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Appendix A1 Tests of within-subjects effects in perinatal groups for the

spatial discrimination component of the double Y-maze

Type III Sum
Source of Squares df Mean Sauare F Sig.
day Sphericity

10400.144 24 433.339 32.177 .000Assumed
Greenhouse-

10400.144 1.082 9609.978 32.177 .000
Geisser
Huynh-Feldt 10400.144 1.232 8441.689 32.177 .000
Lower-bound 10400.144 1.000 10400.144 32.177 .000

day * Group Sphericity
731.403 24 30.475 2.263 .001Assumed

Greenhouse-
731.403 1.082 675.834 2.263 .161

Geisser
Huynh-Feldt 731.403 1.232 593.672 2.263 .156
Lower-bound 731.403 1.000 731.403 2.263 .163

Error(day) Sphericity
3232.152 240 13.467Assumed

Greenhouse-
3232.152 10.822 298.658

Geisser
Huynh-Feldt 3232.152 12.320 262.350
Lower-bound 3232.152 10.000 323.215

Appendix A2 Tests of between-subjects effects in perinatal groups for

the spatial discrimination component of the double-Y maze

Type III Sum
Source of Sauares df Mean Square F Sic.
Intercept

2832066.972 1 2832066.972
153092.58

.000
2

Group 39.417 1 39.417 2.131 .175
Error 184.990 10 18.499
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Appendix A3 Tests of within-subjects effects in perinatal groups for the

delayed alternation component of the double Y-maze

Type III Sum Mean
Source of Squares df Sauare F Sig.

day Sphericity
35772.282 24 1490.512 16.028 .000

Assumed
Greenhouse-

35772.282 6.696 5342.305 16.028 .000
Geisser

Huynh-Feldt 35772.282 23.715 1508.443 16.028 .000
Lower-bound 35772.282 1.000 35772.282 16.028 .003

day * Group Sphericity
15131.901 24 630.496 6.780 .000

Assumed
Greenhouse-

15131.901 6.696 2259.828 6.780 .000
Geisser

Huynh-Feldt 15131.901 23.715 638.081 6.780 .000
Lower-bound 15131.901 1.000 15131.901 6.780 .026

Error(day) Sphericity
22318.344 240 92.993

Assumed
Greenhouse-

22318.344 66.960 333.307
Geisser

Huynh-Feldt 22318.344 237.147 94.112
Lower-bound 22318.344 10.000 2231.834

Appendix A4 Tests of between-subjects effects in perinatal groups for

the delayed alternation component of the double-Y maze

Type III Sum Mean
Source of Squares df Square F Siq.

Intercept 1169448.14
1 1169448.145 3135.931 .000

5
Group 3608.108 1 3608.108 9.675 .011
Error 3729.189 10 372.919



227

Appendix AS Tests of within-subjects effects in perinatal groups for T1

of the object recognition task

Type III Sum Mean
Source of Squares df Square F Sig.
delay Sphericity

4079.034 2 2039.517 1.402 .257
Assumed

Greenhouse-
4079.034 1.798 2268.842 1.402 .257

Geisser
Huynh-Feldt 4079.034 2.000 2039.517 1.402 .257
Lower-bound 4079.034 1.000 4079.034 1.402 .249

delay * Group Sphericity
344.279 2 172.139 .118 .889

Assumed
Greenhouse-

344.279 1.798 191.495 .118 .869
Geisser

Huynh-Feldt 344.279 2.000 172.139 .118 .889
Lower-bound 344.279 1.000 344.279 .118 .734

Error(delay) Sphericity
64010.068 44 1454.774

Assumed
Greenhouse-

64010.068 39.553 1618.350
Geisser

Huynh-Feldt 64010.068 44.000 1454.774
Lower-bound 64010.068 22.000 2909.549

Appendix A6 Tests of between-subjects effects in perinatal groups for

T1 of the object recognition task

Type III Sum Mean
Source of Squares df Square F Sig.

Intercept 452184.650 1 452184.650 255.866 .000
Group 734.083 1 734.083 .415 .526
Error 38879.936 22 1767.270
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Appendix A7 Tests of within-subjects effects in adolescent groups for

T1 of the object recognition task

Type III Sum
Source of Squares df Mean Square F Sig.

delay Sphericity
7720.005 2 3860.003 5.220 .009

Assumed
Greenhouse-

7720.005 1.541 5008.132 5.220 .016
Geisser

Huynh-Feldt 7720.005 1.711 4513.099 5.220 .013
Lower-bound 7720.005 1.000 7720.005 5.220 .032

delay * Group Sphericity
1667.847 2 833.923 1.128 .333

Assumed
Greenhouse-

1667.847 1.541 1081.968 1.128 .322
Geisser

Huynh-Feldt 1667.847 1.711 975.020 1.128 .327
Lower-bound 1667.847 1.000 1667.847 1.128 .300

Error(delay) Sphericity
32536.188 44 739.459

Assumed
Greenhouse-

32536.188 33.913 959.405
Geisser

Huynh-Feldt 32536.188 37.633 864.572
Lower-bound 32536.188 22.000 1478.918

Appendix A8 Tests of between-subjects effects in adolescent groups for

T1 of the object recognition task

Type III Sum
Source of Squares df Mean Square F SiQ.

Intercept 444687.369 1 444687.369 185.678 .000
Group 1124.961 1 1124.961 .470 .500
Error 52688.711 22 2394.941
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Appendix A9 Tests of within-subjects effects in adult groups for T1 of

the object recognition task

Type III Sum
Source of Squares df Mean Square F Sig.
delay Sphericity

520.330 2 260.165 .382 .684
Assumed

Greenhouse-
520.330 1.796 289.767 .382 .662

Geisser
Huynh-Feldt 520.330 2.000 260.165 .382 .684
Lower-bound 520.330 1.000 520.330 .382 .543

delay * Group Sphericity
882.003 2 441.002 .648 .528Assumed

Greenhouse-
882.003 1.796 491.179 .648 .512Geisser

Huynh-Feldt 882.003 2.000 441.002 .648 .528
Lower-bound 882.003 1.000 882.003 .648 .429

Error(delay) Sphericity
29929.680 44 680.220

Assumed
Greenhouse-

29929.680 39.505 757.615
Geisser

Huynh-Feldt 29929.680 44.000 680.220
Lower-bound 29929.680 22.000 1360.440

Appendix A10 Tests of between-subjects effects in adult groups for T1

of the object recognition task

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 182952.005 1 182952.005 159.825 .000
Group 36.980 1 36.980 .032 .859
Error 25183.462 22 1144.703
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Appendix A11 Tests of within-subjects effects in perinatal groups for T2

of the object recognition task

Type III Sum
Source of Squares df Mean Sauare F Sig.
delay Sphericity

537.224 2 268.612 1.594 .215
Assumed

Greenhouse-
537.224 1.840 291.906 1.594 .217Geisser

Huynh-Feldt 537.224 2.000 268.612 1.594 .215
Lower-bound 537.224 1.000 537.224 1.594 .220

delay * Group Sphericity
94.376 2 47.188 .280 .757Assumed

Greenhouse-
94.376 1.840 51.280 .280 .739Geisser

Huynh-Feldt 94.376 2.000 47.188 .280 .757
Lower-bound 94.376 1.000 94.376 .280 .602

Error(delay) Sphericity
7413.526 44 168.489

Assumed
Greenhouse-

7413.526 40.489 183.100
Geisser

Huynh-Feldt 7413.526 44.000 168.489
Lower-bound 7413.526 22.000 336.978

Appendix A12 Tests of between-subjects effects in perinatal groups for

T2 of the object recognition task

Type III Sum
Source of Squares df Mean Square F Sia.

Intercept 251535.599 1 251535.599 1259.423 .000
Group 899.766 1 899.766 4.505 .045
Error 4393.904 22 199.723
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Appendix A13 Tests of within-subjects effects in adolescent groups for

T2 of the object recognition task

Type III Sum
Source of Squares df Mean Square F Sig.
delay Sphericity

3.378 2 1.689 .008 .992
Assumed

Greenhouse-
3.378 1.983 1.703 .008 .992

Geisser
Huynh-Feldt 3.378 2.000 1.689 .008 .992
Lower-bound 3.378 1.000 3.378 .008 .930

delay * Group Sphericity 96.136 2 48.068 .224 .800Assumed
Greenhouse-

96.136 1.983 48.478 .224 .798Geisser
Huynh-Feldt 96.136 2.000 48.068 .224 .800
Lower-bound 96.136 1.000 96.136 .224 .641

Error(delay) Sphericity
9440.729 44 214.562

Assumed
Greenhouse-

9440.729 43.627 216.395
Geisser

Huynh-Feldt 9440.729 44.000 214.562
Lower-bound 9440.729 22.000 429.124

Appendix A14 Tests of between-subjects effects in adolescent groups

for T2 of the object recognition task

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 268606.547 1 268606.547 1172.789 .000
Group 2127.936 1 2127.936 9.291 .006
Error 5038.708 22 229.032
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Appendix A15 Tests of within-subjects effects in adult groups for T2 of

the object recognition task

Type III Sum
Source of Squares df Mean Square F Siq.
delay Sphericity

626.549 2 313.275 1.277 .289
Assumed

Greenhouse-
626.549 1.871 334.806 1.277 .288

Geisser
Huynh-Feldt 626.549 2.000 313.275 1.277 .289
Lower-bound 626.549 1.000 626.549 1.277 .271

delay * Group Sphericity
209.005 2 104.502 .426 .656

Assumed
Greenhouse-

209.005 1.871 111.685 .426 .643
Geisser

Huynh-Feldt 209.005 2.000 104.502 .426 .656
Lower-bound 209.005 1.000 209.005 .426 .521

Error(delay) Sphericity 10793.371 44 245.304
Assumed

Greenhouse- 10793.371 41.170 262.164
Geisser

Huynh-Feldt 10793.371 44.000 245.304
Lower-bound 10793.371 22.000 490.608

Appendix A16 Tests of between-subjects effects in adult groups for T2

of the object recognition task

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 261727.729 1 261727.729 1397.128 .000
Group 874.051 1 874.051 4.666 .042
Error 4121.318 22 187.333
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Appendix A17 Tests of within-subjects effects in perinatal groups for T1

locomotor activity

Type III Sum
Source of Squares df Mean Square F SiQ.
delay Sphericity

3194.622 2 1597.311 1.016 .371
Assumed

Greenhouse-
3194.622 1.692 1887.914 1.016 .361

Geisser
Huynh-Feldt 3194.622 1.901 1680.225 1.016 .368
Lower-bound 3194.622 1.000 3194.622 1.016 .325

delay * Group Sphericity
302.255 2 151.127 .096 .909

Assumed
Greenhouse-

302.255 1.692 178.622 .096 .879Geisser
Huynh-Feldt 302.255 1.901 158.972 .096 .900
Lower-bound 302.255 1.000 302.255 .096 .759

Error(delay) Sphericity
69205.287 44 1572.847

Assumed
Greenhouse-

69205.287 37.227 1859.000
Geisser

Huynh-Feldt 69205.287 41.829 1654.491

Lower-bound 69205.287 22.000 3145.695

Appendix A18 Tests of between-subjects effects in perinatal groups for

T1 locomotor activity

Type III Sum
Source of Squares df Mean Square F SiQ.

Intercept 7633423.383 1 7633423.383 8911.873 .000
Group 2180.549 1 2180.549 2.546 .125
Error 18843.998 22 856.545
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Appendix A19 Tests of within-subjects effects in adolescent groups for

T1 locomotor activity

Type III Sum
Source of Squares df Mean Square F Sig.
delay Sphericity

6547.105 2 3273.553 1.512 .232
Assumed

Greenhouse-
6547.105 1.806 3624.911 1.512 .233

Geisser
Huynh-Feldt 6547.105 2.000 3273.553 1.512 .232
Lower-bound 6547.105 1.000 6547.105 1.512 .232

delay * Group Sphericity
1835.445 2 917.722 .424 .657

Assumed
Greenhouse- 1835.445 1.806 1016.224 .424 .637

Geisser
Huynh-Feldt 1835.445 2.000 917.722 .424 .657
Lower-bound 1835.445 1.000 1835.445 .424 .522

Error(delay) Sphericity
95241.833 44 2164.587

Assumed
Greenhouse-

95241.833 39.735 2396.918
Geisser

Huynh-Feldt 95241.833 44.000 2164.587

Lower-bound 95241.833 22.000 4329.174

Appendix A20 Tests of between-subjects effects in adolescent groups

for T1 locomotor activity

Type III Sum
Source of Squares df Mean Square F SiQ.

Intercept 7966895.052 1 7966895.052 5407.436 .000
Group 3031.862 1 3031.862 2.058 .165
Error 32413.088 22 1473.322
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Appendix A21 Tests of within-subjects effects in adult groups for T1

locomotor activity

Type III Sum
Source of Squares df Mean Square F SiQ.
delay Sphericity

3231.077 2 1615.539 1.408 .255
Assumed

Greenhouse-
3231.077 1.626 1987.181 1.408 .256Geisser

Huynh-Feldt 3231.077 1.817 1778.084 1.408 .256
Lower-bound 3231.077 1.000 3231.077 1.408 .248

delay * Group Sphericity
1462.084 2 731.042 .637 .534Assumed

Greenhouse-
1462.084 1.626 899.213 .637 .503Geisser

Huynh-Feldt 1462.084 1.817 804.595 .637 .520
Lower-bound 1462.084 1.000 1462.084 .637 .433

Error(delay) Sphericity
50491.804 44 1147.541

Assumed
Greenhouse-

50491.804 35.771 1411.524
Geisser

Huynh-Feldt 50491.804 39.978 1262.999
Lower-bound 50491.804 22.000 2295.082

Appendix A22 Tests of between-subjects effects in adult groups for T1

locomotor activity

Type III Sum
Source of Squares df Mean Square F SiQ.

