The Role of Follistatins in Parturition in

Women

By

Kym Rae (B. Sc. /B. Teach, B. Sc.(Hons))

Division of Physiology University of New England

December 2006

A thesis submitted for the degree of Doctor of Philosophy of the University of New England

Declaration

Except where acknowledged, this thesis is entirely my own work and contains no material that has been accepted for the award of any degree or diploma at any University.

To the best of my knowledge and belief, this thesis does not contain any material previously published or submitted by another person, except where due reference is given in the text.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Kym Rae

Acknowledgements

I would like to sincerely thank my supervisor Dr Jim McFarlane for his enthusiasm and his support. I am grateful for the many stimulating and often hilarious discussions regarding reproductive research and science.

I also wish to thank Dr Tim O'Shea, and Dr Lesley Rae for their many hours of proof-reading work. Many thanks to Kerrin Kelly for her assistance with images, and to Judy Rae for countless other jobs.

Special thanks are due to Dr Keith Hollebone and his midwives without whom this project would never have begun. Your support, ongoing assistance and friendship have been wonderful and I hope to continue all three in future employment.

Donald Clausen of Pathology New England has provided many valuable insights and assistance in vast areas of this project which is much appreciated. His assistance with equipment usage and ongoing supplies through Beckman-Coulter has been invaluable. I would also like to thank Dr David Phillips of Monash University for assaying samples for Activin A.

Thanks are also due to my laboratory colleagues, in particular, Janelle McFarlane, Pradeep Tanwar, Shalini Panwar, Amanda Lang and Mark Barnett. Your friendships and caring natures were gratefully appreciated.

Finally a very special thank you, to my husband Gordon and children, Georgia and Abby for your love and patience throughout the last three years. All of you have sacrificed so much so that I could pursue my research, and at times we have all found this extremely difficult. I am incredibly grateful that you all have constantly stood by my side allowing me to find the courage to continue despite the many set-backs. Also many thanks to all family members, particularly Judy Rae, without all of you and your support this research would not have been possible.

Declaratior	ייייי ו		ii
Acknowled	lgemer	nts	iii
Table of Contents			iv
Publicatior	ns arisi	ng from this Thesis	vii
Glossary o	f Abbro	eviations	viii
List of Figu	ires		xii
List of Tab	les		xiv
Abstract			xv
Chapter 1 1.1	Gene History	eral Introduction	1 1
1.2 1.3	Structu Follista	ire of Follistatin itin Family of Proteins	1 3
1.4	Distribu	ution of Follistatin	6
1.5	Interac	ting Proteins: Activin, Inhibin, Bone Morphogenetic Protein and Myostatin	8
	1.5.1	Structure of Activins and Inhibins	8
	1.5.2	Structure of Bone Morphogenetic Proteins	9
	1.5.3	Structure of Myostatin	9
	1.5.4	Roles of Activin and Inhibin	10
	1.5.5	Roles of Bone Morphogenetic Proteins	11
	1.5.6	Roles of Myostatin	12
	1.5.7	Activin and Inhibin Receptors	12
	1.5.8	Bone Morphogenetic Protein Receptors	14
	1.5.9	Myostatin Receptors	15
1.6	Follista	tin and its Binding	15
	1.6.1	Binding to Activins, Inhibin, Bone Morphogenetic Proteins and Myostati	า 15
	1.6.2	Binding to Cellular Membranes	19
1.7	Known	and Proposed Roles for Follistatin	23
	1.7.1	Roles suggested by Knockouts or Over-Expressers	23
	1.7.2	Follistatin and Embryonic Development	25
	1.7.3	Follistatin and Skin Development	29
	1.7.4	Role of Follistatin in Wound Healing	30
	1.7.5	Inflammatory Response and Follistatin	32
	1.7.6	Follistatin in the Liver	37
	1.7.7	Follistatin and the Male Reproductive Tract	38
	1.7.8	Follistatin and the Female Reproductive Tract	. 40
		•	

