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Genotype imputation is a standard approach used in the field of genetics. It can be used to fill in missing
genotypes or to increase genotype density. Accurate imputed genotypes are required for downstream
analyses. In this study, the accuracy of whole-genome sequence imputation for Angus beef cattle was
examined using two different ways to form the reference panel, a within-breed reference population
and a multi breed reference population. A stepwise imputation was conducted by imputing medium-
density (50k) genotypes to high-density, and then to the whole genome sequence (WGS). The reference
population consisted of animals with WGS information from the 1 000 Bull Genomes project. The within-
breed reference panel comprised 396 Angus cattle, while an additional 2 380 Taurine cattle were added to
the reference population for the multi breed reference scenario. Imputation accuracies were variant-wise
average accuracies from a 10-fold cross-validation and expressed as concordance rates (CR) and Pearson’s
correlations (PR). The two imputation scenarios achieved moderate to high imputation accuracies rang-
ing from 0.896 to 0.966 for CR and from 0.779 to 0.834 for PR. The accuracies from two different scenarios
were similar, except for PR from WGS imputation, where the within-breed scenario outperformed the
multi breed scenario. The result indicated that including a large number of animals from other breeds
in the reference panel to impute purebred Angus did not improve the accuracy and may negatively
impact the results. In conclusion, the imputed WGS in Angus cattle can be obtained with high accuracy
using a within-breed reference panel.
� 2024 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Genotype imputation is widely used in the genetic evaluation of
livestock to amplify genotype data to higher densities. Accurate
imputation is important because poorly imputed genotypes may
reduce the potential benefit from the use of dense genotypes in
genomic selection. This study reports that when imputing pure-
bred Angus cattle highly accurate imputation can be achieved
using a within-breed reference. Adding animals from additional
breeds to a reference panel did not improve the results and, in
some instances, negatively impacted imputation accuracy.
Within-breed imputation procedure can be used to impute pure-
bred Angus genotypes to the whole genome sequence for subse-
quent analyses.
Introduction

It is common for genetic evaluation schemes to use DNA-based
genetic marker information, allowing for the prediction of genomic
breeding values. Genomic evaluation and selection can accelerate
the response to selection in livestock by shortening the generation
interval and enabling the prediction of more accurate breeding val-
ues, especially in young animals and for difficult-to-measure traits.
The density of marker information used has been previously shown
to improve genomic selection. For instance, Druet et al. (2014)
reported using simulations that in some scenarios, prediction accu-
racy was improved by up to 30% when using whole genome
sequences (WGS); they also pointed out a potential benefit of
sequence data for fine mapping of quantitative trait loci.

The advantage of WGS data over low- to medium-density
marker data has also been demonstrated in real data. For example,
van Binsbergen et al. (2014) showed that more accurate
predictions of genomic breeding values and an improved power
to detect quantitative trait loci were possible in dairy cattle when
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using WGS instead of different densities of marker data.
Moghaddar et al. (2019) also illustrated that the WGS could be
used to improve genomic prediction accuracy in Australian sheep.
Although the cost of genotype sequencing has declined consider-
ably since the advent of this technology, it is still economically
unfeasible to genotype all individuals at WGS level. An alternative
method to obtain sequence data is genotype imputation, which is a
common approach in sequence-based studies.

Genotype imputation allows for unobserved genotypes in a
sample of individuals to be predicted using a reference panel of
haplotypes derived from observed sequence information (Ma
et al., 2013; Rowan et al., 2019). Imputation can be used either
to recover missing genotypes or amplify low-density genotype
arrays to denser genotypes. Many studies have intended to achieve
the most accurate imputed genotypes since inaccurate results can
negatively influence the downstream analyses. Different factors
affecting the performance of genotype imputation have been
reported in previous studies (van Binsbergen et al., 2014; Das
et al., 2016; Shi et al., 2018), for instance, the imputation algorithm
implemented by software, reference panel selection, reference
sample size, the relationship between reference and target sets,
minor allele frequency and genotype quality.