Intercept 6192693.662 1 6192693.662 1643.635 .000
Group 59.881 1 59.881 .016 .901
Error 82889.023 22 3767.683
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Appendix A23 Tests of within-subjects effects in perinatal groups for T2

locomotor activity

Type III Sum
Source of Squares df Mean Square F Sig.
delay Sphericity

4413.816 2 2206.908 1.706 .193
Assumed

Greenhouse-
4413.816 1.827 2415.915 1.706 .196

Geisser
Huynh-Feldt 4413.816 2.000 2206.908 1.706 .193
Lower-bound 4413.816 1.000 4413.816 1.706 .205

delay * Group Sphericity
442.204 2 221.102 .171 .843

Assumed
Greenhouse-

442.204 1.827 242.042 .171 .825
Geisser

Huynh-Feldt 442.204 2.000 221.102 .171 .843
Lower-bound 442.204 1.000 442.204 .171 .683

Error(delay) Sphericity
56916.500 44 1293.557

Assumed
Greenhouse-

56916.500 40.193 1416.064
Geisser

Huynh-Feldt 56916.500 44.000 1293.557
Lower-bound 56916.500 22.000 2587.114

Appendix A24 Tests of between-subjects effects in perinatal groups for

T2 locomotor activity

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 7450794.047 1 7450794.047 6143.546 .000
Group 299.300 1 299.300 .247 .624
Error 26681.248 22 1212.784
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Appendix A25 Tests of within-subjects effects in adolescent groups for

T2 locomotor activity

Type III Sum
Source of Squares df Mean Square F Sig.
delay Sphericity

5483.944 2 2741.972 2.312 .111
Assumed

Greenhouse-
5483.944 1.906 2876.850 2.312 .114

Geisser
Huynh-Feldt 5483.944 2.000 2741.972 2.312 .111
Lower-bound 5483.944 1.000 5483.944 2.312 .143

delay * Group Sphericity
282.356 2 141.178 .119 .888

Assumed
Greenhouse-

282.356 1.906 148.122 .119 .879
Geisser

Huynh-Feldt 282.356 2.000 141.178 .119 .888
Lower-bound 282.356 1.000 282.356 .119 .733

Error(delay) Sphericity
52192.603 44 1186.196

Assumed
Greenhouse-

52192.603 41.937 1244.545
Geisser

Huynh-Feldt 52192.603 44.000 1186.196
Lower-bound 52192.603 22.000 2372.391

Appendix A26 Tests of between-subjects effects in adolescent groups

for T2 locomotor activity

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 7420849.295 1 7420849.295 4013.906 .000

Group 5396.052 1 5396.052 2.919 .102
Error 40673.268 22 1848.785
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Appendix A27 Tests of within-subjects effects in adult groups for T2

locomotor activity

Type /I, Sum
Source of Squares df Mean Square F Sig.
delay Sphericity

23245.165 2 11622.583 10.412 .000
Assumed

Greenhouse-
23245.165 1.759 13218.218 10.412 .000

Geisser
Huynh-Feldt 23245.165 1.986 11702.707 10.412 .000
Lower-bound 23245.165 1.000 23245.165 10.412 .004

delay * Group Sphericity
3043.256 2 1521.628 1.363 .266

Assumed
Greenhouse-

3043.256 1.759 1730.528 1.363 .266
Geisser

Huynh-Feldt 3043.256 1.986 1532.118 1.363 .266
Lower-bound 3043.256 1.000 3043.256 1.363 .255

Error(delay) Sphericity
49115.929 44 1116.271

Assumed
Greenhouse-

49115.929 38.689 1269.521
Geisser

Huynh-Feldt 49115.929 43.699 1123.966
Lower-bound 49115.929 22.000 2232.542

Appendix A28 Tests of between-subjects effects in adult groups for T2

locomotor activity

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 5588301.272 1 5588301.272 1199.378 .000
Group 1343.884 1 1343.884 .288 .597
Error 102505.282 22 4659.331
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Appendix A29 Independent samples t-test in perinatal groups for total

non-aggressive social interaction behaviours (sniffing, following,

grooming, mounting, and crawling underlover the conspecific)

Levene's
Test for

Equality of
Variances t-test for Equality of Means

I
I

95% Confidence
Interval of the

Sig. Difference

(2- Mean Std. Error
Source F Sig. t df tailed) Difference Difference Lower Upper
Total Equal

variances .032 .860 3.342 22 .003 37.0000 11.0696 14.0431 59.9569
assumed

Equal
variances

3.342 22.000 .003 37.0000 11.0696 14.0430 59.9570
not

assumed

Appendix A30 Independent samples t-test in adolescent groups for total

non-aggressive social interaction behaviours (sniffing, following,

grooming, mounting, and crawling underlover the conspecific)

Levene's
Test for

Equality of
Variances t-test for Equality of Means

I
I

i
95% Confidence

Interval of the
I

DifferenceI Sig.
(2- Mean Std. Error

Source F Sig. t df tailed) Difference Difference Lower Upper
Total Equal

variances 10.502 .004 3.294 22 .003 30.7083 9.3218 11.3762 50.0405
assumed

Equal
variances

3.294 14.648 .005 30.7083 9.3218 10.7978 50.6188
not

assumed
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Appendix A31 Independent samples t-test in adult groups for total non­

aggressive social interaction behaviours (sniffing, following, grooming,

mounting, and crawling underlover the conspecific)

Levene's
Test for

Equality of
Variances t-test for Equality of Means

I I
95% Confidence

I

Interval of the
I Differencei Sig.

(2- Mean Std. Error
Source F Sig. t df tailed) Difference Difference Lower Upper
Total Equal

variances 9.253 .006 3.612 22 .002 51.2167 14.1802 21.8087 80.6247
assumed

Equal
variances

3.612 15.845 .002 51.2167 14.1802 21.1320 81.3013not
assumed
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Appendix A32 Independent samples t-tests in perinatal groups for non­

aggressive (Chapter 5) and aggressive (Chapter 6) social behaviours

Levene's
Test for

Equality of
Variances t-test for Equality of Means

95% Confidence
Interval of the

Difference
Sig.
(2- Mean Std. Error

Source F Sig. t df tailed) Difference Difference Lower Upper
Sniffing Equal

variances .277 .604 2.447 22 .023 26.3500 10.7671 4.0203 48.6797
assumed

Equal
variances 2.447 21.961 .023 26.3500 10.7671 4.0180 48.6820not
assumed

Following Equal
variances 7.436 .012 2.718 22 .013 4.4500 1.6372 1.0546 7.8454
assumed

Equal
variances 2.718 12.119 .019 4.4500 1.6372 .8867 8.0133

not
assumed

Grooming Equal
variances 4.840 .039 1.000 22 .328 .042 .042 -.045 .128
assumed

Equal
variances 1.000 11.000 .339 .042 .042 -.050 .133

not
assumed

Mounting Equal
variances .112 .741 .035 22 .972 .025 .710 -1.448 1.498
assumed

Equal
variances .035 17.259 .972 .025 .710 -1.472 1.522

not
assumed

Jumping on Equal
variances .202 .657 1.300 22 .207 2.0833 1.6031 -12414 5.4081
assumed

Equal
variances 1.300 21.489 .208 2.0833 1.6031 -1.2460 5.4127

not
assumed

Wrestling/boxing Equal
variances .222 .642 1.660 22 .111 18.3000 11.0264 -4.5673 41.1673
assumed

Equal
variances 1.660 21.827 .111 18.3000 11.0264 -4.5778 41.1778

not
assumed

Crawling Equal
under/over variances 10.075 .004 2.656 22 .014 6.133 2.310 1.344 10.923

assumed
Equal

variances 2.656 13.816 .019 6.133 2.310 1.174 11.093
not

assumed
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Appendix A33 Independent samples t-tests in adolescent groups for

non-aggressive (Chapter 5) and aggressive (Chapter 6) social

behaviours

Levene's Test
for Equality of

Variances t-test for Equality of Means

95% Confidence
Interval of the

Difference
Sig.
(2- Mean Std. Error

Source F Sig. t df tailed) Difference Difference Lower Upper
Sniffing Equal

variances 9.271 .006 3.518 22 .002 24.6083 6.9952 10.1011 39.1156
assumed

Equal
variances 3.518 15.599 .003 24.6083 6.9952 9.7481 39.4686

not
assumed

Following Equal
variances 18.169 .000 2.318 22 .030 3.6417 1.5712 .3831 6.9002
assumed

Equal
variances 2.318 12.016 .039 3.6417 1.5712 .2187 7.0646

not
assumed

Grooming Equal
variances 1.720 .203 .553 22 .586 .3417 .6183 -.9406 1.6239
assumed

Equal
variances

.553 13.006 .590 .3417 .6183 -.9940 1.6773
not

assumed
Kicking Equal

variances 2.283 .145 .687 22 .499 .042 .061 -.084 .167
assumed

Equal
variances .687 12.784 .504 .042 .061 -.090 .173

not
assumed

Mounting Equal
variances 2.932 .101 -.024 22 .981 -.008 .344 -.721 .705
assumed

Equal
variances

-.024 16.085 .981 -.008 .344 -.737 .720
not

assumed
Jumping on Equal

variances 13.494 .001 2.680 22 .014 2.433 .908 .550 4.316
assumed

Equal
variances

2.680 13.215 .019 2.433 .908 .475 4.392
not

assumed
Wrestling/boxing Equal

variances 7.410 .012 .017 22 .987 .142 8.536 -17.561 17.844
assumed

Equal
variances

.017 17.164 .987 .142 8.536 -17.855 18.138
not

assumed
Crawling Equal

under/over variances 3.530 .074 1.499 22 .148 2.125 1.417 -.815 5.065
assumed

Equal
variances 1.499 18.261 .151 2.125 1.417 -.850 5.100

not
assumed
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Appendix A34 Independent samples t-tests in adult groups for non­

aggressive (Chapter 5) and aggressive (Chapter 6) social behaviours

Levene's
Test for

Equality of
Variances t-test for Equality of Means

95% Confidence
Interval of the

Difference
Sig.
(2- Mean Std. Error

F Sig. t df tailed) Difference Difference Lower Upper
Sniffing Equal

variances 5.534 .028 3.909 22 .001 38.1000 9.7457 17.8886 58.3114
assumed

Equal
variances 3.909 15.892 .001 38.1000 9.7457 17.4286 58.7714

not
assumed

Following Equal
variances 1.596 .220 1.805 22 .085 5.8250 3.2270 -.8673 12.5173
assumed

Equal
variances 1.805 19.777 .086 5.8250 3.2270 -.9112 12.5612

not
assumed

Grooming Equal
variances 4.840 .039 1.000 22 .328 .167 .167 -.179 .512
assumed

Equal
variances 1.000 11.000 .339 .167 .167 -.200 .533

not
assumed

Mounting Equal
variances .339 .567 .337 22 .740 .208 .619 -1.075 1.492
assumed

Equal
variances .337 17.526 .740 .208 .619 -1.094 1.511

not
assumed

Jumping on Equal
variances 16.835 .000 2.823 22 .010 2.2083 .7824 .5858 3.8309
assumed

Equal
variances 2.823 11.895 .016 2.2083 .7824 .5020 3.9147

not
assumed

Wrestling/boxing Equal
variances 9.468 .006 1.497 22 .149 4.6667 3.1167 -1.7969 11.1303
assumed

Equal
variances 1.497 11.018 .162 4.6667 3.1167 -2.1918 11.5251

not
assumed

Crawling Equal
under/over variances 5.648 .027 1.905 22 .070 6.9167 3.6313 -.6141 14.4474

assumed
Equal

variances 1.905 15.174 .076 6.9167 3.6313 -.8155 14.6488
not

assumed
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Levene's Test for
Equality of
Variances t-test for Equality of Means

!