	1.7.9	Follistatin and Disease States	. 43
		1.7.10.1 Liver Disease	. 43
		1.7.10.2 Prostate Disease	44
		1.7.10.3 Skin Disease	44
		1.7.10.4 Ovarian Disease	45
1.8	Project	Aim	46
Chapter 2	Gene	eral Methods and Materials	47
2.1	Patient	recruitment and Groups used for Analysis	48
2.2	Sample	e Collection	49
2.3	Antiboo	dies used for Follistatin Studies	50
2.4	Ethics		51
2.5	Image	Processing	. 51
Chapter 3	Follis	statin Isoforms in the Placenta	52
. 3.1	Introdu	ction	53
3.2	Method	ds and Materials	61
	3.2.1	General Methods	61
	3.2.2	Experiment 1- Identification of Follistatin Isoforms using Reverse Trans	cription-
		Polymerase Chain Reaction	63
	3.2.3	Experiment 2- Characterisation of Heparan Binding Follistatin Isoform	
		Differences between Labouring Groups	. 70
	3.2.4	Experiment 3- Characterisation of Glycosylation of Follistatin Isoform D	ifferences
		between Labouring Groups	71
3.3	Results	5	72
	3.3.1	Experiment 1- Identification of Follistatin Isoforms using RT-PCR	72
	3.3.2	Experiment 2- Characterisation of Heparan Binding Follistatin Isoforms	
		Differences between Labouring Groups	73
	3.3.3	Experiment 3- Characterisation of Glycosylation of Follistatin Isoform Di	fferences
		between Labouring Groups	76
3.4	Discus	ssion	79
Chapter 4	Follis	statin in Pregnancy and Parturition	.86
4.1	Follista	tin and other proteins in Pregnancy	87
4.2	Follista	tin and other proteins in Parturition	90
4.3	Other F	Factors Effecting Follistatin across Parturition	98
	4.3.1	Gender	98
	4.3.2	Labour Length	100
	4.3.3	Parity	101
4.4	Method	Is and Materials	103
	4.4.1	General Methods	103
	4.4.2	Effect of Fetus and Fetal Gender	103
	4.4.3	Effect of Labour Length	104

	4.4.4	Assays		104
	4.4.5	Data Analysis		107
4.5	Results			108
4.5	Discuss	ion		126
Chapter 5	Follis	tatin in the Placenta		141
5.1	Introduc	tion		142
	5.1.1	Development of the Placenta		142
	5.1.2	Placental Structure		145
	5.1.3	Placental Endocrinology		147
	5.1.4	Follistatin, Activin and Inhibin in the Placenta		150
5.2	Method	s and Materials		153
	5.2.1	Sample Collection	•••••••••••••••••••••••••••••••••••••••	153
	5.2.2	Immunohistochemistry method for follistatin		153
	5.2.3	Determination of staining results	· · · · · · · · · · · · · · · · · · ·	154
5.3	Results			155
	5.3.1	Immunohistochemistry		155
5.4	Discuss	ion		161
Chapter 7	Gene	ral Discussion		166
Reference	;			174
Appendix	- Specifi	c Laboratory Protocols		196

Publications arising from this thesis

Papers

- 1. K. Rae, K. Hollebone, V. Chetty, D. Clausen, J. McFarlane, *Follistatin serum* concentrations during full-term labour in women; significant differences between spontaneous and induced labour, (Accepted by Reproduction, 19th June, 2007)
- 2. K. Rae, K. Hollebone, L. Meng, D. Clausen, J. McFarlane, Immunohistochemistry of Follistatin shows a Differential Expression Correlating with Differing Labour Groups in Women, (Submitted toPlacenta)
- 3. K. Rae, K. Hollebone, V. Chetty, D. Clausen, J. McFarlane, *Maternal serum* follistatin is affected by fetal gender, Unsure of target journal

