#### REFERENCES

- Abel, E. L. (1977). The relationship between cannabis and violence: A review. *Psychological Bulletin, 84*, 193-211.
- Abel, E. L. (1980). Prenatal exposure to cannabis: A critical review of effects on growth, development, and behavior. *Behavioral and Neural Biology*, 29, 137-156.
- Abel, E. L. (1985). Effects of prenatal exposure to cannabinoids. In T. M. Pinkert (Ed.), Current Research on the Consequences of Maternal Drug Abuse (NIDA Research Monograph 59). Rockville, MD: National Institute on Drug Abuse.
- Ali, S. F., Newport, G. D., Scallet, A. C., Gee, K. W., Paule, M. G., Brown, R. M., et al. (1989). Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain. *Neurotoxicology*, *10*, 491-500.
- Allen, K. V., McGregor, I. S., Hunt, G. E., Singh, M. E., & Mallet, P. E. (2003). Regional differences in naloxone modulation of  $\Delta^9$ -THC induced Fos expression in rat brain. *Neuropharmacology*, *44*, 264-274.
- Alves, C. N., Goyos, A. C., & Carlini, E. A. (1973). Aggressiveness induced by marihuana and other psychotropic drugs in REM sleep deprived rats. *Pharmacology Biochemistry and Behavior, 1*, 183-189.
- Ameri, A. (1999). The effects of cannabinoids on the brain. *Progress in Neurobiology*, 58, 315-348.
- American Psychiatric Association. (2000). *Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR* (4th ed.). Washington, DC: American Psychiatric Association.
- Andersen, S. L., Rutstein, M., Benzo, J. M., Hostetter, J. C., & Teicher, M. H. (1997). Sex differences in dopamine receptor overproduction and elimination. *Neuroreport, 8*, 1495-1498.
- Andersen, S. L., Thompson, A. P., Krenzel, E., & Teicher, M. H. (2002). Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. *Psychoneuroendocrinology*, 27, 683-691.

Anslinger, H. J. (1937, July). Marijuana - Assassin of Youth. *The American Magazine, 124,* 150.

- Arenander, A. T., & de Vellis, J. (1989). Development of the nervous system. In G. Siegel, B. Agranoff, R. W. Albers & P. Molinoff (Eds.), *Basic Neurochemistry* (pp. 479–506). New York: Raven Press.
- Arevalo, C., de Miguel, R., & Hernandez-Tristan, R. (2001). Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters. *Pharmacology Biochemistry and Behavior*, 70, 123-131.
- Arnold, A. P., & Gorski, R. A. (1984). Gonadal steroid induction of structural sex differences in the central nervous system. *Annual Review of Neuroscience*, *7*, 413-442.
- Arnold, A. P., Topple, A. N., Mallet, P. E., Hunt, G. E., & McGregor, I. S. (2001). The distribution of cannabinoid-induced Fos expression in rat brain: Differences between the Lewis and Wistar strain. *Brain Research*, 921, 240-255.
- Arnold, J. C. (2000). *The behavioural and neural effects of cannabinoids: Studies using Lewis and Wistar strain rats.* Unpublished doctoral dissertation, University of Sydney, Sydney.
- Australian Institute of Health and Welfare. (2005). National Drug Strategy Household Survey: First Results (Drug Statistics Series No. 13). Canberra: Australian Institute of Health and Welfare.
- Barnes, C., & Fried, P. A. (1974). Tolerance to  $\Delta^9$ -THC in adult rats with differential  $\Delta^9$ -THC exposure when immature or during early adulthood. *Psychopharmacologia*, *34*, 181-190.
- Beatty, W. W. (1979). Gonadal hormones and sex differences in nonreproductive behavior in rodents: Organizational and activational effects. *Hormones and Behavior, 12*, 112-163.
- Beninger, R. J., Ingles, J. L., Mackenzie, P. J., Jhamandas, K., & Boegman, R. J. (1992). Muscimol injections into the nucleus basalis magnocellularis of rats: Selective impairment of working memory in the double Y-maze. *Brain Research*, 597, 66-73.

