lack of expression of BMP-4 in testis (200X) 129
Figure 6. 14(N). Negative control (200X). 129
Figure 6. 15. Western blot analysis of ovine follicular fluid for detection of BMP-4. The
samples were subjected to 12.5% SDS-PAGE under non-reducing (lane A and C) and
reducing conditions (lane B and D). The membranes were treated with equal
concentration of anti BMP-4 antibody (membrane 1) and non specific purified sheep Ig
(membrane 2). The approximate molecular weight of bands detected is shown 130
Figure 7. 1. This graph shows the binding of plasma collected from BMP-4 immunized
and control ewes to 100 ng of rbBMP-4 protein. Plasma from BMP-4 immunized ewes
showed significant binding with BMP-4 peptide while no binding to BMP-4 peptide was
observed with plasma collected from control ewes145
Figure 7. 2. Plasma from different treatment groups was tested for reactivity with BMP-4
peptide146
Figure 7. 3. Plasma from different treatment groups was tested for cross reactivity with
BMP-2 peptide. No cross reactivity was detected to BMP-2 peptide
Figure 7. 4 Mean of number of CL and follicles observed at laparoscopic examination of
ewes immunized against BMP-4 and controls. Number of corpus lutea was significantly
lower in ewes immunized against BMP-4 than in controls ($P < 0.05$). No significant
difference was observed between numbers of follicles in different treatment groups (P $>$
0.05)
Figure 7. 5 Mean concentration of progesterone in plasma of ewes immunized against
BMP-4 and control. Progesterone concentration was lower in luteal phase of the estrous
cycle in immunized ewes than in controls ($P < 0.05$), but no difference in progesterone

concentration was observed in follicular phase of estrous cycle (P > 0.05). _____ 149

List of Tables

Abstract

The BMPs comprise the largest subgroup of the TGF-β superfamily. Various members of the BMP family have been shown to regulate mammalian folliculogenesis by affecting granulosa cell proliferation, steroidogenesis and by modulating the production of various endocrine factors such as activin A, follistatin, inhibin, estradiol and progesterone. *In situ* hybridization studies have shown expression of BMPR-IA, BMPR-IB and BMPR-II in the granulosa cells and oocyte of most of the follicles in the ovary suggesting that these cells have capacity to respond to BMP signaling. In addition, the mRNA for BMP-4 and BMP-7 has been in detected in the theca layer of rat follicles. In *in vitro* conditions, physiological concentrations of BMP-4 and BMP-7 enhanced and attenuated respectively, the stimulatory action of FSH on estradiol and progesterone production. The objective of the current study was to elucidate the role of BMP-4 in mammalian follicular development and spermatogenesis by using mouse and sheep as experimental models.

The transition of a primordial follicle to a primary follicle is an early step in folliculogenesis. All female mammals are born with a fixed stock of primordial follicles and exhaustion of that stock leads to menopause or infertility. Recently, several *in vitro* studies have indicated that BMP-4, BMP-7 and several other growth factors affect the transition of primordial to primary follicles. In this study passive immunization against BMP-4 was used to investigate the role of BMP-4 in this process in a prepubertal mouse model. After 7 days of treatment, the weight of anti BMP-4 treated ovaries was significantly lower than the ovaries from mice treated with non immune immunoglobulin (Ig). The number of primary follicles was lower and the numbers of primordial follicles were higher in anti BMP-4 treated ovaries compared to control ovaries. Treatment with PMSG showed no influence on the effects of anti

In another experiment, BMP-4 protein in mouse ovary, oviduct and uterus was localized using immunohistochemistry and BMP-4 isoforms detected in mouse ovary by western blotting. In the ovary, BMP-4 protein was detected in all the stages of follicular development except primordial follicles. The intensity of staining was higher in healthy follicles than attractic follicles, with significant staining in the corpus luteum. In the uterus, BMP-4 staining was limited to the blood vessels, endometrial gland and surface epithelium of endometrium. In the oviduct, BMP-4 was exclusively detected in epithelium and blood vessels. Different isoforms (apparent MW: 50, 35 and 15 kDa) of BMP-4 were detected in nonreducing and reducing condition in mouse ovary by western blot analysis.