Conference Abstracts

- 1. Rae K., Xia, Y., O'Shea, T., McFarlane, J, 2003, *Follistatin immunoreactive profiles across parturition in ewes using different assays*, Endocrine Society of Australia Annual Conference, Melbourne, Australia.
- Rae, K., Hollebone, K., Clausen, D., Chetty, V., McFarlane, J., 2004, A Cross-Sectional Study of Follistatin During Labour in Women, Endocrine Society of Australia Annual Conference, Sydney, Australia.
- 3. Rae, K., Hollebone, K., Clausen, D., Chetty, V., McFarlane, J., 2004, *Maternal Serum Follistatin Concentrations are Influenced by Foetal Sex*, Endocrine Society of Australia Annual Conference, Sydney, Australia.
- 4. Rae, K., Hollebone, K., Clausen, D., Chetty, V., McFarlane, J., 2004, *Follistatin Changes Significantly in the Spontaneous Labouring patient*, Endocrine Society of America Annual General Meeting, New Orleans, United States of America
- Rae, K., Hollebone, K., Meng, L., Clausen, D., McFarlane, J., 2005, A Differential Pattern of Follistatin Expression in the Placenta between Spontaneous, Induced and Non-Labouring Patient Groups, Endocrine Society of Australia Annual Conference, Perth, Australia.
- Rae, K., Hollebone, K., Meng, L., Clausen, D., McFarlane, J., 2005, *Immunohistochemistry of Follistatin shows a Differential Expression Correlating with Differing Labour Groups in Women*, American Society for Reproductive Medicine Annual Scientific Meeting, Montreal, Quebec, Canada

Glossary of abbreviations

aa or AA	amino acids
Act/FS	activin/follistatin complex
АСТН	adrenocorticotrophin hormone
ActRII	activin type II receptor (ligand binding)
ActRI	activin type I receptor (signal transducing)
ALK	activin receptor-like kinase
ANTE	antenatal
ANOVA	analysis of variance
APP	acute phase proteins
ARIP	activin receptor interacting proteins
BCIP	5-bromo-4-chloro-3-indoyl phosphate
11βHSD-2	11β hydroxysteroid dehydrogenase 2
BMP	bone morphogenetic protein
BMP/FS	bone morphogenetic protein/ follistatin complex
BMP-R	bone morphogenetic protein receptor
BSA	bovine serum albumin
сАСТН	chorionic adrenocorticotrophin hormone
CAM	cell adhesion molecules
cAMP	cyclic adenosine monophosphate
CRH	corticotrophin releasing hormone
CRP	C reactive protein
CSF	cerebrospinal fluid
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
EDTA	ethylene diamine tetra-acetic acid
EGF	epidermal growth factor
ELISA	enzyme-linked immunosorbent assay
Fc	group of immunoglobulin binding receptors
FS	follistatin

FS-	follistatin knockout
FS+	follistatin over-expresser
FSH	follicle stimulating hormone
FLRG	follistatin related gene
FSRP	follistatin related protein
FSTL	follistatin like protein
FS288/Act	follistatin isoform 288/ activin complex
FS315/Act	follistatin isoform 315/ activin complex
FS288	follistatin isoform 288
FS303	follistatin isoform 303
FS315	follistatin isoform 315
GASP	growth and differentiation factor associated serum protein
G-CSF	granulocyte colony stimulating factor
GDF	growth differentiating factor
GDNF	glial cell line derived neutrophic factor
GGT	gammaglutamyltransferase
GHRH	growth hormone releasing hormone
GH-V	growth hormone variant; chorionic somatomammotropin
GnRH	gonadotropin releasing hormone
GRE	glucocorticoid response elements
HB-EGF	heparan binding epidermal growth factor
HBS	heparan binding sequence
hCG	human chorionic growth factor
HDL	high density lipoprotein
hPL	human placental lactogen
HepG2 cells	perpetual human liver epithelial cell line
IFNα	interferon α
lgG	immunoglobulin G
IL	interleukin
IND	induced onset of labour
IVF	in vitro fertilization