-----

- Beninger, R. J., Kühnemann, S., Ingles, J. L., Jhamandas, K., & Boegman, R. J. (1994). Mnemonic deficits in the double Y-maze are related to the effects of nucleus basalis injections of ibotenic and quisqualic acid on choline acetyltransferase in the rat amygdala. *Brain Research Bulletin*, 35, 147-152.
- Berrendero, F., Sepe, N., Ramos, J. A., Di Marzo, V., & Fernández-Ruiz, J. J. (1999). Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. *Synapse, 33*, 181-191.
- Biscaia, M., Marin, S., Fernandez, B., Marco, E. M., Rubio, T., Guaza, C., et al. (2003). Chronic treatment with CP 55,940 during the peri-adolescent period differentially affects the behavioural responses of male and female rats in adulthood. *Psychopharmacology*, *170*, 301-308.
- Blackard, C., & Tennes, K. (1984). Human placental transfer of cannabinoids. *New England Journal of Medicine, 311*, 797.
- Bolla, K. I., Brown, K., Eldreth, D., Tate, K., & Cadet, J. L. (2002). Doserelated neurocognitive effects of marijuana use. *Neurology*, 59, 1337-1343.
- Borgen, L. A., Davis, W. M., & Pace, H. B. (1973). Effects of prenatal  $\Delta^9$ tetrahydrocannabinol on the development of rat offspring. *Pharmacology Biochemistry and Behavior, 1*, 203-206.
- British Medical Association. (1997). *Therapeutic Uses of Cannabis*. London: Harwood Academic Publishers.
- Budney, A. J., Hughes, J. R., Moore, B. A., & Novy, P. L. (2001). Marijuana abstinence effects in marijuana smokers maintained in their home environment. *Archives of General Psychiatry*, *58*, 917-924.
- Butovsky, E., Juknat, A., Goncharov, I., Elbaz, J., Eilam, R., Zangen, A., et al. (2005). In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Δ<sup>9</sup>-tetrahydrocannabinol. *Journal of Neurochemistry*, 93, 802-811.
- Cahill, L., & McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. *Trends in Neurosciences, 21*, 294-299.

- Carder, B., & Olson, J. (1972). Marihuana and shock induced aggression in rats. *Physiology and Behavior, 8*, 599-602.
- Carlini, E. A., Lindsey, C. J., & Tufik, S. (1971). Cannabis, catecholamines, rapid eye movement sleep and aggressive behaviour. *British Journal of Pharmacology*, *61*, 371-379.
- Chan, G. C. K., Hinds, T. R., Impey, S., & Storm, D. R. (1998). Hippocampal neurotoxicity of  $\Delta^9$ -tetrahydrocannabinol. *Journal of Neuroscience, 18*, 5322-5332.
- Cherek, D. R., Thompson, T., & Kelly, T. (1980). Chronic  $\Delta^9$ tetrahydrocannabinol administration and schedule-induced aggression. *Pharmacology Biochemistry and Behavior, 12*, 305-309.
- Clarke, R. C., & Watson, D. P. (2002). Botany of natural cannabis medicines. In F. Grotenhermen & E. Russo (Eds.), *Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential* (pp. 3-13). Binghamton, NY: The Haworth Integrative Healing Press.
- Clemens, K. J., Van Nieuwenhuyzen, P. S., Li, K. M., Cornish, J. L., Hunt, G. E., & McGregor, I. S. (2004). MDMA ("ecstasy"), methamphetamine and their combination: Long-term changes in social interaction and neurochemistry in the rat. *Psychopharmacology*, *173*, 318-325.
- Cutler, M. G., & Mackintosh, J. H. (1975a). Effects of delta-9tetrahydrocannabinol on social behaviour in the laboratory mouse and rat. *Psychopharmacologia, 44*, 287-289.
- Cutler, M. G., & Mackintosh, J. H. (1984). Cannabis and delta-9tetrahydrocannabinol. Effects on elements of social behaviour in mice. *Neuropharmacology*, 23, 1091-1097.
- Cutler, M. G., Mackintosh, J. H., & Chance, M. R. (1975b). Behavioural changes in laboratory mice during cannabis feeding and withdrawal. *Psychopharmacologia, 44*, 173-177.
- Davis, M. (1992). The role of the amygdala in fear and anxiety. *Annual Review* of Neuroscience, 15, 353-375.
- De Bellis, M. D., Clark, D. B., Beers, S. R., Soloff, P. H., Boring, A. M., Hall, J., et al. (2000). Hippocampal volume in adolescent-onset alcohol use disorders. *American Journal of Psychiatry*, *157*, 737-744.