1
I

95% Confidence Interval of
I the Difference

Sig. (2- Std. Error
F Sig. t df tailed) Mean Difference Difference Lower Upper

Emergence latency Equal variances
6.705 .017 -1.607 22 .122 -19.0250 11.8406 -43.5810 5.5310assumed

Equal variances
-1.607 18.071 .125 -19.0250 11.8406 -43.8943 5.8443not assumed

Appendix A36 Independent samples t-test in adolescent groups for emergence latency (emergence test)

Levene's Test for
Equality of Variances t-test for Equality of Means

I

95% Confidence Interval of
the Difference

Sig. (2- Std. Error
F Sig. t df tailed) Mean Difference Difference Lower Upper

Emergence latency Equal variances
1.343 .259 .604 22 .552 4.092 6.779 -9.968 18.151

assumed

I
Equal variances

.604 16.395 .554 4.092 6.779 -10.252 18.435not assumed



Appendix A37 Independent samples t-test in adult groups for emergence latency (emergence test)
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Levene's Test for Equality of
Variances t-test for Equality of Means

I
I

95% Confidence
I

I
Interval of the

! Difference

Sig. (2- Mean Std. Error
F Sig. t df tailed) Difference Difference Lower Upper

Emergence Equal variances
.000 .985 -.670 22 .510latency assumed -1.6583 2.4742 -6.7894 3.4727

Equal variances not
-.670 21.994 .510assumed -1.6583 2.4742 -6.7895 3.4728
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Levene's Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval of
the Difference

Sig. (2- Mean Std. Error
F Sig. t df tailed) Difference Difference Lower Upper

Emergence Equal variances
.123 .729 -.098 22 .923 -.083 .852 -1.851 1.685frequency assumed

Equal variances
-.098 21.990 .923 -.083 .852 -1.851 1.685not assumed

Open field Equal variances
.061 .807 .533 22 .599 6.1917 11.6181 -17.9028 30.2861assumed

Equal variances
.533 21.373 .600 6.1917 11.6181 -17.9438 30.3272not assumed

Risk Equal variances
.369 .550 -1.102 22 .282 -2.9667 2.6915 -8.5484 2.6151assessment assumed

Equal variances
-1.102 21.769 .282 -2.9667 2.6915 -8.5519 2.6185not assumed

Line crosses Equal variances
.053 .819 -.089 22 .930 -.833 9.401 -20.329 18.662assumed

Equal variances
-.089 21.332 .930 -.833 9.401 -20.365 18.698not assumed

Hide box Equal variances
.046 .832 -.784 22 .442 -8.4917 10.8372 -30.9666 13.9832assumed

Equal variances
-.784 21.828 .442 -8.4917 10.8372 -30.9768 13.9935not assumed
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Levene's Test for
Equality of Variances t-test for Equality of Means

95% Confidence
Interval of the

Difference
Mean Std. Error

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Emergence Equal variances

1.034 .320 .361 22 .721 .250 .692 -1.186 1.686frequency assumed

Equal variances
.361 17.794 .722 .250 .692 -1.206 1.706not assumed

Open field Equal variances
5.341 .031 -1.496 22 .149 -15.3917 10.2904 -36.7326 5.9493assumed

Equal variances
-1.496 17.868 .152 -15.3917 10.2904 -37.0224 6.2391not assumed

Risk assessment Equal variances
3.079 .093 1.363 22 .187 3.767 2.763 -1.963 9.496assumed

Equal variances
1.363 11.955 .198 3.767 2.763 -2.255 9.789not assumed

Line crosses Equal variances
.119 .734 .659 22 .517 4.500 6.826 -9.656 18.656assumed

Equal variances
.659 21.405 .517 4.500 6.826 -9.679 18.679not assumed

Hide box Equal variances
.409 .529 2.225 22 .037 17.0250 7.6507 1.1584 32.8916assumed

Equal variances
2.225 21.900 .037 17.0250 7.6507 1.1542 32.8958not assumed



Appendix A40 Independent samples t-tests in adult groups for more emergence test behaviours
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Levene's Test for
Equality of Variances t-test for Equality of Means

95% Confidence
Interval of the

Difference

Mean Std. Error
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Emergence Equal variances
.360 .555 1.023 22 .317 .583 .570 -.599 1.766frequency assumed

Equal variances not
1.023 21.519 .318 .583 .570 -.601 1.767assumed

Open field Equal variances
.144 .708 .940 22 .358 9.4750 10.0823 -11.4345 30.3845assumed

Equal variances not
.940 19.438 .359 9.4750 10.0823 -11.5954 30.5454assumed

Risk assessment Equal variances
3.092 .093 -.758 22 .457 -.8417 1.1107 -3.1451 1.4618assumed

Equal variances not
-.758 17.500 .459 -.8417 1.1107 -3.1800 1.4966assumed

Line crosses Equal variances
.517 .480 1.219 22 .236 6.333 5.197 -4.445 17.112assumed

Equal variances not
1.219 20.905 .237 6.333 5.197 -4.478 17.144assumed

Hide box Equal variances
2.330 .141 -1.074 22 .295 -6.2750 5.8434 -18.3934 5.8434assumed

Equal variances not
-1.074 19.405 .296 -6.2750 5.8434 -18.4880 5.9380assumed



Appendix A41 Independent samples t-test in perinatal groups for c-fos immunohistochemistry

Levene's Test for
t-test for Equality of MeansEquality of Variances

95% Confidence Interval
of the Difference

Mean Std. Error
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Cart insular Equal variances
.170 .687 -.168 14 .869 -.125 .743 -1.718 1.468assumed

Equal variances
-.168 13.880 .869 -.125 .743 -1.719 1.469not assumed

Cart piriform Equal variances
.465 .506 -.554 14 .588 -6.625 11.948 -32.250 19.000assumed

Equal variances
-.554 13.532 .588 -6.625 11.948 -32.334 19.084not assumed

Med CPU Equal variances
6.214 .026 -1.850 14 .086 -2.750 1.487 -5.938 .438assumed

Equal variances
-1.850 8.604 .099 -2.750 1.487 -6.137 .637not assumed

NA core Equal variances
9.000 .010 -1.323 14 .207 -1.000 .756 -2.621 .621assumed

Equal variances
-1.323 7.000 .227 -1.000 .756 -2.787 .787not assumed

NA shell Equal variances
.803 .385 -.957 14 .355 -.625 .653 -2.025 .775assumed

Equal variances
-.957 9.614 .362 -.625 .653 -2.088 .838not assumed

Lat Sep ven Equal variances
1.263 .280 -1.091 14 .294 -4.250 3.895 -12.604 4.104assumed

Equal variances
-1.091 11.732 .297 -4.250 3.895 -12.758 4.258not assumed

BNST Id Equal variances
2.178 .162 .632 14 .537 .250 .395 -.598 1.098assumed
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Equal variances
.632 8.537 .544 .250 .395 -.652 1.152not assumed

Amy bas nuc Equal variances
1.626 .223 .727 14 .479 1.000 1.376 -1.951 3.951assumed

Equal variances
.727 12.962 .480 1.000 1.376 -1.973 3.973not assumed

Amy cen nuc Equal variances
1.680 .216 1.586 14 .135 3.625 2.285 -1.276 8.526assumed

Equal variances
1.586 10.816 .141 3.625 2.285 -1.415 8.665not assumed

Amy med nuc Equal variances
.110 .745 -.518 14 .613 -1.625 3.139 -8.358 5.108assumed

Equal variances
-.518 13.152 .613 -1.625 3.139 -8.399 5.149not assumed

Peri gray dar Equal variances
3.136 .098 1.723 14 .107 3.625 2.104 -.887 8.137assumed

Equal variances
1.723 12.301 .110 3.625 2.104 -.947 8.197not assumed

Peri gray lat Equal variances
2.422 .142 .881 14 .393 2.500 2.837 -3.585 8.585assumed

Equal variances
.881 13.172 .394 2.500 2.837 -3.621 8.621not assumed

Peri gray vent Equal variances
.146 .708 -.810 14 .432 -3.125 3.859 -11.401 5.151assumed

Equal variances
-.810 13.626 .432 -3.125 3.859 -11.423 5.173not assumed

Hipp CA1 Equal variances
13.186 .003 -1.426 14 .176 -.375 .263 -.939 .189assumed

Equal variances
-1.426 7.000 .197 -.375 .263 -.997 .247not assumed

Hipp CA3 Equal variances
.000 1.000 .000 14 1.000 .000 .378 -.811 .811assumed

Equal variances
.000 14.000 1.000 .000 .378 -.811 .811not assumed
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Appendix A42 Independent samples t-test in adolescent groups for c-fos immunohistochemistry

Levene's Test for
t-test for Equality of MeansEguality of Variances

95% Confidence Interval
of the Difference

Mean Std. Error
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Cart insular Equal variances
1.145 .303 -.403 14 .693 -.125 .310 -.789 .539assumed

Equal variances
-.403 11.713 .694 -.125 .310 -.802 .552not assumed

Cart piriform Equal variances
1.362 .263 -.292 14 .775 -2.625 8.996 -21.919 16.669assumed

Equal variances
-.292 9.164 .777 -2.625 8.996 -22.920 17.670not assumed

Med CPU Equal variances
.692 .419 -.298 14 .770 -.125 .420 -1.026 .776assumed

Equal variances
-.298 13.380 .771 -.125 .420 -1.030 .780not assumed

NA core Equal variances
.337 .571 .000 14 1.000 .000 .320 -.687 .687assumed

Equal variances
.000 12.489 1.000 .000 .320 -.695 .695not assumed

NA shell Equal variances
1.577 .230 -.607 14 .554 -.125 .206 -.567 .317assumed

Equal variances
-.607 13.093 .554 -.125 .206 -.570 .320not assumed

Lat Sep ven Equal variances
1.217 .288 .701 14 .495 1.000 1.427 -2.060 4.060assumed

Equal variances
.701 11.741 .497 1.000 1.427 -2.116 4.116not assumed

BNST Id Equal variances
.011 .917 .208 14 .838 .250 1.201 -2.325 2.825assumed
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Equal variances
.208 13.998 .838 .250 1.201 -2.326 2.826not assumed

Amy bas nuc Equal variances
.039 .846 .133 14 .896 .125 .939 -1.889 2.139assumed

Equal variances
.133 13.985 .896 .125 .939 -1.889 2.139not assumed

Amy cen nuc Equal variances
.059 .812 -.306 14 .764 -.250 .818 -2.005 1.505assumed

Equal variances
-.306 13.978 .764 -.250 .818 -2.005 1.505not assumed

Amy med nuc Equal variances
.029 .867 .197 14 .847 .500 2.535 -4.938 5.938assumed

Equal variances
.197 12.844 .847 .500 2.535 -4.984 5.984not assumed

Peri gray dar Equal variances
2.232 .157 -.136 14 .894 -.125 .920 -2.098 1.848assumed

Equal variances
-.136 11.070 .894 -.125 .920 -2.148 1.898not assumed

Peri gray lat Equal variances
.433 .521 .000 14 1.000 .000 .417 -.895 .895assumed

Equal variances
.000 10.155 1.000 .000 .417 -.928 .928not assumed

Peri gray vent Equal variances
2.012 .178 -.758 14 .461 -1.875 2.474 -7.182 3.432assumed

Equal variances
-.758 12.314 .463 -1.875 2.474 -7.251 3.501not assumed

Hipp CA3 Equal variances
5.444 .035 -1.000 14 .334 -.125 .125 -.393 .143assumed

Equal variances
-1.000 7.000 .351 -.125 .125 -.421 .171not assumed
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Appendix A43 Independent samples t-test in adult groups for c-fos immunohistochemistry

Levene's Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

Mean Std. Error
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Cart insular Equal variances
assumed .441 .517 .793 14 .441 1.000 1.261 -1.704 3.704

Equal variances
.793 13.194not assumed .442 1.000 1.261 -1.719 3.719

Cart piriform Equal variances
3.978 .066assumed .384 14 .707 3.750 9.760 -17.184 24.684

Equal variances
not assumed .384 10.488 .708 3.750 9.760 -17.861 25.361

Med CPU Equal variances
assumed .099 .757 -.255 14 .803 -.375 1.472 -3.533 2.783

Equal variances
-.255not assumed 12.217 .803 -.375 1.472 -3.576 2.826

NA core Equal variances
assumed 3.316 .090 -.661 14 .519 -.500 .756 -2.121 1.121

Equal variances
-.661 11.200not assumed .522 -.500 .756 -2.160 1.160

NA shell Equal variances
assumed 1.679 .216 .788 14 .444 1.625 2.063 -2.800 6.050

Equal variances
.788 11.445not assumed .447 1.625 2.063 -2.895 6.145

Lat Sep ven Equal variances
1.079 .317assumed -.089 14 .930 -.125 1.407 -3.143 2.893

Equal variances
-.089not assumed 10.737 .931 -.125 1.407 -3.231 2.981

BNST Id Equal variances
assumed 7.192 .018 1.256 14 .230 .625 .498 -.443 1.693
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Equal variances
1.256 7.000 .250 .625 .498 -.552 1.802not assumed

Amy bas nuc Equal variances
1.852 .195 .927 14 .369 1.875 2.022 -2.461 6.211assumed

Equal variances
.927 8.472 .379 1.875 2.022 -2.742 6.492not assumed

Amy cen nuc Equal variances
.622 .443 -1.000 14 .334 -1.250 1.250 -3.931 1.431assumed

Equal variances
-1.000 13.898 .334 -1.250 1.250 -3.933 1.433not assumed

Amy med nuc Equal variances
.141 .713 -1.424 14 .176 -2.250 1.580 -5.638 1.138assumed

Equal variances
-1.424 13.929 .176 -2.250 1.580 -5.640 1.140not assumed

Peri gray dar Equal variances
7.290 .017 .993 14 .338 1.250 1.259 -1.450 3.950assumed

Equal variances
.993 7.468 .352 1.250 1.259 -1.689 4.189not assumed

Peri gray lat Equal variances
.000 1.000 -.333 14 .744 -.125 .375 -.929 .679assumed

Equal variances
-.333 13.996 .744 -.125 .375 -.929 .679not assumed

Peri gray vent Equal variances
.819 .381 .432 14 .672 .875 2.024 -3.466 5.216assumed

Equal variances
.432 12.119 .673 .875 2.024 -3.530 5.280not assumed

Hipp CA1 Equal variances
1.145 .303 .403 14 .693 .125 .310 -.539 .789assumed

Equal variances
.403 11.713 .694 .125 .310 -.552 .802not assumed

Hipp CA3 Equal variances
5.444 .035 -1.000 14 .334 -.125 .125 -.393 .143assumed

Equal variances
-1.000 7.000 .351 -.125 .125 -.421 .171not assumed
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Appendix 81 Data for spatial discrimination (SO) component of the double Y-maze for 25-day training period for perinatal

vehicle (group= 1) and THe (groups= 2) treated rats

Rat Group SO 1 SO 2 SO 3 SO 4 SO 5 SO 6 SO 7 SO 8 SO 9 SD 10 SO 11 SO 12 SO 13
31 1 26.7 86.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
32 1 60.0 93.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
33 1 73.3 86.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
34 1 60.0 93.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
35 1 53.3 86.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
36 1 80.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
43 1 80.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
38 2 73.3 93.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
39 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 2 86.7 93.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
41 2 56.7 93.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
42 2 73.3 93.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0