IV	intravenous
kb	kilobases
Kd	dissociation constant
kDa	kilodalton
KGF	keratinocyte growth factor
LAB1	early labour (< 3cm vaginal dilation)
LAB2	late labour (> 3cm vaginal dilation)
LH	lutenizing hormone
LPS	lipopolysaccharide
LSCS	lower segment caesarian section (nil onset of labour)
MIC-1	macrophage inhibitory cytokine-1
MIS	maturation inducing steroid
ММР	matrix metalloproteinases
mRNA	messenger RNA
MSAFP	maternal serum α fetoprotein
MyD88	myeloid differentiation primary response
ΝϜκΒ	nuclear factor κ B
NK	natural killer cells
NPP	p-nitrophenyl phosphate, disodium salt hexahydrate
OP	osteogenic protein, SPARC and BM-40
PCOS	polycystic ovarian syndrome
PCR	polymerase chain reaction
PBS	phosphate buffered saline
PG	prostaglandins
PG _{E2}	prostaglandin E2
$PG_{F\alpha}$	prostaglandin Fα
POST1	early post- partum (< 3hours from delivery)
POST2	late post-partum (>3 hours from delivery)
PRL	prolactin
PTH-rP	parathyroid hormone related protein
RBC	red blood cells

RNA	ribonucleic acid
RT	reverse transcription
SARA	Smad anchor for receptor activation
SDS	sodium dodecyl sulfate
SDS-PAGE	sodium dodecyl sulfate- polyacrylamide gel electrophoresis
SEM	standard error margin
SNK	Student-Newman-Keuls post test
SPON	spontaneous onset of labour
TAE	tris acetate EDTA buffer
TEMED	N,N,N',N'-tetramethylenediamine
TGFβ	transforming growth factor β
TGFα	transforming growth factor α
ΤΙΜΡ	tissue inhibitor of metalloproteinases
TLR	toll-like receptor
TNFα	tumor necrosing factor α
ΤΝϜγ	tumor necrosing factor γ
TRH	thyrotropin releasing hormone
TUN	trophouteronectin
UV	ultraviolet
uNK	uterine natural killer cells
VEC	vascular endothelial cells

List of Figur	es
Figure 1.1	Structure of Follistatin Domains
Figure 1.2	Follistatin Family of Proteins 4
Figure 1.3	Head-to-Tail formation of the activin/follistatin complex
Figure 1.4	Differing modes of ligand complex formation and antagonism with follistatin 19
Figure 1.5	Proposed action pathways for activin
Figure 1.6	Follistatin across the menstrual cycle
Figure 3.1	Profile of differential antibody recognition across parturition in ewes
Figure 3.2	Arrangement of introns, exons and primers for RT-PCR
Figure 3.3	Genetic sequence for Follistatin
Figure 3.4	RT-PCR Products for β-actin, FS288 and FS315
Figure 3.5	Original Placental pools with reduced transfer time using JMCK20 antibody 74
Figure 3.6	Original Starting Pools bound to activated JMCK20 sepharose beads and analysed via
	Western Blotting using JMCK20 antibody
Figure 3.7	Heparan Unbound sample bound to activated JMCK20 sepharose beads and analysed via
	Western Blotting using JMCK20 antibody 75
Figure 3.8	Heparan Bound sample bound to activated JMCK20 sepharose beads and analysed via
	Western Blotting using JMCK20 antibody 75
Figure 3.9	Con A bound follistatin isoforms as recognized using activated JMCK20 sepharose beads
	and analysed via Western Blotting using JMCK20 antibody
Figure 3.10	Con A Unbound follistatin isoforms as recognized using activated JMCK20 sepharose
	beads and analysed via Western Blotting using JMCK20 antibody
Figure 4.1	Establishment of Pregnancy
Figure 4.2	The effect of parturition on maternal serum estradiol concentrations
Figure 4.3	The effect of parturition on maternal serum progesterone concentrations 109
Figure 4.4	The effect of parturition on maternal serum cortisol concentrations 111
Figure 4.5	The effect of delivery type on cord blood cortisol concentrations 112
Figure 4.6	The effect of fetal gender on cord blood cortisol in vaginal and LSCS deliveries . 113
Figure 4.7	The effect of labour length on cord blood cortisol concentrations
Figure 4.8	The effect of parity on cord blood cortisol concentrations 114
Figure 4.9	The effect of parturition on maternal serum prolactin concentrations 115
Figure 4.10	The effect of labour length on maternal serum prolactin concentrations 116
Figure 4.11	The effect of parturition on maternal serum follistatin concentrations 117
Figure 4.12	The effect of type of delivery on cord blood follistatin concentrations
Figure 4.13	The effect of fetal gender on cord blood follistatin concentrations in vaginal and LSCS
	deliveries
Figure 4.14	The effect of fetal gender on maternal serum follistatin concentrations
Figure 4.15	The effect of parity on cord blood follistatin concentrations
Figure 4.16	The effect of parturition on maternal serum C-Reactive protein concentrations 121
Figure 4.17	The effect of type of delivery on cord blood C-reactive protein concentrations 122