- Deadwyler, S. A., Heyser, C. J., & Hampson, R. E. (1995). Complete
  - adaptation to the memory disruptive effects of delta-9-THC following 35 days of exposure. *Neuroscience Research Communications, 17*, 9-17.
- Deadwyler, S. A., Heyser, C. J., Michaelis, R. C., & Hampson, R. E. (1990). The effects of delta-9-THC on mechanisms of learning and memory. In L. Erinoff (Ed.), *Neurobiology of Drug Abuse: Learning and Memory* (NIDA Research Monograph 97). Rockville, MD: National Institute on Drug Abuse.
- Deahl, M. (1991). Cannabis and memory loss. *British Journal of Addiction, 86*, 249-252.
- Decourtive, E. (1948). Note sur le haschisch. Comptes rendue hebdomadaires de l'Academie des Sciences, 26.
- Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S., & Howlett, A. C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. *Molecular Pharmacology, 34*, 605-613.
- Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., et al. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. *Science*, *258*, 1946-1949.
- Dhossche, D. M. (1999). Aggression and recent substance abuse: Absence of association in psychiatric emergency room patients. *Comprehensive Psychiatry*, *40*, 343-346.
- Di Marzo, V., & Pop, E. (2004). The chemical constituents of cannabis sativa and the endocannabinoid system. In V. Di Marzo (Ed.), *Cannabinoids* (pp. 1-8). New York, NY: Kluwer Academic/Plenum Publishers.
- Dodart, J. C., Mathis, C., & Ungerer, A. (1997). Scopolamine-induced deficits in a two-trial object recognition task in mice. *Neuroreport, 8*, 1173-1178.
- Dorr, M., & Steinberg, H. (1976). Effects of delta9-tetrahydrocannabinol on social behaviour in mice: Comparison between two vehicles. *Psychopharmacology*, 47, 87-91.
- Dragunow, M., & Faull, R. (1989). The use of c-fos as a metabolic marker in neuronal pathway tracing. *Journal of Neuroscience Methods*, 29, 261-265.

- Ehrenreich, H., Rinn, T., Kunert, H. J., Moeller, M. R., Poser, W., Schilling, L., et al. (1999). Specific attentional dysfunction in adults following early start of cannabis use. *Psychopharmacology*, *142*, 295-301.
- Ellis, G. M., Mann, M. A., Judson, B. A., Schramm, N. T., & Tashchian, A. (1985). Excretion patterns of cannabinoid metabolites after last use in a group of chronic users. *Clinical Pharmacology and Therapeutics*, 38, 572-578.
- ElSohly, M. A. (2002). Chemical constituents of cannabis. In F. Grotenhermen & E. Russo (Eds.), Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential. Binghamton, NY: The Haworth Integrative Healing Press.
- Ennaceur, A., Cavoy, A., Costa, J. C., & Delacour, J. (1989). A new one-trial test for neurobiological studies of memory in rats. II: Effects of piracetam and pramiracetam. *Behavioural Brain Research*, 33, 197-207.
- Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. I: Behavioral data. *Behavioural Brain Research, 31*, 47-59.
- Ennaceur, A., & Meliani, K. (1992). Effects of physostigmine and scopolamine on rats' performances in object-recognition and radial-maze tests. *Psychopharmacology*, 109, 321-330.
- Ennaceur, A., Neave, N., & Aggleton, J. P. (1997). Spontaneous object recognition and object location memory in rats: The effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. *Experimental Brain Research*, *113*, 509-519.
- Entin, E. E., & Goldzung, P. J. (1973). Residual effects of marihuana usage on learning and memory. *The Psychological Record*, 23, 169-178.
- Fan, F., Compton, D. R., Ward, S., Melvin, L., & Martin, B. R. (1994). Development of cross-tolerance between delta 9-tetrahydrocannabinol, CP 55,940 and WIN 55,212. *Journal of Pharmacology and Experimental Therapeutics, 271*, 1383-1390.