257

SO 14 SO 15 SO 16 SO 17 SO 18 SO 19 SO 20 SO 21 SD 22 SO 23 SO 24 SO 25
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

*The number of correct entries out of 30 trials (per day) in the spatial discrimination component was converted to a percentage for each rat for each of the 25
test sessions.
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Appendix 82 Data for delayed alternation (DA) component of the double Y-maze for 25-day training period for perinatal

vehicle (group= 1) and THe (group= 2) treated rats

Rat Group DA 1 DA2 DA3 DA4 DA5 DA6 DA 7 DA8 DA9 DA 10 DA 11 DA 12 DA 13
31 1 50.0 43.3 63.3 46.7 30.0 56.7 63.3 43.3 63.3 63.3 33.3 60.0 46.7
32 1 50.0 26.7 63.3 46.7 33.3 46.7 43.3 40.0 50.0 56.7 43.3 53.3 70.0
33 1 50.0 40.0 70.0 70.0 30.0 40.0 56.7 60.0 60.0 46.7 63.3 70.0 83.3
34 1 33.3 50.0 66.7 56.7 60.0 43.3 53.3 50.0 63.3 33.3 60.0 53.3 46.7
35 1 40.0 66.7 60.0 56.7 43.3 46.7 50.0 50.0 60.0 53.3 73.3 76.7 73.3
36 1 33.3 66.7 46.7 46.7 60.0 50.0 36.7 60.0 46.7 26.7 53.3 56.7 40.0
43 1 40.0 36.7 63.3 56.7 36.7 50.0 43.3 50.0 56.7 53.3 66.7 50.0 66.7
38 2 43.3 50.0 56.7 56.7 60.0 53.3 43.3 73.3 63.3 50.0 50.0 50.0 56.7
39 2 56.7 50.0 63.3 46.7 53.3 56.7 53.3 73.3 66.7 56.7 40.0 43.3 60.0
40 2 36.7 56.7 36.7 83.3 50.0 76.7 50.0 50.0 56.7 80.0 40.0 66.7 73.3
41 2 23.3 43.3 60.0 66.7 53.3 66.7 53.3 50.0 56.7 50.0 33.3 66.7 46.7
42 2 40.0 70.0 56.7 53.3 66.7 50.0 70.0 60.0 66.7 50.0 53.3 66.7 63.3
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DA14 DA 15 DA16 DA 17 DA18 DA 19 DA20 DA21 DA22 DA23 DA24 DA25
70.0 80.0 83.3 70.0 83.3 73.3 83.3 80.0 90.0 80.0 83.3 86.7
56.7 66.7 80.0 93.3 96.7 83.3 80.0 93.3 83.3 80.0 86.7 83.3
76.7 76.7 80.0 96.7 80.0 90.0 100.0 86.7 86.7 73.3 90.0 76.7
53.3 73.3 76.7 90.0 73.3 100.0 83.3 83.3 96.7 86.7 90.0 90.0
80.0 96.7 80.0 90.0 86.7 93.3 83.3 100.0 100.0 80.0 80.0 80.0
53.3 66.7 63.3 80.0 73.3 73.3 76.7 83.3 90.0 86.7 93.3 86.7
56.7 83.3 93.3 86.7 90.0 90.0 83.3 80.0 86.7 93.3 83.3 96.7
50.0 60.0 60.0 50.0 63.3 40.0 40.0 53.3 56.7 53.3 60.0 70.0
86.7 76.7 46.7 66.7 43.3 56.7 53.3 40.0 50.0 70.0 80.0 80.0
66.7 66.7 72.1 63.3 66.7 60.0 73.3 66.7 83.3 86.7 90.0 90.0
60.0 83.3 60.0 53.3 53.3 63.3 50.0 56.7 60.0 80.0 73.3 70.0
56.7 56.7 70.0 56.7 80.0 66.7 53.3 60.0 63.3 80.0 76.7 80.0

*The number of correct entries out of 30 trials (per day) in the delayed alternation component was converted to a percentage for each rat for each of the 25
test sessions.



260

Appendix 83 Data for trial 1 (T1) in the object recognition task for

perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
251 1 T1 50.4 38.1 75.5
252 1 T1 53.2 92.8 46.8
253 1 T1 70.9 139.4 76.9
254 1 T1 115.4 81.9 116.1
255 1 T1 103.5 106.3 69.5
256 1 T1 130.6 123.0 36.7
257 1 T1 103.8 92.8 48.8
258 1 T1 60.3 52.9 86.4
259 1 T1 75.0 80.6 68.0
260 1 T1 44.7 67.6 158.7
261 1 T1 62.7 45.9 14.3
262 1 T1 36.6 93.6 18.3
263 2 T1 31.1 38.7 53.2
264 2 T1 27.8 83.2 40.3
265 2 T1 55.7 186.2 85.7
266 2 T1 78.7 63.8 81.6
267 2 T1 79.7 80.9 63.3
268 2 T1 193.6 94.4 45.5
269 2 T1 109.1 78.9 100.4
270 2 T1 68.0 72.3 22.1
271 2 T1 84.0 85.7 68.0
272 2 T1 52.4 136.3 208.7
273 2 T1 61.5 104.5 118.6
274 2 T1 68.8 113.2 32.0

*Individual value represents the final duration of time (sec) attending to novel objects in each
10 minute trial for each rat.
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Appendix 84 Data for trial 1 (T1) in the object recognition task for

adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
137 1 T1 19.5 38.8 38.6
138 1 T1 110.2 86.5 43.8
139 1 T1 84.6 117.0 57.4
140 1 T1 62.1 48.7 38.6
141 1 T1 85.6 103.3 57.3
142 1 T1 68.6 102.9 82.6
143 1 T1 98.8 186.3 95.0
144 1 T1 29.6 66.5 52.4
145 1 T1 101.4 49.3 76.8
146 1 T1 84.9 38.2 53.4
147 1 T1 51.9 75.5 49.0
148 1 T1 97.0 166.8 68.0
149 2 T1 13.7 75.9 33.9
150 2 T1 60.3 68.2 61.7
151 2 T1 99.0 168.0 86.4
152 2 T1 109.4 142.3 117.6
153 2 T1 65.9 145.8 80.3
154 2 T1 73.6 104.3 50.8
155 2 T1 72.4 64.1 41.7
156 2 T1 126.2 52.3 103.8
157 2 T1 34.8 59.4 82.1
158 2 T1 115.2 83.5 148.5
159 2 T1 27.0 51.3 44.5
160 2 T1 61.2 139.5 106.9

*Individual value represents the final duration of time (sec) attending to novel objects in each
10 minute trial for each rat.
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Appendix 85 Data for trial 1 (T1) in the object recognition task for adult

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
57 1 T1 66.6 73.5 102.0
58 1 T1 76.4 29.9 41.3
59 1 T1 71.9 26.8 33.6
60 1 T1 27.4 20.9 15.4
61 1 T1 24.6 20.0 58.5
62 1 T1 31.8 109.6 59.1
63 1 T1 69.3 44.8 68.9
64 1 T1 53.1 17.2 63.0
65 1 T1 34.4 39.7 132.9
66 1 T1 13.7 20.3 56.2
67 1 T1 22.9 38.0 17.5
68 1 T1 62.5 103.5 41.7
69 2 T1 34.3 40.1 39.9
70 2 T1 66.7 18.7 46.9
71 2 T1 49.8 139.6 48.9
72 2 T1 43.3 33.6 47.0
73 2 T1 33.0 36.9 47.6
74 2 T1 96.4 135.8 67.2
75 2 T1 27.3 26.7 42.8
76 2 T1 77.4 34.9 57.0
77 2 T1 58.1 31.8 46.8
78 2 T1 37.7 30.1 70.4
79 2 T1 18.3 54.4 44.9
80 2 T1 36.5 78.0 41.7

*Individual value represents the final duration of time (sec) attending to novel objects in each
10minute trial for each rat.
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Appendix 86 Data for Trial 2 (T2) in the object recognition task for

perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
251 1 T2 93.2 82.8 50.0
252 1 T2 60.1 54.4 60.8
253 1 T2 70.6 56.0 48.9
254 1 T2 47.7 80.5 64.4
255 1 T2 41.8 69.0 67.5
256 1 T2 47.4 59.7 61.3
257 1 T2 37.7 53.1 55.2
258 1 T2 58.2 68.0 53.9
259 1 T2 75.9 63.2 82.7
260 1 T2 65.0 75.7 69.1
261 1 T2 56.3 63.5 60.6
262 1 T2 61.2 59.2 80.9
263 2 T2 73.2 31.0 44.3
264 2 T2 51.5 75.5 68.2
265 2 T2 50.2 66.6 23.4
266 2 T2 27.9 67.8 48.8
267 2 T2 68.1 75.8 79.6
268 2 T2 55.9 52.9 48.0
269 2 T2 27.1 64.3 51.9
270 2 T2 43.0 52.1 63.5
271 2 T2 56.0 59.5 49.8
272 2 T2 57.1 56.2 63.7
273 2 T2 79.8 68.6 44.8
274 2 T2 54.1 54.5 46.1

*Individual value represents the percentage of time each rat spent investigating the novel (N)
from the familiar (F) object calculated according to the formula N + (N + F) x 100 for each 10
minute trial.
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Appendix 87 Data for Trial 2 (T2) in the object recognition task for

adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
137 1 T2 75.8 65.1 60.9
138 1 T2 55.5 70.1 84.3
139 1 T2 83.4 49.2 53.2
140 1 T2 61.3 82.2 39.9
141 1 T2 78.2 64.2 84.9
142 1 T2 66.4 62.5 80.8
143 1 T2 50.4 54.0 58.6
144 1 T2 49.2 80.1 70.6
145 1 T2 73.6 78.8 63.6
146 1 T2 68.2 72.8 72.8
147 1 T2 73.6 75.7 57.6
148 1 T2 52.5 59.3 65.2
149 2 T2 88.2 89.6 71.9
150 2 T2 55.8 71.7 40.3
151 2 T2 56.2 48.0 29.0
152 2 T2 46.4 21.8 67.5
153 2 T2 39.5 69.1 72.6
154 2 T2 67.0 38.0 59.0
155 2 T2 56.8 39.1 49.1
156 2 T2 49.5 37.9 60.4
157 2 T2 71.4 61.0 34.5
158 2 T2 71.5 48.5 77.3
159 2 T2 21.1 63.6 63.6
160 2 T2 58.1 56.3 51.7

*Individual value represents the percentage of time each rat spent investigating the novel (N)
from the familiar (F) object calculated according to the formula N + (N + F) x 100 for each 10
minute trial.
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Appendix 88 Data for trial 2 (T2) in the object recognition task for adult

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
57 1 T2 70.9 47.6 53.0
58 1 T2 65.7 46.0 76.3
59 1 T2 53.9 64.2 55.6
60 1 T2 53.3 53.4 82.7
61 1 T2 81.9 60.9 39.9
62 1 T2 63.7 48.1 71.4
63 1 T2 41.6 54.4 68.8
64 1 T2 44.4 58.8 64.7
65 1 T2 75.5 72.2 84.2
66 1 T2 94.1 54.4 73.7
67 1 T2 96.5 78.3 52.7
68 1 T2 53.3 61.9 77.6
69 2 T2 55.8 71.0 37.4
70 2 T2 55.3 60.3 41.8
71 2 T2 72.4 34.7 69.6
72 2 T2 24.3 44.8 85.5
73 2 T2 73.0 47.7 78.9
74 2 T2 49.8 42.8 67.5
75 2 T2 21.2 52.6 35.5
76 2 T2 61.6 75.0 53.4
77 2 T2 48.5 60.5 69.8
78 2 T2 48.5 60.5 69.8
79 2 T2 76.9 63.0 51.8
80 2 T2 68.6 45.1 69.8

*Individual value represents the percentage of time each rat spent investigating the novel (N)
from the familiar (F) object calculated according to the formula N + (N + F) x 100 for each 10
minute trial.
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Appendix 89 Data for trial 1 (T1) locomotor activity for perinatal vehicle

(group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
251 1 T1 265.9 354.4 277.1
252 1 T1 281.4 344.5 283.4
253 1 T1 330.1 275.2 338.6
254 1 T1 346.4 205.3 346.9
255 1 T1 241.3 350.6 352.5
256 1 T1 330.9 324.5 349.1
257 1 T1 310.6 284.8 341.9
258 1 T1 356.8 316.6 343.7
259 1 T1 357.2 321.1 303.2
260 1 T1 365.3 316.6 305.1
261 1 T1 311.1 313.0 350.4
262 1 T1 315.5 358.5 354.0
263 2 T1 303.5 401.9 290.0
264 2 T1 309.0 361.7 289.1
265 2 T1 365.0 293.6 411.9
266 2 T1 278.5 299.4 340.4
267 2 T1 361.4 336.9 370.0
268 2 T1 337.8 262.9 328.0
269 2 T1 331.1 298.9 363.1
271 2 T1 358.1 308.9 323.6
271 2 T1 345.9 292.5 306.6
272 2 T1 377.9 306.2 317.9
273 2 T1 289.9 320.3 354.1
274 2 T1 354.0 365.4 364.4

