
ECOLOGY, ENERGETICS AND THERMAL BIOLOGY
OF SUGAR GLIDERS

Nereda Christian

B.Sc. Hons, University of New England

Zoology

University of New England

Armidale, New South Wales, Australia

April 2007

A thesis submitted for the degree of Doctor of Philosophy of the University of New England



ACKNOWLEDGEMENTS

Firstly, I would like to acknowledge my t\VO supervisors Fritz Geiser and Gerhard Kortner for

their ongoing support of this project. I would like to thank Fritz for his tin1e and enthusiasn1 as

well as his generosity in both financial support and the lise or laboratory equiplnent. Fritz offered

exceptional and patient guidance on the di fficulties of thermal physiology. I would like too to

thank Gerhard for his help \\'ith the various tcchnical di fficulties 0 l' data loggers and respirolnetry

equiplnent as well as his invaluable input on the contents of the thesis.

I an1 gratcful to Stuart Cai111S for his ongoing statistical advice and support. I also n1ake

special lnention of Christine Cooper and Rebecca Drury whose gencrosity with thcir tin1c,

friendship and knowledge of the complexities of respirometry equiplnent were greatly

apprcciated. In particular I would Iikc to thank Christine for performing painstaking experil11ents

on the thern1al properties of sugar glidcr pelts: unf<.wtunatcly I was unable to includc this in the

thcsis.

I have also been extremely fortunate in having a number of people who wcre willing to

brave cold winter nl011lings in order to help nle with my field \vork and other aspects of the

project. In particular I would like to acknowledge the assistance and support of the Brighanl

family, Steve Debus, Lisa Doucette, Frank Falkenstein, Nicole Fcay, Alison Goldzieher, Nicola

Goodship, BrOl1\vyn McAllan, Antja Seckerdieck Chris TurbilL Jamie Turner, Lisa Wanlecke,

Marco Wenzel, \Vendy 'Nestman, Craig \\!illis, and many others.

Thank you also to the Zoology technical and administrative staff: Zoltan Enoch, Louise

Streeting, Sandy Watson and Sandy Higgins.

I would lastly like to thank my partner Paul Bayne for his ongoing supp0l1 during l11Y PhD

candidature. Paul provided a great deal of assistance in the field as well as offering his o\\'n

expel1ise in Ecology. Paul also took most of the photographs that appear in the thesis. I would

also like to thank Iny 1~lthcL John and brother Ben for their love and support over the years.

Pern1its for all animal experiments were provided by New South \Valcs National Parks and

Vv'ildlifc Service and the University of New England Animal Ethics Con11nittee. I would also like

to thank the An11idalc District NPWS for allowing access to Imbota Nature Reserve as \vell as the

field staff at Newholme Field Laboratory.



ABSTRACT

PClllllrus hrcl'iccjJs inhabit tropical to cool-tell1peratc regions within Australia and Ncw Guinea.

Despite their sn1alI body size ( 115-160 g) populations persist cven in areas. such as the New

England region, where an1bient telnperature (Ta ) frequently t~l1ls belo\\' O°C over winter. Small

mammals encounter a variety of energetic stresses at low TI as a result or high thermal

conductance requiring high metabolic rates (M R) ror normothermic thermoregulation.

Additionally insectivorous and nectarivorous species. such as sugar gliders. are contl-onted with

seasonal reductions to food resources over winter. In order to survive and reproduce under these

conditions, sugar gliders must en1ploy a variety of behavioural and physiological strategies that

include huddling and dai Iy torpor. Although these strategies appear pivotal to their survivaL

almost all available inforn1ation on this species is derived from captive animals and little is

known on the seasonal adjustments of wild sugar gliders in tel1l1S of their themlal biology and

behaviour. Moreover, little is kno\\'n about the extent to which these adjustments are govenled

by reduced food availability and/or detrinlental environmental conditions.