- Fankhauser, M. A. (2002). History of cannabis in western medicine. In F. Grotenhermen & E. Russo (Eds.), Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential (pp. 37-51). Binghamton, NY: The Haworth Integrative Healing Press.
- Fehr, K. A., Kalant, H., & LeBlanc, A. E. (1976). Residual learning deficit after heavy exposure to cannabis or alcohol in rats. *Science*, *1*92, 1249-1251.
- Fehr, K. O., Kalant, H., & Knox, G. V. (1978). Residual effects of high-dose cannabis treatment on learning, muricidal behavior and neurophysiological correlates in rats. *Advances in the Biosciences*, 22-23, 681-691.
- Fernández-Ruiz, J. J., Berrendero, F., Hernández, M. L., & Ramos, J. A. (2000). The endogenous cannabinoid system and brain development. *Trends in Neurosciences, 23*, 14-20.
- Fernández-Ruiz, J. J., Berrendero, F., Hernández, M. L., Romero, J., & Ramos, J. A. (1999). Role of endocannabinoids in brain development. *Life Sciences*, *65*, 725-736.
- Fernández-Ruiz, J. J., Rodríguez de Fonseca, F., Navarro, M., & Ramos, J. A. (1992). Maternal cannabinoid exposure and brain development: Changes in the ontogeny of dopaminergic neurons. In L. Murphy & A. Bartke (Eds.), *Marijuana/Cannabinoids: Neurobiology and Neurophysiology* (pp. 119-164). Boca Raton: CRC Press.
- Fernández-Ruiz, J. J., Romero, J., García, L., García-Palomero, E., & Ramos, J. A. (1997). Dopaminergic neurons as neurochemical substrates of neurobehavioral effects of marihuana: Developmental and adult studies. In R. J. Beninger, T. Palomo & T. Archer (Eds.), *Dopamine disease states* (pp. 359-387). Madrid, Spain: Editorial CYM.
- Ferrari, F., Ottani, A., Vivoli, R., & Giuliani, D. (1999). Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task. *Pharmacology Biochemistry and Behavior,* 64, 555-561.
- File, S. E. (1980). The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. *Journal of Neuroscience Methods, 2*, 219-238.