*Each value represents the total duration (sec) time each rat spent in locomotor activity for
each 10 minute session.
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Appendix 810 Data for trial 1 (T1) locomotor activity for adolescent

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
137 1 T1 223.5 390.9 299.8
138 1 T1 306.4 407.9 299.2
139 1 T1 352.1 255.9 317.7
140 1 T1 301.9 240.5 360.0
141 1 T1 323.2 276.1 367.6
142 1 T1 323.2 308.1 353.9
143 1 T1 338.7 304.1 362.5
144 1 T1 310.7 277.1 373.3
145 1 T1 339.9 319.3 255.7
146 1 T1 432.0 363.4 372.0
147 1 T1 274.4 319.7 339.7
148 1 T1 329.4 335.6 386.1
149 2 T1 291.8 423.5 273.7
150 2 T1 267.4 403.5 329.6
151 2 T1 365.2 331.2 380.0
152 2 T1 329.9 327.6 362.3
153 2 T1 253.1 326.3 362.4
154 2 T1 345.3 318.0 381.4
155 2 T1 268.0 295.0 377.7
156 2 T1 337.9 290.4 372.9
157 2 T1 345.1 310.4 296.9
158 2 T1 406.6 365.8 339.1
159 2 T1 322.1 364.2 367.4
160 2 T1 354.3 362.7 360.0

*Each value represents the total duration (sec) time each rat spent in locomotor activity for
each 10 minute session.
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Appendix 811 Data for trial 1 (T1) locomotor activity for adult vehicle

(group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
57 1 T1 313.2 350.8 285.2
58 1 T1 322.0 279.4 283.1
59 1 T1 312.1 332.0 314.3
60 1 T1 246.1 260.4 240.6
61 1 T1 269.2 277.9 272.2
62 1 T1 294.6 314.4 278.4
63 1 T1 334.4 313.0 290.0
64 1 T1 330.6 302.0 285.7
65 1 T1 353.1 346.7 312.0
66 1 T1 134.0 206.5 305.1
67 1 T1 167.4 299.9 297.5
68 1 T1 354.8 370.3 341.6
69 2 T1 273.3 286.5 292.2

70 2 T1 294.5 307.0 307.2
71 2 T1 333.9 344.3 306.0
72 2 T1 271.0 194.9 313.3
73 2 T1 254.6 252.9 217.5
74 2 T1 300.0 338.9 309.7
75 2 T1 241.4 282.1 319.3
76 2 T1 332.0 330.0 340.3
77 2 T1 266.4 250.5 226.8
78 2 T1 282.7 285.2 313.5
79 2 T1 271.2 318.3 327.0
80 2 T1 259.6 325.4 355.7

*Each value represents the total duration (sec) time each rat spent in locomotor activity for
each 10 minute session.
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Appendix 812 Data for trial 2 (T2) locomotor activity for perinatal vehicle

(group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
251 1 T2 284.3 308.7 252.0
252 1 T2 323.9 365.6 257.9
253 1 T2 324.2 284.5 267.1
254 1 T2 346.2 329.5 304.5
255 1 T2 254.4 302.1 383.9
256 1 T2 326.1 359.6 341.7
257 1 T2 271.2 318.8 340.9
258 1 T2 335.7 320.7 387.2
259 1 T2 367.9 375.2 307.6
260 1 T2 355.7 341.4 300.3
261 1 T2 330.0 274.4 299.1
262 1 T2 309.3 354.7 301.2
263 2 T2 281.0 393.1 256.7
264 2 T2 296.4 341.1 338.1
265 2 T2 359.7 320.8 326.7
266 2 T2 303.7 273.6 292.7
267 2 T2 352.9 367.8 362.4
268 2 T2 297.8 355.1 305.9
269 2 T2 304.8 313.4 338.6
270 2 T2 309.1 328.5 347.4
271 2 T2 335.7 382.7 264.3
272 2 T2 366.6 323.9 298.9
273 2 T2 256.6 328.9 314.8
274 2 T2 334.0 318.4 361.7

*Each value represents the total duration (sec) time each rat spent in locomotor activity for
each 10 minute session
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Appendix 813 Data for trial 2 (T2) locomotor activity for adolescent

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
137 1 T2 286.0 337.9 279.4
138 1 T2 347.2 367.9 291.4
139 1 T2 334.6 253.0 262.7
140 1 T2 326.9 318.4 293.6
141 1 T2 249.4 191.9 343.1
142 1 T2 236.6 296.0 300.3
143 1 T2 292.3 344.9 348.6
144 1 T2 281.9 350.2 342.4
145 1 T2 320.5 338.5 341.6
146 1 T2 377.5 336.1 320.7
147 1 T2 252.0 317.9 348.6
148 1 T2 310.9 350.2 354.6
149 2 T2 280.9 299.7 355.4
150 2 T2 287.6 290.5 295.5
151 2 T2 339.3 341.0 332.1
152 2 T2 324.8 342.1 352.2
153 2 T2 264.5 302.8 354.5
154 2 T2 309.8 354.9 282.5
155 2 T2 278.7 335.4 339.2
156 2 T2 320.8 282.2 376.6
157 2 T2 318.4 332.6 345.6
158 2 T2 383.7 335.6 351.9
159 2 T2 363.4 356.4 325.6
160 2 T2 336.1 388.7 388.1

*Each value represents the total duration (sec) time each rat spent in locomotor activity for
each 10 minute session.
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Appendix 814 Data for trial 2 (T2) locomotor activity for adult vehicle

(group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Trial 2h 6h 48 h
57 1 T2 306.0 300.9 290.6
58 1 T2 315.4 322.3 267.7
59 1 T2 328.1 360.6 299.0
60 1 T2 227.0 250.1 276.9
61 1 T2 202.2 244.0 280.0
62 1 T2 268.3 271.0 293.7
63 1 T2 295.3 337.1 305.9
64 1 T2 300.9 304.9 332.7
65 1 T2 304.4 303.9 309.2
66 1 T2 81.9 294.0 261.0
67 1 T2 158.1 280.1 230.3
68 1 T2 326.5 329.6 325.0
69 2 T2 260.1 295.7 278.7
70 2 T2 279.1 247.4 305.0
71 2 T2 291.6 308.4 310.0
72 2 T2 205.3 168.2 260.0
73 2 T2 156.8 176.2 261.4
74 2 T2 301.8 306.7 355.5
75 2 T2 221.7 305.2 322.7
76 2 T2 260.0 326.6 326.4
77 2 T2 235.5 242.0 249.7
78 2 T2 245.8 303.6 294.7
79 2 T2 268.4 337.8 294.7
80 2 T2 240.2 312.1 318.9

*Each value represents the total duration (sec) time each rat spent in locomotor activity for
each 10 minute session.
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Appendix 815 Data (see column "Total") used to calculated the total

social behaviour (Chapter 5) for perinatal vehicle (group= 1) and CP

55,940 (group= 2) treated rats

Rat Group Sniffing Following Grooming Mounting Crawling Total
under/over

251 1 21.9 0.8 0 0 10 32.7
252 1 17.4 4.2 0 0 7.6 29.2
253 1 40.5 6.8 0 0.2 12 59.5
254 1 76.9 2.2 0.5 0.4 1 81
255 1 66.6 4.4 0 0 4.5 75.5
256 1 85.9 17.8 0 0 3.1 106.8
257 1 39.7 1.9 0 7.5 4.7 53.8
258 1 47.2 4.7 0 0 23.4 75.3
259 1 54.3 6.3 0 0 20.4 81
260 1 101.1 3.1 0 0.2 1.6 106
261 1 40.1 0.2 0 0 18.1 58.4
262 1 87.8 15.5 0 0 7.7 111
263 2 16.8 0.1 0 0 4.9 21.8
264 2 29.2 2.6 0 0 3.7 35.5
265 2 20.8 3.7 0 0 3.6 28.1
266 2 19.2 1 0 0 0.6 20.8
267 2 24.3 0.6 0 0 0.6 25.5
268 2 89.4 2.8 0 2.2 2.6 97
269 2 4.8 0.1 0 0 2.5 7.4
270 2 2.4 0.2 0 3.5 6.9 13
271 2 18.9 0.2 0 0 1.1 20.2
272 2 65.7 1.8 0 0 9.5 77
273 2 52.1 1.3 0 0.3 0.8 54.5
274 2 19.6 0.1 0 2 3.7 25.4

*Each value represents the cumulative duration (sec) of each social behaviour for each rat for
each 10 minute session. These behaviours were then summed to obtain a total social
behaviour score.
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Appendix 816 Data (see column "Total") used to calculated the total

social behaviour (Chapter 5) for adolescent vehicle (group= 1) and CP

55,940 (group= 2) treated rats

Rat Group Sniffing Following Grooming Mounting Crawling Total
under/over

137 1 76.4 12.4 7.1 0 6 101.9
143 1 15.9 0 0 0 0 15.9
138 1 28.7 0 0 0 1.8 30.5
144 1 24.9 0 0 0 0 24.9
139 1 58.2 15.3 0 3.3 12.1 88.9
145 1 19.1 0.1 0 0 5.3 24.5
140 1 48.8 1.8 0 0 0.9 51.5
146 1 64.4 5.5 0 0 0 69.9

141 1 41.6 5.5 0 0 2.3 49.4
147 1 58.6 10.1 0 1.2 7.2 77.1
142 1 6.2 1.3 0 1.9 4.1 13.5
148 1 51 6.2 0 0 10.8 68
149 2 21.7 0.3 0 0.6 5.2 27.8
155 2 12.2 0.3 0 0 0.9 13.4
150 2 20.8 1.6 0 1.4 8.5 32.3
156 2 10.5 1.2 0 0 0.3 12
151 2 5.2 0.9 0 1.1 0.1 7.3
157 2 4.3 0.7 1 0.6 0.2 6.8
152 2 13.5 1.2 0 0 0.7 15.4
158 2 8.1 0.5 0 0.7 3.9 13.2
153 2 26.6 0.8 0 1 0.3 28.7
159 2 19.7 1 0 0 1.8 22.5
154 2 15.1 1.4 0 1.1 1 18.6
160 2 40.8 4.6 2 0 2.1 49.5

*Each value represents the cumulative duration (sec) of each social behaviour for each rat for
each 10 minute session. These behaviours were then summed to obtain a total social
behaviour score.
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Appendix 817 Data (see column "Total") used to calculated the total

social behaviour (Chapter 5) for adult vehicle (group= 1) and CP 55,940

(group= 2) treated rats

Rat Group Sniffing Following Grooming Mounting Crawling Total
under/over

57 1 55.3 12.3 0 0 10.2 77.8
58 1 13.7 0.3 0 6.5 2.4 22.9
59 1 51.7 4 0 0 0.1 55.8
60 1 122.5 9 0 0.1 24.5 156.1
61 1 97.7 23.5 0 0 18.7 139.9
62 1 51.7 2.1 2 1.1 1 57.9
63 1 74.4 27.5 0 0.4 16 118.3
64 1 50.7 0.8 0 0 0.2 51.7
65 1 81.9 16.9 0 0 37.4 136.2
66 1 25.7 1 0 0.1 5.7 32.5
67 1 84.1 8.6 0 0 4 96.7
68 1 79.8 13.9 0 0 9 102.7
69 2 33.2 15.2 0 0 0 48.4
70 2 12.3 0.8 0 0 6.3 19.4
71 2 28.1 0.8 0 0.2 4.7 33.8
72 2 16.3 0.8 0 0 0 17.1
73 2 34.8 1 0 0 6.4 42.2
74 2 23.9 10 0 0 1.4 35.3
75 2 15.4 0.4 0 0 0.3 16.1
76 2 42.6 0.6 0 0 7.3 50.5
77 2 4.1 0.2 0 0 0 4.3
78 2 24.2 1.7 0 0 0.6 26.5
79 2 41.2 0.4 0 2.9 17.4 61.9
80 2 55.9 18.1 0 2.6 1.8 78.4

*Each value represents the cumulative duration (sec) of each social behaviour for each rat for
each 10 minute session. These behaviours were then summed to obtain a total social
behaviour score.