In male mice, *in situ* hybridization studies have shown the presence of BMP-2, BMP-4, BMP-8A, BMP-8B in testis and BMP-4, BMP-7, BMP-8A in epididymis of mice. We localized BMP-4 protein in testis, epididymis, vas deferens, seminal vesicle and prostate of mice using immunohistochemistry and studied the role of BMP-4 in testosterone production by passively immunizing mice against BMP-4. In 1 week old mice, BMP-4 staining was not observed in the testis. At 2 weeks, BMP-4 specific staining was detected in spermatocytes. BMP-4 protein expression was also observed in spermatids of 4 wk and 7 wk old testis but was not detectable in testis from 9 wk old and adult mice. In contrast, BMP-4 specific staining was detected in epithelial cells of the epididymis at all the stages of testicular development. In the vas deferens, BMP-4 protein expression was limited to the luminal epithelial cells. BMP-4 specific staining was also observed in epithelial lining of the prostate gland. Treatment with anti BMP-4 decreased and increased testosterone secretion in prepubertal and adult mice, respectively. In addition, animals treated with anti BMP-4 and PMSG had lower testosterone

concentrations than PMSG treated animals. However, no difference in testosterone concentration was observed between anti BMP-4 plus PMSG and PMSG treated adult animals. These findings indicate that BMP-4 plays an important role in initiation phase of murine spermatogenesis and in the regulation of testosterone secretion.

Similar to the studies in mice, we investigated the expression of BMP-4 in ovary, oviduct, uterus, pituitary, testis and epididymis of fetal and adult sheep by immunohistochemistry and detected BMP-4 isoforms in ovine follicular fluid by western blotting. In fetal ovary, strong immunostaining was observed in pregranulosa cells, oocyte, primordial and primary follicle. In adult sheep ovary, strong immunostaining was observed in granulosa cells of preantral to late antral follicle stage of follicular development. BMP-4 expression was also detected in oocyte, corpus luteum, ovarian surface epithelium and, to lesser extent in theca cells but not in primordial and primary follicle. In oviduct, strong immunostaining was observed in epithelium and blood vessels in both fetal and adult sheep. In uterus, BMP-4 expression was observed in surface epithelium, circular muscles and blood vessels of fetus and also in epithelium of endometrial glands in adult sheep uterus. Strong immunostaining was observed predominantly in basophilic cells of adult sheep pituitary. Strong expression of BMP-4 was detected in epithelial cells of epididymis but no expression was detected at any stage of testicular development. Different isoforms (apparent MW: 100.4, 50.1, 42, 38.5, 33.5, 23.9 and 15.1 kDa) of BMP-4 were detected in nonreducing and reducing condition in ovine follicular fluid by western blot analysis. The differences in results of immunolocalization and western analysis studies in mice and sheep supports the view that this protein plays a different role in monoovular and polyovular species.

BMP-4 has been shown to affect steroidogenesis in sheep follicular cells in *in vitro* condition. However, role of this protein is not well understood in *in vivo* conditions,

particularly in species with low ovulation rate such as sheep. Therefore, we examined the role of BMP-4 in sheep reproduction by actively immunizing adult cyclic ewes against BMP-4 peptide. The effect of the active immunization against BMP-4 was observed on follicular development, ovulation rate and progesterone concentration. Active immunization against BMP-4 resulted in decreased ovulation rate without affecting follicular numbers (diameter \geq 3mm). In addition, progesterone concentration in plasma of immunized animals was lower in luteal phase than control.

Overall, our studies have shown that BMP-4 plays an important role in follicular development, estrus, and spermatogenesis in mice and sheep.