I used ten1perature telen1etry to 111eaSUre the body temperature (1'11) and activity of 33 sugar

gliders at two study areas over 3.5 years (late-autun1n to mid-sun1nlcr; May :2002-Septcmber

2004). Field MRs (FMR) of six gliders \\'cre also 111easured using doubly labelled water

techniques. I also performed a food-supplen1entation experin1ent in order to quantify for the first

time the effect that food wllihitl//71 (food-supplenlentcd site) has on the nature of cnergy saving

strategies and frequency of torpor use in ti-ee-ranging glidcrs when compared with gliders under

natural seasonal food restrictions (non-supplen1ented site). In addition, I canied out laboratory

experiments using open-flow respirOlllctry to quantify energy expenditure and Til fluctuations of

gliders under silllulated enVirOl1l11ental conditions. These included nlcasurements of MR of single

gliders, 2 and 6 huddling gliders, single gliders in a simulated nest and "wet gliders" at a variety

ofTas (6-27°C) below the thcl1l1oneutral zone.

In the field, sugar gliders used a variety of ecological. behavioural and physiological

strategies that included huddling with conspeci fIcs in ~l well-insulated nest hollo\\ and adopting a

spherical shape such that thel111al conductance was reduced. In the laboratory. gliders huddling

with just one other individual were able to reduce their resting MR (RMR) by 24-31 (~~I and shin

the lower criticallin1it (TIC) of their thel1110neutral zone down 2.Y-'C relative to single gliders

resting at T~l= I0-20°C. Six gliders huddling together were able to reduce RlVlR by~40~;, and

shift TIC down by ~ 15°C. Sin1ilarly, single gliders in a simulated nest were able to reduce MR

by I()(~o relative to single gliders without a nest. Conversely. '\\l~t gliders" Iud a RMR ahllost



double that of dry gliders at I():'C. FMRs of gliders wereJ.S times that of basal MR (BMR).

with FMR incrcasing in response to both increased duration of activity and reduced Ta . Sugar

gliders also reduced activity in response to adverse cnvironmental conditions such as rainfall and

low T a that nlake renlaining active,foraging too energetically expensivc. Other energy-

conservation strategies included reducing normothcrmic rcsting Th during the diurnal rest-phase,

decreased activity and the usc of daily torpor in order to make more substantial reductions in MR

should adverse cnviromncntal conditions persistently restrict foraging.

The type of encrgy saving strategies employed by gliders differed among individuals and

between the sexes. indicating that gliders are able to respond flexibly and inlll1cdiately to both

sh0l1-tenl1 and long-tenn environmental stresses. Female gliders typically rcduced activity in

winter, whereas malc gliders increased activity. This \vas likely the result of differing energetic

expenditure between the sexes as a consequence of reproductive cxpenses and hody sizc. ·In

generaL sugar gliders used toqX1r relati\'cly infl-equently, with torpor used on 5.J</~) of aninlal

nights (N-= 1846. n= 16). Fcmale gliders at both sites used tOl1"or more li-cquently than nlale

gliders. Torpor was apparently used in response to low resource availability and low T;I and/or

raint~l11 at which til11CS foraging was likely either restricted or too energctically expensive. In the

laboratory, gliders entered torpor only three times. The lowest mininlunl tOl11or Th was IJ.Oo(' at

which tillle a steady state V02 of 0.17 ml O2 g-Ih-l was recorded at T~I:-::R.0DC. This represented a

saving of approxilllatcly 7SC/~. on BMR.

Gliders apparcntly t~lced some degree of energetic shortf~l!l as a result of food restrictions

over winter. Food-supplclllcntation affected the type of energy saving strategies enlployed by

gliders, with food supplemented gliders using tOI1)or less IITquentl y (2. ()O;, of 8()2 anilllal nights,

n= 16) than gliders at the non-supplemented site. However- torpor still occurred, and at both sites

was predOlllinantly used by female gliders. Food supplementation also did not abolish the effect

of clilllatic conditions upon the activity paltcllls of sugar glidcrs, with both male and female

gliders typically reducing the time spent active at low Tl and when it was raining. Thus, energy

saving strategies. including torpor- are a function of both food availability and adverse

environnlental conditions that make foraging too energetically expcnsive.
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