275

Appendix 818 Data used to analyse each social interaction behaviour inclusive of both non-aggressive (Chapter 5) and

aggressive (Chapter 6) social behaviours for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Sniffing Following Grooming Kicking Mounting Jumping on Wrestling/ Crawling under/
boxing over

251 1 21.9 0.8 a a a 0.5 58.5 10
252 1 17.4 4.2 0 a a 6.7 92.3 7.6
253 1 40.5 6.8 0 a 0.2 3.2 30.1 12
254 1 76.9 2.2 0.5 a 0.4 14.7 25.1 1
255 1 66.6 4.4 0 a a 4.4 23 4.5
256 1 85.9 17.8 0 a a 2.9 37.1 3.1
257 1 39.7 1.9 0 a 7.5 5.1 67.2 4.7
258 1 47.2 4.7 0 a a 7.7 100.5 23.4
259 1 54.3 6.3 0 a a 2 25.1 20.4
260 1 101.1 3.1 0 a 0.2 11.1 28.5 1.6
261 1 40.1 0.2 0 a a 5.3 16.3 18.1
262 1 87.8 15.5 0 a a 0.7 35.5 7.7
263 2 16.8 0.1 0 a a 0.6 23.1 4.9
264 2 29.2 2.6 0 a a 0.2 26.1 3.7
265 2 20.8 3.7 0 a a 3.9 81.2 3.6
266 2 19.2 1 0 a a a a 0.6
267 2 24.3 0.6 0 a a 2.9 12.9 0.6
268 2 89.4 2.8 0 a 2.2 7.4 0.6 2.6
269 2 4.8 0.1 0 a a 2.4 58 2.5
270 2 2.4 0.2 0 a 3.5 4.3 38.5 6.9
271 2 18.9 0.2 0 a a a 39.6 1.1
272 2 65.7 1.8 0 0 0 0.8 0 9.5
273 2 52.1 1.3 0 0 0.3 12.1 37.8 0.8
274 2 19.6 0.1 0 0 2 4.7 1.8 3.7
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Appendix 819 Data used to analyse each social interaction behaviour inclusive of both non-aggressive (Chapter 5) and

aggressive (Chapter 6) social behaviours for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Sniffing Following Grooming Kicking Mounting Jumping on Wrestling/ Crawling under/
boxing over

137 1 76.4 12.4 7.1 0 0 8 0 6
143 1 15.9 0 0 0 0 0.2 0 0
138 1 28.7 0 0 0 0 0 0 1.8
144 1 24.9 0 0 0 0 0 0 0
139 1 58.2 15.3 0 0 3.3 7.5 35.2 12.1
145 1 19.1 0.1 0 0 0 6.3 72.6 5.3
140 1 48.8 1.8 0 0 0 4.6 0.6 0.9
146 1 64.4 5.5 0 0 0 4.6 0 0
141 1 41.6 5.5 0 0 0 4 48.7 2.3
147 1 58.6 10.1 0 0 1.2 5.6 44.2 7.2
142 1 6.2 1.3 0 0.7 1.9 0 1.2 4.1
148 1 51 6.2 0 0 0 4.4 1.8 10.8
149 2 21.7 0.3 0 0 0.6 0.4 0 5.2
155 2 12.2 0.3 0 0 0 1.3 0 0.9
150 2 20.8 1.6 0 0 1.4 2.3 14.6 8.5
156 2 10.5 1.2 0 0 0 0 16 0.3
151 2 5.2 0.9 0 0 1.1 2.1 43.1 0.1
157 2 4.3 0.7 1 0 0.6 1.1 44.1 0.2
152 2 13.5 1.2 0 0 0 2.7 11.4 0.7
158 2 8.1 0.5 0 0.2 0.7 0 13.9 3.9
153 2 26.6 0.8 0 0 1 2.4 5.4 0.3
159 2 19.7 1 0 0 0 0.6 12.1 1.8
154 2 15.1 1.4 0 0 1.1 1.1 17.5 1
160 2 40.8 4.6 2 0 0 2 24.5 2.1
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Appendix 820 Data used to analyse each social interaction behaviour inclusive of both non-aggressive (Chapter 5) and

aggressive (Chapter 6) social behaviours for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Sniffing Following Grooming Kicking Mounting Jumping on Wrestling/ Crawling under/
boxing over

57 1 55.3 12.3 0 0 0 1.8 0.2 10.2
58 1 13.7 0.3 0 0 6.5 4.9 17 2.4
59 1 51.7 4 0 0 0 1 0 0.1
60 1 122.5 9 0 0 0.1 0 0.1 24.5
61 1 97.7 23.5 0 0 0 8 3 18.7
62 1 51.7 2.1 2 0 1.1 1 0 1
63 1 74.4 27.5 0 0 0.4 6.5 1.2 16
64 1 50.7 0.8 0 0 0 2.7 35.5 0.2
65 1 81.9 16.9 0 0 0 0 0 37.4
66 1 25.7 1 0 0 0.1 1.4 0 5.7
67 1 84.1 8.6 0 0 0 3.6 0.9 4
68 1 79.8 13.9 0 0 0 0.1 0 9
69 2 33.2 15.2 0 0 0 0.4 0 0
70 2 12.3 0.8 0 0 0 0 0 6.3
71 2 28.1 0.8 0 0 0.2 0.1 0.5 4.7
72 2 16.3 0.8 0 0 0 0.2 0.2 0
73 2 34.8 1 0 0 0 0 0 6.4
74 2 23.9 10 0 0 0 0.3 0 1.4
75 2 15.4 0.4 0 0 0 0 0 0.3
76 2 42.6 0.6 0 0 0 0.8 0 7.3
77 2 4.1 0.2 0 0 0 0.2 1 0
78 2 24.2 1.7 0 0 0 1.9 0 0.6
79 2 41.2 0.4 0 0 2.9 0.5 0.2 17.4
80 2 55.9 18.1 0 0 2.6 0.1 0 1.8
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Appendix 821 Data used to analyse emergence latency for perinatal

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Emergence
latency

253 1 45.4
252 1 2.9
251 1 27.1
262 1 62.3
260 1 12.2
259 1 10.1
254 1 49.5
255 1 8.5
261 1 29.7
257 1 0.7
256 1 1.1
258 1 6
269 2 67.7
266 2 5.6
274 2 27.1
271 2 3.1
267 2 69.2
264 2 18
273 2 10.6
270 2 30.6
268 2 99.2
263 2 89.5
272 2 2.4
265 2 60.8
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Appendix 822 Data used to analyse emergence latency for adolescent

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Emergence
latency

139 1 9
155 2 12.2
138 1 37
152 2 36.6
137 1 10.8
160 2 18.7
148 1 3.7
157 2 1.2
146 1 0.7
153 2 2.1
145 1 8.6
150 2 5.1
140 1 6.6
159 2 6.4
141 1 5.2
156 2 4.8
147 1 7.7
154 2 7.4
143 1 73.2
149 2 21.1
142 1 1.5
158 2 1.5
144 1 4.1
151 2 1.9
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Appendix 823 Data used to analyse emergence latency for adult vehicle

(group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Emergence
latency

59 1 9.7
75 2 13.3
58 1 21.6
72 2 8.8
57 1 21.1
80 2 13.8
68 1 6.6
77 2 19.5
66 1 15
73 2 4
65 1 5.1
70 2 8.2
60 1 13.5
79 2 18.9
61 1 7.7
76 2 4.2
67 1 16.4
74 2 17.5
63 1 10.4
69 2 17.4
62 1 7.9
78 2 10.3
64 1 2.6
71 2 21.6
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Appendix 824 Data used to analyse emergence test behaviours for

perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Emergence Open Risk Rears Line Hide
frequency field assessment crosses box

253 1 5 203.1 14.1 0 29 61.8
252 1 4 246.2 0.7 0 52 35.4
251 1 2 230.3 1.4 0 65 53.9
262 1 4 144.4 18.8 0 26 131.9
260 1 5 224.1 6.6 0 87 54.1
259 1 4 228 0.8 0 77 52.7
254 1 5 210 8.3 0 64 69.1
255 1 6 212.5 0 0 40 65.8
261 1 10 164 0 0 28 109.7
257 1 2 243.1 0.7 0 64 42.9
256 1 4 232.8 0 0 75 52.2
258 1 3 226.4 3.8 0 68 60.1
269 2 2 216.9 20.6 0 19 73
266 2 4 227.3 8.3 0 57 53.4
274 2 2 180.5 14.9 0 56 86.7
271 2 4 219.5 0 0 90 51
267 2 4 183.4 15 0 22 105.5
264 2 5 227.9 8.5 0 59 60.7
273 2 4 216.4 1.6 0 78 62.9
270 2 4 211.1 12.7 0 67 58.5
268 2 8 180.3 1.4 0 38 104.6
263 2 7 161.8 5.7 0 37 121
272 2 3 253.2 0.2 0 99 38.4
265 2 8 212.3 1.9 0 63 75.8
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Appendix 825 Data used to analyse emergence test behaviours for

adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Emergence Open Risk Rears Line Hide
frequency field assessment crosses box

139 1 3 219.3 1 0 77 51.6
138 1 3 211.5 8.4 0 67 70.7
137 1 6 232.4 5.9 0 59 55.1
148 1 3 221.8 4.2 0 72 67.2
146 1 4 243.7 0.6 0 96 27.6
145 1 3 240.8 4.5 0 67 49.4
140 1 5 249.5 1.1 0 83 40.9
141 1 10 227.5 0.6 0 88 60.2
147 1 4 241.6 3.5 0 74 44.9
143 1 3 190.9 34 0 41 88.2
142 1 4 254.1 0 0 111 25.9
144 1 6 216.9 1 0 67 67.1
155 2 5 269.3 0.4 0 59 19.4
152 2 4 206 4 0 74 70.6
160 2 5 263.7 6.2 0 42 28.4
157 2 3 243.4 1.9 0 54 35.4
153 2 3 274.5 0 0 100 16.1
150 2 3 219.7 1.6 0 68 51.7
159 2 6 262.6 1.1 0 78 26
156 2 3 270.7 0 0 79 21.7
154 2 5 262.8 0.3 0 60 23.9
149 2 3 184.4 3.4 0 73 62.3
158 2 5 264.7 0.1 0 83 26.1
151 2 6 212.9 0.6 0 78 62.9
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Appendix 826 Data used to analyse emergence test behaviours for adult

vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Rat Group Emergence Open Risk Rears Line Hide
frequency field assessment crosses box

59 1 4 252.5 0.3 0 93 35.5
58 1 8 184 2.2 0 71 89.8
57 1 3 204.8 1.1 0 95 44.2
68 1 7 200.3 0.4 0 74 34.5
66 1 6 210.6 1.9 0 77 69.7
65 1 5 246.5 0.8 0 88 41.4
60 1 5 216.7 4.5 0 71 63.7
61 1 4 239.5 2.4 0 66 52.2
67 1 7 221.6 6.6 0 67 71
63 1 5 221 1.1 0 60 67.2
62 1 6 224.1 1.7 0 79 67.2
64 1 4 230.6 0 0 67 58.8
75 2 3 214.1 0 0 73 61.9
72 2 5 237.4 0.2 0 94 43.9
80 2 4 207.6 0 0 73 56.7
77 2 4 212.4 5.2 0 76 58.3
73 2 4 129.5 1.4 0 42 66.4
70 2 5 221 2.2 0 81 70
79 2 4 225.7 8.6 0 60 64.7
76 2 7 215 9.8 0 56 76.3
74 2 6 203.4 2.4 0 76 77.5

69 2 7 200.3 0.7 0 76 82.9
78 2 4 239.7 1.8 0 72 49.9
71 2 4 232.4 0.8 0 53 62
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Peri Group Cort Med Cort NA NA Lat Sep BNST Amy bas Amycen Amy med Peri gray Peri gray Peri gray Hipp Hipp
Rat insular CPU piriform core shell ven Id nuc nuc nuc dor lat vent CA1 CA3
251 1 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0
252 1 4 3 54 0 2 18 3 1 2 7 9 2 1 0 0
253 1 1 1 55 0 0 0 0 7 18 22 11 15 2 0 0
254 1 1 0 34 0 0 6 0 4 5 5 10 15 17 0 2
257 1 0 0 6 0 0 1 0 4 4 3 1 2 1 0 1
258 1 2 3 51 0 0 5 0 6 8 5 13 9 8 0 1
259 1 0 0 18 0 0 9 0 3 11 12 9 13 17 0 0
260 1 0 2 24 0 1 3 0 3 6 1 3 3 5 0 0
263 2 0 0 9 0 0 1 0 1 3 1 2 1 1 0 0
264 2 4 2 50 0 1 9 0 0 0 5 1 2 19 0 0
265 2 0 1 15 0 1 6 1 0 2 3 3 6 3 0 0
266 2 1 11 84 6 1 18 0 6 5 16 7 2 8 0 0
269 2 0 5 55 0 0 29 0 4 9 11 10 15 23 1 1
270 2 0 0 17 0 0 2 0 0 0 8 2 0 12 0 0
271 2 3 4 46 2 5 7 0 8 5 15 1 8 10 2 2
272 2 1 8 20 0 0 6 0 1 1 10 1 5 0 0 1
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Adol Group Cart Med Cart NA NA Lat Sep BNST Amy bas Amycen Amymed Peri gray Peri gray Peri gray Hipp Hipp
Rat insular CPU piriform core shell ven Id nuc nuc nuc dar lat vent CA1 CA3
137 1 1 0 4 1 0 1 1 0 3 1 0 0 0 0 0
138 1 0 2 30 1 1 7 7 5 0 1 2 3 5 0 0
139 1 0 0 13 0 0 2 2 3 0 9 0 0 0 0 0
140 1 0 0 1 0 0 1 1 0 0 0 0 0 9 0 0
143 1 1 1 12 1 0 3 0 1 0 9 0 0 2 0 0
144 1 0 0 8 0 0 3 0 0 0 0 1 0 10 0 0
145 1 0 0 2 0 0 4 0 2 1 9 6 0 5 0 0
146 1 0 0 5 0 0 11 0 0 4 3 4 0 1 0 0
149 2 0 0 1 0 0 3 0 0 1 1 0 0 10 0 0
150 2 0 2 70 2 0 7 7 5 1 1 3 1 4 0 0
151 2 0 0 10 0 1 5 0 0 1 2 1 1 0 0 0
152 2 1 2 5 0 0 2 0 0 5 17 3 0 12 0 1
155 2 0 0 0 1 0 2 1 3 0 0 0 0 1 0 0
156 2 0 0 5 0 0 2 0 2 2 6 3 0 15 0 0
157 2 2 0 3 0 1 3 0 0 0 1 2 1 5 0 0
158 2 0 0 2 0 0 0 1 0 0 0 2 0 0 0 0
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Adult Group Cart Med Cart NA NA Lat Sep BNST Amy bas Amycen Amy med Peri gray Peri gray Peri gray Hipp Hipp
Rat insular CPU piriform core shell ven Id nuc nuc nuc dar lat vent CA1 CA3
57 1 0 0 2 0 3 1 0 0 0 3 5 1 2 0 0
58 1 5 5 64 1 10 10 1 16 7 0 0 1 9 0 0
59 1 0 0 8 0 0 0 4 0 0 1 0 0 3 0 0
60 1 2 0 20 0 0 1 0 2 3 5 2 0 0 0 0
64 1 8 5 60 3 13 4 0 3 3 10 1 2 13 2 0
65 1 1 0 10 0 0 0 0 0 2 1 0 0 0 1 0
66 1 1 0 9 0 3 0 0 2 0 1 10 0 1 0 0
67 1 1 0 12 0 1 0 0 0 1 2 1 0 1 0 0
69 2 0 0 6 0 0 2 0 0 6 5 1 2 7 0 0
70 2 0 0 16 0 0 3 0 0 4 5 1 0 4 0 1
71 2 0 0 15 0 0 0 0 0 1 2 1 0 0 1 0
72 2 0 0 23 0 1 4 0 1 5 4 1 1 0 0 0
75 2 6 1 11 4 3 0 0 2 1 3 2 0 7 1 0
76 2 1 10 48 0 8 4 0 5 7 12 1 1 0 0 0
77 2 3 0 20 0 0 0 0 0 2 4 0 0 0 0 0
78 2 0 2 16 4 5 4 0 0 0 6 2 1 4 0 0
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Although many studies have examined the acute behaviouraL effects of
cannabinoids in rodents, few have examined the lasting effects of
cannabinoids at different developmentaL ages. This study compared
lasting effects of cannabinoid exposure occurring in adolescence to that
occurring in early adulthood. Forty, 30-day old (adolescent) and 18,
56-day old (aduLt) femaLe aLbino Wistar rats were injected with vehicle
or incrementaL doses of the cannabinoid receptor agonist (- )-cis-3-[2­