Figure 4.18	The effect of labour length on maternal serum C-Reactive protein concentrations	in the
	late postpartum period	. 118
Figure 4.19	The effect of parturition on maternal serum activin concentrations	124
Figure 4.20	The effect of parturition on maternal serum $TNF\alpha$ concentrations	125
Figure 5.1	Cell types separating maternal and fetal circulation	146
Figure 5.2	Chorionic villi of the placenta (haematoxylin and eosin)	146
Figure 5.3	Localisation of follistatin, activin, and inhibin protein and mRNA in placental cells	152
Figure 5.4	Chorionic villi – showing syncytiotrophoblasts of spontaneous onset	157
Figure 5.5	Chorionic villi – showing syncytiotrophoblasts of induced onset	157
Figure 5.6	Chorionic villi – showing syncytiotrophoblasts of LSCS onset	157
Figure 5.7	Vascular endothelial cells of spontaneous onset	158
Figure 5.8	Vascular endothelial cells of induced onset	158
Figure 5.9	Vascular endothelial cells of LSCS onset	158
Figure 5.10	Maternal interface - showing decidual cells of spontaneous onset	159
Figure 5.11	Maternal interface – showing decidual cells of induced onset	159
Figure 5.12	Maternal interface – showing decidual cells of LSCS onset	159
Figure 5.13	Fetal interface – 10X	160
Figure 5.14	Fetal interface – 40X	160

List of Tables

Table 1.1	Distribution of Follistatin mRNA and protein	7
Table 1.2	Toll-like receptor function and the immune response	33
Table 2.1	Characteristics of patient groups using type of delivery as criteria for inclusion \ldots	48
Table 2.2	Characteristics of vaginal delivery patients using type of onset as criteria for inclu	sion
		49
Table 3.1	Follistatin Assay result variability	56
Table 3.2	Western Blot Bands for Follistatin as shown by others	58
Table 3.3	Primer sequences used for RT-PCR	66
Table 3.4	Reagent Conditions for RT-PCR	67
Table 3.5	RT-PCR Cycle Conditions	67
Table 3.6	Similarities and Differences of original pool, heparan unbound and heparan boun	d
	between patient groups	76
Table 3.7	Similarities and Differences of Con A unbound and Con A bound between patient	t groups
		78
Table 4.1	Number of males and females delivered in the vaginal and LSCS delivery groups	103
Table 4.2	Number of patients used in labour groups	104
Table 4.3	Clearance Rates for Estradiol, Progesterone and Follistatin	110
Table 5.1	Endocrinology of placental cells	150
Table 5.2	Comparative results for immunohistochemistry of placenta	156

Abstract

Follistatin is monomeric protein that binds activin with high affinity and modulates its bioactivity. It exists in a number of different isoforms with FS288 and FS315 being the major forms. Recent work by Sidis *et al.* (2006) and Glister *et al.* (2006) indicate follistatin isoforms may have distinctly different roles and be differentially regulated in aspects of physiology (Glister *et al.*, 2006; Sidis *et al.*, 2006).