A common theme across imputation studies is regarding the
impact of the reference panel on the accuracy of genotype imputa-
tion. The questions are about which animals should be included in
a reference panel, considering the size and composition, in order to
achieve the most accurate imputation. The larger size of the refer-
ence panel gains more accurate imputation (Druet et al., 2014);
however, the reference population from a single breed could be
small because of the cost of sequencing. Hence, combining data
frommultiple breeds can offer an option to increase reference pop-
ulation size. Previous studies suggested that a multi breed refer-
ence panel can improve imputation performance (Brøndum et al.,
2014). This study aimed to examine the effect of within-breed
and multi breed reference panels on genotype imputation in Angus
beef cattle.
Material and methods

Genotypes

Whole-genome sequence data were obtained from the 1000
Bull Genomes project (Hayes and Daetwyler, 2019). To investigate
the imputation accuracy of Angus cattle, two different scenarios of
imputation were examined. The first scenario included 396 Angus
animals in the reference panel for a within-breed reference (WB).
In the second scenario, 2 380 additional animals from 61 other
Taurine breeds were added to the within-breed Angus reference
panel for a multi breed reference scenario (MB). The selected sam-
ples had sequencing coverage greater than 10x. Only autosomal
chromosomes were retained in this study. There were
163 156 536 genetic markers in autosomal chromosomes, of which
145 184 873 were single nucleotide polymorphisms (SNPs). SNP
variants were called by using the Genome Analysis Toolkit and
were filtered with the Variant Quality Score Recalibration (VQSR)
(Hayes and Daetwyler, 2019). Briefly, the concept of VQSR is simi-
lar to machine learning, which requires truth and training datasets.
The method learns the annotation profiles of good- and bad-quality
variants from a truth dataset and then applies the rules to variants
in a training set. After VQSR, each variant is assigned a score called
variant quality score log-odds, and recalibration is applied using
specified tranche sensitivity thresholds. The quality control pro-
cess selected variants for which the variant quality score log-
odds scores were greater than the threshold for the 90.0 tranche,
which is the most stringent threshold. There were 39 173 127 SNPs
2

that passed the VQSR criteria. Besides the VQSR, markers with a
high missing genotype rate (> 0.1) or a low minor allele frequency
(< 0.001) were also excluded. Then, only biallelic SNPs were kept
for further analysis. Similar genotype quality control criteria were
separately applied in the two imputation scenarios. This resulted in
13 965 792 and 26 171 746 polymorphic SNPs in the Angus and
Taurus datasets (Table 1), respectively, with a total of 13 469 859
common SNPs between the two datasets.
Genotype imputation

Genotype imputation aimed to impute medium-density (50K)
genotypes to WGS for the Angus cattle using WB and MB reference
scenarios. A stepwise imputation strategy was utilized as it was
recommended in the literature for genotype imputation from
medium-density arrays to the sequence level (van Binsbergen
et al., 2014). In the first step, the 50k genotypes were imputed
up to high-density (HD), and then, the HD genotypes were imputed
up to the WGS. A total of 46 469 and 562 155 SNPs were used for
the 50K and HD genotypes, respectively, based on Illumina Bovi-
neSNP50 and BovineHD arrays. To assess imputation accuracy,
the Angus WGS was masked to 50K, and the 440 Angus samples
were randomly assigned to 10-folds in a cross-validation scheme,
leaving 44 animals in a validation set and 396 animals in the refer-
ence panel for each iteration of imputation. In the MB scenario,
2 380 Taurine cattle were added to the reference panel, which
summed up the reference size to 2 776, and the validation sets
were the same as in the WB scenario. In each iteration, the same
set of reference and validation samples were used for both HD
andWGS imputation. Genotype imputations were performed using
Minimac4 (version 1.0.3) (Das et al., 2016) with phased genotypes
from Eagle (version 2.4.1) (Loh et al., 2016) with the default param-
eters; the detail of default parameters for Minimac4 (version 1.0.3)
see Minimac4 Documentation (https://genome.sph.umich.edu/
wiki/Minimac4_Documentation) and for Eagle (version 2.4.1) see
Eagle v2.4.1 User Manual (https://alkesgroup.broadinstitute.org/
Eagle/). Minimac4 operated with a population-based method,
which was more suitable for this study due to the lack of pedigree
information for all the animals used and the lack of pedigree linked
across breeds in the case of MB.