hydroxy-4-( 1, l-dimethyLheptyL) phenyL] -trans-4- (3- hydroxypropyL)
cyclohexanoL (CP 55,940) once per day for 21 consecutive days (150,
200 and 300 IJg/kg i.p. for 3, 8 and 10 days, respectiveLy). Following a
21-day drug-free period, working memory was assessed using an object
recognition task. Locomotor activity was also measured in the object
recognition apparatus via a ceiling-mounted passive infrared sensor.
Three days Later, anxiety was assessed using a sociaL interaction test. In

Introduction

Cannabis sativa has been used for thousands of years for both
recreational and medical purposes but, despite this long history,
very little is known about the long-lasting neurobehavioural effects
of chronic cannabis use. The residual effects of cannabinoids,
defined as the effects that persist long after the drug has left the
central nervous system (CNS) (Pope et al., 1995), have received
only sparse research interest. In particular, the effects of cannabis
initiation occurring in and around the adolescent period remains
relatively unknown. Human cannabis use is commonly initiated in
adolescence (Scallet, 1991), which coincides with major neuronal
changes in the CNS (Ehrenreich et al., 1999). Furthermore, in
recent years, the age of initiation of cannabis use is becoming
earlier in life. For example, a survey conducted in 1998 found that

the object recognition task, significantly poorer working memory was
observed in the adoLescent but not aduLt CP 55,940-treated rats.
AdoLescent, but not adult CP 55,940-treated rats, also exhibited a
significant decrease in sociaL interaction with a noveL conspecific. These
results suggest that chronic exposure to a cannabinoid receptor agonist
weLL after the immediate postnataL period, but before reaching sexuaL
maturity, can Lead to increased anxiety and a Lasting impairment of
working memory.

Keywords
adolescent, anxiety, cannabinoid, CP 55,940, memory, object
recognition, rat, sociaL interaction

over 78% of adolescents had reported cannabis initiation at 14
years or younger compared to previous findings of 64% in 1992
(McCreary Centre Society, 1999). It is therefore of interest to
determine whether adolescent cannabis use can produce lasting
effects on cognitive function and emotion.

In the rat, adolescence can be defined as the period just before
reaching sexual maturity (6-8 weeks; Fallon, 1995). Major
changes in neuronal structure occur at this age, and the administra­
tion of cannabinoids at this time may produce marked changes in
neuronal function (Rodriguez de Fonseca et al., 1991). A few
studies on rats corresponding to the same age (30--40 days old)
have addressed the residual effects of cannabinoids on learning
(Fehr et al., 1976; Stiglick and Kalant, 1982, 1983). In these
studies, varying doses of L\9-tetrahydrocannabinol (THC) were
administered to 30-day old rats for 1-6 months, followed by a

Corresponding author: PauL E. MaLLet, SchooL of PsychoLogy, University of New EngLand, ArmidaLe NSW 2351, AustraLia. Email: pauL.maLLet@une.edu.au



drug-free period of 1-2 months. Impainnents on radial ann maze
(note that this is a test of memory as well as learning) and motor
coordination tasks were observed in rats treated with high doses for
6 months. The same investigators (Stiglick and Kalant, 1985)
aimed to detennine whether age at exposure could be a key deter­
minant of these residual deficits. THC was administered to 70-day
old adult rats for 3 months. After a 1-4 month drug-free period, no
residual deficits were evident.

The possibility that human adolescents may be particularly
vulnerable to adverse effects of cannabis is a matter of some recent
speculation (Solowij and Grenyer, 2002). Although few human
studies have specifically addressed this issue, there is some evi­
dence that exposure during adolescence may lead to lasting deficits
in attention (Ehrenreich et al., 1999) and working memory
(Schwartz et al., 1989).

In humans, one of the most commonly reported effects of
cannabinoid administration is an acute impainnent of working
memory (Miller, 1984). In animals, memory is impaired by the
acute administration of THC, the endogenous cannabinoid anan­
damide (Compton et al., 1996; Mallet and Beninger, 1996), or
synthetic cannabinoids including (-)-cis-3-[2-hydroxy-4-(1, 1­
dimethyIhepty1)pheny1] -trans-4-(3-hydroxypropy1) cyclohexanol
(CP 55,940) and WIN 55,212-2 (Lichtman et al., 1995). A second
commonly reported outcome of acute cannabis intoxication in
humans is increased anxiety (Thomas, 1996). Frequent use has also
been found to result in an increase in symptoms of anxiety (Patton
et al., 2002). In animals, these same anxiogenic effects are found
by administering THC and other cannabinoids such as cannabinol
(van Ree et al., 1984), HU-21O (Giuliani et al., 2000) and CP
55,940 (Arevalo et al., 2001; Marin et al., 2002). Some evidence
of residual anxiety after discontinued administration has also been
found (Ferrari et al., 1999; Giuliani et al., 2000).

The aim of the current study was to assess the possible lasting
effects of chronic cannabinoid exposure on working memory and
anxiety in adolescent and adult rats, using the synthetic cannabi­
noid CP 55,940. CP 55,940 produces behavioural and physiologi­
cal effects analogous to THC including analgesia, catalepsy and
hypothennia, which are similar in profile and time-course (Little
et al., 1988).

The object recognition task (Ennaceur and Oelacour, 1988) was
chosen to assess working memory because it has been found to be
sensitive to both memory-enhancing (Ennaceur et al., 1989), and
memory-impairing treatments (Ennaceur et al., 1997). Working
memory is defined here as the immediate retention of information
needed to respond to a current task or activity (Honig, 1978). The
object recognition task is considered to be a test of 'pure' working
memory because it has no reference memory component such as
rule learning, and does not require the use of positive or negative
reinforcers, such as food or electric shock (Ennaceur and Oelacour,
1988). The task takes advantage of the rats' innate tendency to
explore novel rather than familiar objects. A reduced tendency
to prefer novel over familiar objects is indicative of working
memory dysfunction. The task traditionally consists of two trials
with intervening delays. Preference for the novel object relative to
the familiar object typically decreases as the delays increase. The
measurement of locomotor activity was introduced as an adjunct to
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this task to determine whether drug exposure results in long-tenn
alterations in physical perfonnance. Anxiety was assessed using
the social interaction test (File, 1980), which involves measuring
the interactions between a treated rat and an unfamiliar conspeci­
fico The social interaction test has been well validated using a
variety of anxiolytic (File et al., 2001) and anxiogenic drugs
(Irvine et al., 2001) and has been recently used by our group to
highlight residual anxiogenic effects of the popular recreational
drug MOMA ('Ecstasy') (Morley et al., 2001).

MateriaLs and methods

Subjects

Fifty-eight female Wistar rats were used. The adolescent group (30
days old) comprised 20 drug-treated rats and 20 vehicle-treated
rats. The adult group (56 days old) consisted of nine drug-treated
rats and nine vehicle controls. Female rats were used because a
previous study in humans found a larger association between
cannabis use and anxiety in females compared to males (Patton
et al., 2002). Animals had access to food and water ad libitum and
were group-housed in a temperature and humidity controlled
colony room maintained on a 12 : 12 hour light/dark cycle.

Drug preparation and administration

CP 55,940 (Tocris Cookson, Avonmouth, UK) was dissolved in a
vehicle containing 15 III Tween 80 (polyoxyethylene sorbitan mono­
oleate, ICN Biochemicals, Seven Hills, NSW, Australia), per 2 ml
physiological saline. All injections were administered intraperiton­
eally in a volume of 1 ml/kg body weight. Rats in the drug-treated
group received increasing doses of CP 55,940 for 21 consecutive
days (150, 200 and 300 Ilg/kg for 3,8 and 10 days, respectively),
while the control group received similar exposure to the drug's
vehicle. These moderate to high doses were chosen to be within the
range known to produce behavioural effects in rats. Incrementally
larger doses were used to counteract the development of drug tol­
erance because immature rats tend to develop tolerance to can­
nabinoids at a faster rate than mature rats (Barnes and Fried, 1974).

Apparatus and procedure

The Object Recognition Task The experimental chamber was a
clear Perspex box (610 x 260 x 400 mm). Experiments were run
under low light conditions. Each trial was videotaped using a black
and white CCO camera with infrared illumination. Locomotor
activity was measured by a passive infrared sensor (Quantum
passive infrared motion sensor, NESS Security Products, Sydney,
Australia, part no. 890-087-2) connected to a computer with cus­
tom software to detect and record time spent in motion. A 10-IlF
capacitor located near LK2 of the printed circuit board of the sen­
sor was replaced with a O.I-IlF capacitor serving to alter the sensor
alann period from 5 s to approximately 50 ms.

Objects used included coffee mugs, tin cans, plastic bottles, rice
bowls, red plastic boxes and tubs of hair gel. A pilot study found
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this particular object set to elicit similar baseline rates of investiga­
tion. To eliminate any possible influence of olfactory cues, objects
existed in triplicate such that two of the objects could be used in
the first trial and the remaining object was used in the second trial.
Objects were washed with Pyroneg (Johnson Diversey, Smithfield,
NSW, Australia) before each trial, and the experimental chamber
floor and walls were wiped between trials with a 1 : 10 vinegar­
water solution. The assignment of objects used in any given trial
was counterbalanced such that object combinations were distrib­
uted equally across groups.

Rats were habituated to the experimental chamber for two
non-consecutive 2-min periods to reduce experimental chamber
novelty. Formal testing began the next day. In the first trial (T1),

each rat was presented with two identical objects for 10 min. The
aim of this trial was simply to provide an opportunity for the rats
to explore two similar copies of an object. During the second trial
(Tz), which occurred either 2 or 6 h later, the rats were again
presented with two objects for 10 min. This time one object
was novel, and the other was a triplicate of the original object pre­
sented in TI . All rats were tested twice such that they experienced
both delays between T I and Tz. In half the rats, the 2-h delay
occurred first; in the other half, the 6-h delay occurred first. Testing
in the second delay condition took place on the day after the first
delay condition. The time spent exploring the objects during T I and
T2 were videorecorded. Object exploration was said to occur when
the rat's snout was placed within 2 cm of the object. Climbing on
or sitting on the object was not recorded. An observer blind to the
group allocations manually scored the video recordings of each
trial using the software package ODLog (Macropod Software,
2001; www.macropodsoftware.com).

The Sodal Interaction Test The experimental chamber was a
rectangular box constructed of clear glass (620 x 300 x 360 mm),
dimly lit by a floor lamp (60 W) located 1 m away from the box. On
the day following social interaction testing, rats were habituated to
the chamber for two non-consecutive 2-min periods. Testing began
the next day, and involved the random pairing of each experimen­
tal rat with an untreated 'stimulus' rat for 10 min. Each trial was
videotaped using a black and white CCD camera with infrared illu­
mination. Subsequent behavioural analysis involved manually
scoring the video recorded trials using ODLog software. Only the
behaviour of the experimental rats was examined. Scored behav­
iours included sniffing, following, wrestling/boxing and grooming.

Statistical analysis
Object recognition The time spent exploring objects during T1

was calculated by summing the time spent exploring each identical
object to produce a single score. These values were then compared
using two (one for each age group) mixed design (treatment x
delay) analysis of variance (ANOYA) with repeated measures on
the delay factor. A three-way (age x treatment x delay) ANOYA
with repeated measures on the delay factor was also used to com­
pare treatments at each age group.

The percentage of time spent investigating the novel object in
Tzwas calculated according to the formula N/(N + F) x 100, where

Nand F represented time spent investigating the novel and fami­
liar objects, respectively. These values were then ;malysed using
the same tests described for the T 1 data.