- File, S. E. (1992). Behavioural detection of anxiolytic action. In J. M. Elliott, D. J. Heal & C. A. Marsden (Eds.), *Experimental Approaches to Anxiety and Depression* (pp. 25-44). Chichester, UK: John Wiley & Sons Ltd.
- File, S. E. (1997). Animal tests of anxiety. In J. N. Crawley, C. R. Gerfen, R. McKay, M. A. Rogawski, D. R. Sibley & P. Skolnick (Eds.), *Current Protocols in Neuroscience* (pp. 8.3.1-8.3.15). New York: Wiley.
- File, S. E. (2000). NKP608, an NK1 receptor antagonist, has an anxiolytic action in the social interaction test in rats. *Psychopharmacology*, *152*, 105-109.
- File, S. E., Baldwin, H. A., Johnston, A. L., & Wilks, L. J. (1988). Behavioral effects of acute and chronic administration of caffeine in the rat. *Pharmacology Biochemistry and Behavior, 30*, 809-815.
- File, S. E., Cheeta, S., & Akanezi, C. (2001). Diazepam and nicotine increase social interaction in gerbils: A test for anxiolytic action. *Brain Research, 888*, 311-313.
- File, S. E., & Hyde, J. R. (1978). Can social interaction be used to measure anxiety? *British Journal of Pharmacology*, *62*, 19-24.
- File, S. E., & Seth, P. (2003). A review of 25 years of the social interaction test. *European Journal of Pharmacology*, *463*, 35-53.
- File, S. E., & Tucker, J. C. (1984a). Lasting behavioral effects after treating rats with CGS 8216 on postnatal days 9 to 21. *Physiology and Behavior, 32*, 351-355.
- File, S. E., & Tucker, J. C. (1984b). Chronic neonatal treatment with CGS 8216: Effects on the behaviour of adolescent rats. *Behavioural Brain Research*, *11*, 197-204.
- Fletcher, J. M., & Satz, P. (1977). A methodological commentary on the Egyptian study of chronic hashish use. *Bulletin on Narcotics, 29*, 29-34.
- Fride, E., Ginzburg, Y., Breuer, A., Bisogno, T., Di Marzo, V., & Mechoulam, R. (2001). Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. *European Journal of Pharmacology*, 419, 207-214.

- Fride, E., & Mechoulam, R. (1996). Developmental aspects of anandamide: Ontogeny of response and prenatal exposure. *Psychoneuroendocrinology, 21*, 157-172.
- Fried, P. (1985). Postnatal consequences of maternal marijuana use. In T. M. Pinkert (Ed.), Current Research on the Consequences of Maternal Drug Abuse (NIDA Research Monograph 59). Rockville, MD: National Institute on Drug Abuse.
- Fried, P., Watkinson, B., James, D., & Gray, R. (2002). Current and former marijuana use: Preliminary findings of a longitudinal study of effects on IQ in young adults. *Canadian Medical Association Journal*, 166, 887-891.
- Fried, P. A. (1995). The Ottawa Prenatal Prospective Study (OPPS): Methodological issues and findings--it's easy to throw the baby out with the bath water. *Life Sciences*, *56*, 2159-2168.
- Fried, P. A., & Makin, J. E. (1987). Neonatal behavioural correlates of prenatal exposure to marihuana, cigarettes and alcohol in a low risk population. *Neurotoxicology and Teratology*, *9*, 1-7.
- Fried, P. A., & Smith, A. M. (2001). A literature review on the consequences of prenatal marihuana exposure: An emerging theme of a deficiency in aspects of executive function. *Neurotoxicology and Teratology*, 23, 1-11.
- Fried, P. A., Watkinson, B., & Gray, R. (2003). Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. *Neurotoxicology and Teratology*, 25, 427-436.
- Gaetani, S., Cuomo, V., & Piomelli, D. (2003). Anandamide hydrolysis: A new target for anti-anxiety drugs? *Trends in Molecular Medicine*, *9*, 474-478.
- Gaoni, Y., & Mechoulam, R. (1964). Isolation, structure, and partial synthesis of an active constituent of hashish. *Journal of the American Chemical Society, 86*, 1646-1647.
- Genn, R. F., Tucci, S., Marco, E. M., Viveros, M. P., & File, S. E. (2004). Unconditioned and conditioned anxiogenic effects of the cannabinoid receptor agonist CP 55,940 in the social interaction test. *Pharmacology Biochemistry and Behavior,* 77, 567-573.