Follistatin has been widely investigated for its role in both female reproduction and inflammation. The onset of parturition in women shows many similarities to inflammatory events and the trigger for it remains unknown. Follistatin shows a wide distribution throughout the mammalian system, and in pregnancy it is found in fetal tissues, placenta and associated membranes. However the role of follistatin in onset of parturition remains unclear with the multitude of follistatin isoforms creating great difficulty in the development of specific assays and interpretation of results.

In this study on women, follistatin isoform expression in the placenta, follistatin in maternal and fetal circulation, and follistatin localization within the placenta were investigated and compared using women who have undergone spontaneous onset of labour, induced onset of labour and those with no onset of labour. Using both heparin binding affinity columns and Con A chromatography placental follistatin isoforms have been investigated to determine differences due to labour onset. Follistatin in fetal and maternal circulation was also investigated with regard to fetal gender, parity and length of labour.

Using primers designed specifically for FS288 and FS315 isoforms, reverse transcription polymerase chain studies have shown that women who have a spontaneous onset of

XV

labour, express mRNA for both FS288 and FS315 in placenta. Those who undergo an induction or have a planned caesarean delivery with no onset of labour only show the FS315 isoform. It appears that FS315 isoform is the predominant mRNA in all patient groups when compared to the housekeeper β -actin and FS288. These results suggest that FS288 is a potential trigger for the onset of labour in women. Western Blotting analysis of placental homogenate studies using antiserum raised against a peptide (FS121-133) corresponding to amino acids 121-133 of follistatin, and found in all follistatin isoforms, show strongest recognition of larger molecular weight proteins 65-82kDa in placenta. These larger molecular weight proteins have been previously reported however, they remain uncharacterized. This study has shown that they are intrinsically linked with parturition in women and exhibit a variety of heparin binding and glycosylated forms. As the antibody used is specific to follistatin domain 1 we suggest that this protein is a new member of the follistatin family and critical for labour onset.

Concentrations of total circulating follistatin in the antenatal, parturition and postpartum period, measured by an assay using a human recombinant follistatin (FS288) as both standard and tracer and an antiserum raised against purified 35kDa bovine follistatin, are significantly higher in women that undergo spontaneous onset of labour and elevated in those undergoing induction of labour suggesting that follistatin is crucial to the labouring process. Additionally, assays for activin A show no correlations with follistatin, with greater activin concentrations seen in induced patients, suggesting the actions of follistatin are independent of those of activin. Studies using inflammatory cytokines, and acute phase proteins show that TNF α has no role in either onset of labour or postpartum inflammation, whilst C-reactive protein is up-regulated between 3-12 hours following delivery. These results indicate that the acute phase response is

important in late postpartum healing whilst the role of follistatin and activin in the postpartum phase is still unclear. However, follistatin concentrations showed no correlations with the acute phase response.

Fetal gender studies indicate that follistatin is higher in the male fetal circulation than females and higher in maternal serum of those carrying males. However it appears that the increased concentrations seen in male carrying mothers is not due to secretion from the male fetus but due to the maternal response. The length of labour also appears to influence follistatin concentration in both the fetus and the mother however increased patient numbers are needed to truly elucidate differences.

Immunohistochemistry studies using antiserum raised against a peptide (FS121-133) corresponding to amino acids 121-133 of follistatin, and found in all follistatin isoforms, showed that only spontaneous labour patients have follistatin protein localised to the syncytiotrophoblasts of the placenta. Both spontaneous and induced patients show follistatin in the vascular endothelial cells of the placenta whilst caesarean patients show none. Interestingly spontaneous and caesarean patients show follistatin staining in the maternal decidual cells whilst induced patients only have faint traces of the protein there. We propose that a lack of follistatin in the maternal decidua is the reason that some women fail to advance into parturition, and that through the natural onset of labour follistatin protein becomes expressed in the syncytiotrophoblast cells of the chorionic villi.

Taken together, the present studies have shown that follistatin isoforms and new members of the follistatin family are likely to play an important role in the onset of labour in women and may subsequently alter with fetal gender, labour length and parity.