Locomotor activity Time spent in motion was recorded during
all sessions. These values were then compared across experimental
conditions using two age x treatment ANOYAs and one age x
treatment x delay ANOYA as described previously for object
recognition data.

Sodal interaction For each rat, the amount of time spent sniff­
ing, following, wrestling/boxing and grooming were summed to
produce a single social interaction score. A two-way ANOYA (age
x treatment) was used to compare the social interaction between
adolescent and adult groups. Separate t-tests were used to compare
treatments at each age group.

Where the ANOYA assumptions were not met, randomization
tests of scores were conducted using NPFact version 1.0. In all
cases, the randomization tests supported the ANOYA findings.
Thus, for ease of interpretation only, the ANOYA results have been
presented. All ANOYAs were conducted using SPSS 11.0.2
(Chicago, Illinois, USA).

Results

Object recognition
Trial 1 In the adolescent rats, a mixed design ANOYA (treatment
x delay) with repeated measures on the second factor revealed that
the main effect of treatment [F(1 ,38), p < 1.0] and the treatment by
delay interaction [F(1 ,38), P < 1.0] were not significant, whereas
the delay main effect was significant [F(1,38) = 5.47, P < 0.05]
(Fig. lA). Within the adult groups, the main effect of treatment
[F(l, 16), P < 1.0], the delay main effect [F(l, 16) < 1.0] and the
treatment by delay interaction [F(1' 16), p < 1.0] were not signifi­
cant (Fig. IB).

The three-way ANOYA (age x treatment x delay) revealed no
significant main effects for age [F(1 ,54), p < 1.0], treatment
[F(1 ,54), P < 1.0] or delay [F(l,54) = 2.44, P > 0.05]. The age x
treatment-delay interaction [F(l ,54), p < 1.0], the age-treatment
interaction [F(1,54), p < 1.0] and the age-delay interaction
[F(l,54) = 1.19, p > 0.05] were not significant.

Trial 2 Within adolescent treatment groups, the preference for
novel over familiar objects was lower in the CP 55,940-treated
group compared to vehicle controls. A mixed design (treatment x
delay) ANOYA with repeated measures on delay revealed that the
main effect of treatment was significant [F(l ,38) =8.23, p < 0.01].
However, the delay main effect [F(l ,38), p < 1.0] and the treatment
by delay interaction [F( 1,38), p < 1.0] were not significant,
suggesting that the delays had little effect on working memory
(Fig. 2A). Within adult treatment groups, the main effect of treat­
ment [F(l,16), p < 1.0], the main effect of delay [F(l,16), p < 1.0]
and the treatment by delay interaction [F(l, 16), p < 1.0] were not
significant (Fig. 2, B).
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Figure 1 Object recognition: time (s) spent exploring identical objects
in trial 1 (Tl ) for adolescent (A) and adult (B) rats (n = 40 and 18,
respectively) 2 or 6 h before the recognition test. Rats in half of each
age group received 21 daily injections of either vehicle or CP 55,940
ending 22 days before testing

A three-way ANaYA (age x treatment x delay) revealed that
the main effect of age was significant [F(1,54) = 5.12, p < 0.05].
The main effect of treatment [F(1,54) = 3.00, p > 0.05] and delay
[F(1 ,54), P < 1.0] were not significant. The age x treatment x delay
interaction [F(1,54), P < 1.0], the age x treatment interaction
[F(1 ,54) = 1.74, p > 0.05] and the age x delay interaction [F(1,54),
P < 1.0] were not significant.

Locomotor activity

Trial 1 Locomotor activity did not differ across delays or treat­
ments during T I in the adolescent rats. At the 2-h delay the mean ±
SEM was 350.8 ± 34.9 and 351.4 ± 34.9 for vehicle- and CP
55,940-treated rats, respectively. At the 6-h delay values were
278.2 ± 29.6 and 357.9 ± 29.6. A mixed design (treatment x delay)
ANaYA with repeated measures on delay revealed that the main
effect of treatment [F(1,38), P = 1.0], the main effect of delay
[F(l,38) = 2.25, p > 0.05] and the treatment by delay interaction
[F( 1,38) = 3.23, p > 0.05] were not significant. Locomotor activity
also did not differ across delays or treatments during T1 in the
adult rats. At the 2-h delay the mean ± SEM was 300.1 ± 9.9 and

Time (hour)

Figure 2 Object recognition: percentage of time investigating the
novel object during T2 for adolescent (A) and adult rats. The recognition
test occurred either 2 or 6 h following Tl • Rats in half of each age group
received 21 daily injections of either vehicle or CP 55,940 ending 22
days before testing

298.5 ± 9.9 for vehicle- and CP 55,940-treated rats, respectively.
At the 6-h delay these values were 273.7 ± 9.5 and 286.6 ± 9.5,
respectively. ANaYA revealed that the main effect of treatment
[F(l,16), p < 1.0], the main effect of delay [F(I,16) = 3.15,
p > 0.05] and the treatment by delay interaction [F(l, 16), P < 1.0]
were not significant.

A three-way ANaYA (age x treatment x delay) revealed that
the main effect of age [F(1,54) = 2.19, p > 0.05], the main effect of
treatment [F(1 ,54), P < 1.0] and the delay main effect [F(1,54) =
2.37, p > 0.05] were not significant. The age x treatment x delay
interaction [F(1,54), P < 1.0], the age x treatment interaction
[F(1 ,54), P < 1.0] and the age x delay interaction [F(l ,54), p < 1.0]
were not significant.

Trial 2
Locomotor activity did not differ across delays or treatments dur­
ing T2 in the adolescent rats. At the 2-h delay, the mean ± SEM was
325.9 ± 36.9 and 315.4 ± 36.9 for vehicle- and CP 55,940-treated
rats, respectively. At the 6-h delay, values were 342.4 ± 38.2 and
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Social interaction

Figure 3 Social interaction: time (s) spent in social interaction for
adolescent (n = 40) and adult (n = 18) rats. Rats in half of each age
group received 21 daily injections of either vehicle or CP 55,940 ending
23 days before testing

Discussion

The results suggest that adolescent, but not adult rats treated with
CP 55,940 showed reduced preference for a novel object over a
familiar object relative to control animals at both delay intervals,
suggesting that working memory was impaired. Locomotor activ­
ity during the object recognition task was not affected by CP
55,940 pre-treatment, suggesting that the results of the object
recognition task cannot be attributed to a locomotor impairment or
an overall lack of exploration.

The results of the social interaction test revealed that repeated
pre-exposure to CP 55,940 significantly reduced social interaction
compared to vehicle-treated rats in the adolescent rats, but not in
the adult rats. Similar to the object recognition experiment, the
results indicate that immature rats may incur lasting behavioural
deficits from cannabinoid exposure, reflecting a residual effect of
such exposure long after the drug has left the CNS.

The results of the object recognition experiment are in agree­
ment with previous reports that cannabinoid exposure in immature
(30-40 days old) but not mature rats (70 days old) impairs radial
arm maze performance (Fehr et al., 1976; Stiglick and Kalant,
1982, 1983). The present results also agree with findings of a
human study on age-related cannabis exposure (Ehrenreich et al.,
1999), which assessed visual scanning along with other attentional
functions in adult cannabis users whom had either been early
(between ages 12-15 years) or late onset users (> 15 years). The
results showed that early onset cannabis users had attention deficits
specific to visual scanning, whereas late onset users did not.
Another human study (Schwartz et al., 1989) found that cannabis­
using adolescents maintained working memory deficits when
assessed up to 6 weeks after the last drug administration. A previ­
ous review (Scallet, 1991) also supported the existence of age­
related residual effects by suggesting that lasting neurotoxic effects
ofTHC appeared specific to young rats (40 days old or less), when
exposure was chronic (> 90 days; 8-10% of the life span of a rat).
At the time of the review, no other studies had demonstrated resid­
ual effects with shorter periods of exposure. However, in the
current study, it was found that exposure for a mere 21 days
(approximately 2% of a rat's life span) was sufficient to produce
significant and lasting working memory deficits and increased
anxiety.

To our knowledge, the present study is the first experiment to
demonstrate residual anxiogenesis in younger rats resulting from
prior exposure to CP 55,940. Recent studies have found evidence
of a residual increase in anxiety in young adult rats chronically
exposed to the cannabinoid receptor agonist HU-21O (Ferrari et al.,
1999; Giuliani et al., 2000). In these studies. an increase in vocal­
izations and a heightened emotional response to novel environ­
ments were observed up to 7 days following exposure to the
highest dose (100 pg/kg) of HU-210. It is not clear why CP 55,940
exposure did not produce a residual increase in anxiety in adult rats
in the present study; however, methodological differences may
account for these discrepant findings. For example, a different
cannabinoid receptor agonist was used, and the drug-free period
was considerably longer in our study.

r::::::JVehicie

_CP 55,940

AdultAdolescent

An independent samples t-test used to compare the social interac­
tion of the adolescent rats alone revealed that the CP 55,940­
treated rats showed significantly less social interaction than the
vehicle-treated group [t(38) =3.36, p < 0.05] (Fig. 3). In adult rats,
no significant difference in social interaction between vehicle and
drug-treated groups was found [t(16) < 1.0] (Fig. 3).

A two-way ANaYA (age x treatment) comparing the social
interaction between adolescent and adult groups revealed a signif­
icant main effect of age [F(l,54) = 50.37, p < 0.001]. The age x
treatment interaction was also significant [F(l,54)] = 6.74,
P < 0.05], suggesting that the adolescent rats exposed to CP 55,940
showed decreased social interaction compared to the adult
groups. The treatment main effect was not significant [F(1,54)],
p < 1.0].

347.6 ± 38.2. A mixed design (treatment x delay) ANaYA with
repeated measures on delay revealed that the main effect of treat­
ment [F(l ,38), P < 1.0], the main effect of delay [F(2,38) = 1.17,
p > 0.05] and the treatment by delay interaction [F(l ,38), p < 1.0]
were not significant. Similarly, locomotor activity did not differ
across delays or treatments during T2 in the adult rats. At the 2-h
delay, the mean ± SEM was 280.4 ± 18.3 and 255.9 ± 18.3 for
vehicle- and CP 55,940-treated rats. At the 6-h delay, these values
were 293.4 ± 11.7 and 291.6 ± 11.7, respectively. ANaYA showed
that the main effect of treatment [F(l,16), p < 1.0], main effect of
delay [F(2, 16) = 2.16, p > 0.05] and treatment by delay interaction
[F(2,16), p < 1.0] were not significant.

A three-way ANaYA (age x treatment x delay) revealed that
the main effect of age [F(l,54), 2.07, P > 0.05], main effect of
treatment [F(l ,54), P < 1.0] and delay main effect, [F(1 ,54) = 1.87,
p > 0.05] were not significant. The age x treatment x delay interac­
tion [F(l ,54), p < 1.0], age x treatment interaction [F(l ,54), P < 1.0]
and age x delay interaction [F(l ,54), P < 1.0] were not significant.



Despite the interesting and novel results in the present study,
there were also a few unexpected findings. First, baseline social
interaction was lower in adolescent treatment groups compared to
adults. This finding may be related to an age-related difference in
the response to mild chronic injection stress. Thus, chronic
intraperitoneal injections (even saline) can induce mild stress
(Jaskiw et al., 1990). Although both adolescent and adult control
rats experienced similar vehicle injections, saline-treated adoles­
cent rats exposed to mild stress are more anxious in a similar social
test situation compared to adults rats (Spear, 2000; Varlinskaya and
Spear, 2004). Furthermore, previous studies on early life cannabi­
noid exposure (Navarro et al., 1994, 1996) indicate sexually
dimorphic differences between male and female rats, perhaps
explaining the lower rates of social interaction in females.

Another unusual finding was the significant effect of delay on
investigation time during T 1 in the object recognition task. This
result is difficult to interpret because delays were counterbalanced
across testing days, and object investigation during T] was meas­
ured before the occurrence of any delays. We have not found a
significant effect of delay during T] in any of our other work using
this task and believe this finding can simply be attributed to Type
1 error. It is also not clear why the delay interval used had no
significant effect on Tz performance; however, it is possible that
the 2 hand 6 h delays used were too similar in duration. The inclu­
sions of a much longer delay interval would most likely have
resulted in a significant effect of delay.

Sex differences in cognition and affect in general have been
observed in humans (Halpern, 2000), as well as animals (Beatty,
1979), and structural and biochemical sex differences have also
been demonstrated (Arnold and Gorski, 1984). Furthermore, a
study on residual cannabinoid effects in humans showed that males
exhibited poorer performance on tests of cognition relative to
females (Pope and Yurgelun-Todd, 1996), whereas a more recent
human study found that daily cannabis use was associated with a
five-fold increase in anxiety and depression in young females
(Patton et al., 2002). Some animal studies have shown that male
rats are more sensitive to many of the behavioural effects of
cannabinoids (Fernandez-Ruiz et at., 1992; Navarro et al., 1996).
Further studies should compare the results obtained in the present
study using female rats with those found with male rats.

The research available to date on early versus late cannabis
exposure is far from conclusive. Most studies have largely focused
on the acute, and chronic effects of cannabinoids, rather than resid­
ual changes. Of increasing concern is the putative link between the
time at first initiation of cannabis and lasting neurobehavioural
alterations. With the onset of cannabis use occurring earlier
amongst humans, there is an important need to confirm whether
early life cannabis initiation has deleterious effects on psychologi­
cal and social development.
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