- Gerard, C. M., Mollereau, C., Vassart, G., & Parmentier, M. (1991). Molecular cloning of a human cannabinoid receptor which is also expressed in testis. *Biochemical Journal, 279*, 129-134.
- Gianutsos, G., & Abbatiello, E. R. (1972). The effect of pre-natal Cannabis sativa on maze learning ability in the rat. *Psychopharmacologia, 27*, 117-122.
- Giuliani, D., Ferrari, F., & Ottani, A. (2000). The cannabinoid agonist HU 210 modifies rat behavioural responses to novelty and stress. *Pharmacological Research*, *41*, 47-53.
- Glass, M., Dragunow, M., & Faull, R. L. (1997). Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. *Neuroscience*, 77, 299-318.
- Gomez, M., Hernández, M. L., Johansson, B., de Miguel, R., Ramos, J. A., & Fernández-Ruiz, J. J. (2003). Prenatal cannabinoid and gene expression for neural adhesion molecule L1 in the fetal rat brain. *Developmental Brain Research*, *147*, 201-207.

Goode, E. (1970). The Marijuana Smokers. New York: Basic Books.

- Gowing, L. R., Ali, R. L., Christie, P., & White, J. M. (1998). Therapeutic use of cannabis: Clarifying the debate. *Drug and Alcohol Review, 17*, 445-452.
- Grenyer, B. F. S., Williams, G., Swift, W., & Neill, O. (1992). The prevalence of social-evaluative anxiety in opioid users seeking treatment. *International Journal of the Addictions, 27*, 665-673.
- Grotenhermen, F. (2002). Effects of cannabis and the cannabinoids. In F. Grotenhermen & E. Russo (Eds.), *Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential* (pp. 55-65). Binghamton, NY: The Haworth Integrative Healing Press.
- Guimaraes, F. S., de Aguiar, J. C., Mechoulam, R., & Breuer, A. (1994). Anxiolytic effect of cannabidiol derivatives in the elevated plus-maze. *General Pharmacology*, 25, 161-164.

- Hall, W., Solowij, N., & Lemon, J. (1994). The health and psychological consequences of cannabis use (National Drug Strategy Monograph Series No. 25). Canberra: Australian Government Publishing Service.
- Halpern, D. F. (2000). Sex Differences in Cognitive Abilities. Mahwah, NJ: Lawrence Erlbaum.
- Handley, S. L., McBlane, J. W., Critchley, M. A., & Njung'e, K. (1993). Multiple serotonin mechanisms in animal models of anxiety: Environmental, emotional and cognitive factors. *Behavioural Brain Research*, 58, 203-210.
- Harlan, R. E., & Garcia, M. M. (1998). Drugs of abuse and immediate-early genes in the forebrain. *Molecular Neurobiology*, *16*, 221-267.
- Hascoët, M., & Bourin, M. (1998). A new approach to the light/dark test procedure in mice. *Pharmacology Biochemistry and Behavior, 60*, 645-653.
- Hascoët, M., Colombel, M. C., & Bourin, M. (1999). Influence of age on behavioural response in the light/dark paradigm. *Physiology and Behavior, 66*, 567-570.
- Health Council of the Netherlands: Standing Committee on Medicine. (1996). Marihuana as medicine (publication no. 1996/21E). Rijswijk: Health Council of the Netherlands.
- Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., & Rice, K. C. (1991). Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. *Journal of Neuroscience*, 11, 563-583.
- Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., et al. (1990). Cannabinoid receptor localization in brain. *Proceedings of the National Academy of Sciences of the United States* of America, 87, 1932-1936.
- Hoaken, P. N., & Stewart, S. H. (2003). Drugs of abuse and the elicitation of human aggressive behavior. *Addictive Behaviors, 28*, 1533-1554.
- Hoffman, G. E., Smith, S. M., & Verbalis, J. G. (1993). C-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. *Frontiers in Neuroendocrinology*, *14*, 173-213.