Imputation accuracy was assessed by comparing the observed
and imputed genotypes, considering only the imputed loci. Accu-
racy of imputation was expressed as the percentage of correctly
imputed genotypes, including genotype concordance rate (CR),
and Pearson’s correlation coefficient (PR). The accuracy was calcu-
lated as an average per SNP across all animals in the validation set
and averaged across the 10-fold in the cross-validation. The CR was
calculated as the percentage of correctly imputed genotypes. PC
values were the correlation between the observed and imputed
dosages, where genotypes were encoded as 0, 1 and 2 based on
alternate allele counts. Imputation accuracies, both CR and PR,
were reported for independent SNPs from each scenario and com-
mon SNPs overlapped between the two scenarios.
Results and discussion

In general, variant-wise imputation accuracies were moderate
to high across all chromosomes and were similar between the
two scenarios for both HD and WGS imputations (Fig. 1). A large
difference in the number of imputed genotypes between imputa-
tion scenarios can bias the accuracy of imputation. Therefore, only
common SNPs between the two scenarios were considered to com-
pare their imputation performance. The average CRs were con-
stantly higher than the PRs. Previous studies have shown that CR
often gives higher results than PR because markers with low minor
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Table 1
Number of cattle and SNPs in a reference and validation set for imputation scenarios.

High-density imputation Whole genome sequence imputation

Items WB MB WB MB common SNPs

Number of cattle in each iteration
Reference set 396 2 776 396 2 776
Target set 44 44 44 44

Number of SNPs
Genotyped SNPs 36 714 35 880 523 221 511 266 510 712
Imputed SNPs 486 507 475 386 13 442 571 25 660 480 12 959 147
Total 523 221 511 266 13 965 792 26 171 746 13 469 859

Abbreviations: SNPs = single nucleotide polymorphisms; WB = a within-breed reference scenario; MB = a multi breed reference scenario.

Fig. 1. Variant-wise mean imputation accuracies by chromosome in Angus cattle using within-breed reference panel and multi breed reference panel, where (i) 50k to HD
imputation, (ii) HD to WGS imputation, and (iii) HD to WGS imputation considering only common SNPs. The imputation accuracies were expressed as concordance rates (CR)
and Pearson’s correlations (PR). Abbreviations: HD = high-density, WGS = whole genome sequence, SNPs = single nucleotide polymorphisms.
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allele frequency appear to be well imputed by chance. The CR
depends on the genotype probabilities and inflates imputation
accuracy for low-frequency SNPs. On the other hand, PR accounts
for filling by chance since the correlation formula considers the
incorrect genotypes by the covariance component (Ma et al.,
2013; Ramnarine et al., 2015; Kai-li et al., 2022). For the 50k to
HD imputation, the average CR and PR were 0.899 and 0.834,
respectively, for the WB scenario and 0.896 and 0.829 for the MB
scenario (Table 2). A similar pattern of accuracy statistics between
different reference panel imputations was also observed by Rowan
et al. (2019) but higher values were reported. Their study per-
3

formed genotype imputation in Gelbvieh cattle with a larger refer-
ence panel for both scenarios. The accuracies ranged from 0.993 to
0.999 for CR and 0.984 to 0.992 for PR in the within-breed scenario.
In the multi breed scenario, the averages ranged from 0.996 to
0.999 for CR and 0.982 to 996 for PR.

The average imputation accuracies from HD to WGS for the WB
scenario were 0.935 and 0.814 for CR and PR, respectively. The
average CR and PR obtained from the MB scenario were 0.966
and 0.789. However, the results were biased because the number
of imputed SNPs between the two scenarios was massively differ-
ent. There were 25 660 480 imputed SNPs in the MB, while only



Table 2
Variant-wise mean imputation accuracy1 in Angus cattle using two different reference panels.

within-breed multi breed

Scenarios CR PR CR PR P-value

HD imputation 0.899 ± 0.001 0.834 ± 0.002 0.896 ± 0.002 0.829 ± 0.003 0.166
WGS imputation2 0.935 ± 0.001 0.814 ± 0.002 0.966 ± 0.001 0.798 ± 0.003 –
WGS imputation (common SNPs) 0.935 ± 0.001 0.803 ± 0.002a 0.933 ± 0.001 0.779 ± 0.003b < 0.0001

Abbreviations: CR = concordance rates; PR = Pearson’s correlations; HD = high-density; WGS = whole genome sequence; SNPs = single nucleotide polymorphisms.
1 The values were an average (mean ± SEM) from 10-fold cross-validation.
2 There was no statistical comparison since a large difference in the number of imputed SNPs.

a,b Values within a row with different superscripts differ significantly at P < 0.05.
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13 442 571 imputed variants in the WB scenario. The vast differ-
ence in the number of imputed variants was caused by the differ-
ent genetic backgrounds between breeds represented in the
dataset. Due to multiple breeds in the Taurus dataset, more genetic
variants passed the quality control process.

Considering only the common SNPs between the two datasets,
there were 12 959 147 imputed SNPs for the HD to WGS imputa-
tion. Average imputation accuracy expressed by CR and PR were
0.935 and 0.803 for the WB scenario, while these values were
0.933 and 0.779 for the MB scenario. There was no difference in
CR between the imputation scenarios, but the PR from the WB sce-
nario was significantly (P < 0.01) higher than that from the MB sce-
nario. Rowan et al. (2019) suggested that if a within-breed
reference panel imputation performed well, no significant
improvement was expected when a multi breed reference panel
was used for imputation. Moreover, introducing a large number
of individuals from different breeds into the reference panel might
introduce genetic variates, which did not exist in the target popu-
lation, and may negatively impact the accuracy. A contrary pattern
was observed by Frischknecht et al. (2017) who investigated impu-
tation accuracy with different reference panels in Brown Swiss cat-
tle. The study reported that average accuracies for a within-breed
scenario ranging between 0.963 and 0.973 for CR and between
0.905 and 0.924 for PR. On the other hand, 0.983 and 0.987 for
CR and between 0.927 and 0.943 for PR were average accuracies
for a multi breed scenario. This study also emphasized that using
a multi breed reference slightly improved imputation accuracy
compared to a within-breed reference.

Our results for both CR and PR were reasonably high. In contrast
to the previous studies of Frischknecht et al. (2017); Rowan et al.
(2019), our accuracies were lower in comparison. These could be
the reason for several factors affecting the imputation accuracy.
Firstly, the reference size in the current study was smaller than
in other studies. From the study of Rowan et al. (2019), 522 and
35 401 samples were used to construct a reference panel for a
within-breed and multi breed scenario, respectively, and all of
those animals were from the same region. While there was no rec-
ommended number of samples in the reference, the larger refer-
ence size was generally preferable to provide a more accurate
imputation (Rowan et al., 2019). The second factor could be a weak
relationship between animals in the dataset. The imputation accu-
racy has been proved to rely on the relationship between the refer-
ence and target sets (Brøndum et al., 2014). Although the reference
size in the study of Frischknecht et al. (2017) was smaller than the
current study, the relationship between the reference and target
sets appeared stronger, especially in the within-breed scenario.
The study informed pedigree-based relationship analysis, which
included 123 sequenced animals from the within-breed scenario
and their ancestors; therefore, it was assumed that the samples
were from the same population. Nevertheless, in the current study,
the Angus samples were pooled from different regions and were
selected under different breeding programs. Hence, the relation-
ship between the Angus cattle in the dataset might be weaker than
4

it is expected in a purebred population. Additionally, Minimac4,
the software used in the current study, exploited a summary of
haplotypes in the reference panel to impute the genotypes. As a
result, when these factors combined, the haplotype library from
the reference inadequately represented potential haplotypes to
match with genotypes in the target set. The factors outlined above
may cause our imputation accuracies not to be as high as the pre-
vious studies.

In conclusion, a within-breed reference scenario can achieve
similar performance to a multi breed reference scenario when an
adequate number of the target breed are represented in a reference
panel. In this case, introducing a considerable number of other
breeds into a reference panel did not improve the accuracy of
imputation. A potential explanation for this result is that the intro-
duction of non-existing genetic variants from other breeds into the
target population may negatively affect the imputation accuracy.
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