- Hollister, L. E. (1998). Health aspects of cannabis: Revisited. International Journal of Neuropsychopharmacology, 1, 71-80.
- Holmes, A. (2001). Targeted gene mutation approaches to the study of anxiety-like behavior in mice. *Neuroscience and Biobehavioral Reviews*, 25, 261-273.
- Holmes, A., Murphy, D. L., & Crawley, J. N. (2003). Abnormal behavioral phenotypes of serotonin transporter knockout mice: Parallels with human anxiety and depression. *Biological Psychiatry, 54*, 953-959.
- Honig, W. K. (1978). Studies of working memory in the pigeon. In S. E. Hulse,
  H. Fowler & W. K. Honig (Eds.), *Cognitive Processes in Animal Behavior* (pp. 211-248). Hillsdale, NJ: Erlbaum.
- Howlett, A. C., & Mukhopadhyay, S. (2000). Cellular signal transduction by anandamide and 2-arachidonoylglycerol. *Chemistry and Physics of Lipids*, *108*, 53-70.
- Hughes, P., & Dragunow, M. (1995). Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. *Pharmacological Reviews*, *47*, 133-178.
- Hutchings, D. E., Martin, B. R., Gamagaris, Z., Miller, N., & Fico, T. (1989). Plasma concentrations of delta-9-tetrahydrocannabinol in dams and fetuses following acute or multiple prenatal dosing in rats. *Life Sciences*, *44*, 697-701.
- Irvine, E. E., Cheeta, S., Marshall, M., & File, S. E. (2001). Different treatment regimens and the development of tolerance to nicotine's anxiogenic effects. *Pharmacology Biochemistry and Behavior, 68*, 769-776.

Iversen, L. (2003). Cannabis and the brain. Brain, 126, 1252-1270.

- Jakubovic, A., Hattori, T., & McGeer, P. L. (1973). Radioactivity in suckled rats after giving 14 C-tetrahydrocannabinol to the mother. *European Journal* of Pharmacology, 22, 221-223.
- Jarvinen, T., Pate, D. W., & Laine, K. (2002). Cannabinoids in the treatment of glaucoma. *Pharmacology and Therapeutics*, *95*, 203-220.

- Jaskiw, G. E., Karoum, F. K., & Weinberger, D. R. (1990). Persistent elevations in dopamine and its metabolites in the nucleus accumbens after mild subchronic stress in rats with ibotenic acid lesions of the medial prefrontal cortex. *Brain Research*, *534*, 321-323.
- Jin, K., Xie, L., Kim, S. H., Parmentier-Batteur, S., Sun, Y., Mao, X. O., et al. (2004). Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice. *Molecular Pharmacology*, *66*, 204-208.
- Johnston, A. L., & File, S. E. (1991). Sex differences in animal tests of anxiety. *Physiology and Behavior, 49*, 245-250.
- Jones, R. T. (1980). Human effects: An overview. In R. C. Peterson (Ed.), *Marijuana Research Findings: 1980* (NIDA Research Monograph 31). Rockville, MD: National Institute on Drug Abuse.
- Joy, J. E., Watson, S. J., & Benson, J. A. (1999). *Marijuana and Medicine: Assessing the Science Base*. Washington, DC: Institute of Medicine.
- Kalant, H., LeBlanc, A. E., & Gibbins, R. J. (1971). Tolerance to, and dependence on, some non-opiate psychotropic drugs. *Pharmacological Reviews*, 23, 135-191.
- Kantor, S., Anheuer, Z. E., & Bagdy, G. (2000). High social anxiety and low aggression in Fawn-Hooded rats. *Physiology and Behavior, 71*, 551-557.
- Kawash, G. F., Yeung, D. L., & Berg, S. D. (1980). Effects of administration of cannabis resin during pregnancy on emotionality and learning in rats' offspring. *Perceptual and Motor Skills*, 50, 359-365.
- Kellogg, C. K., Awatramani, G. B., & Piekut, D. T. (1998). Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. *Neuroscience*, *83*, 681-689.
- Kellogg, C. K., Primus, R. J., & Bitran, D. (1991). Sexually dimorphic influence of prenatal exposure to diazepam on behavioral responses to environmental challenge and on gamma-aminobutyric acid (GABA)stimulated chloride uptake in the brain. *Journal of Pharmacology and Experimental Therapeutics, 256*, 259-265.

- Koenig, J., Lazarus, C., Jeltsch, H., Ben Hamida, S., Riegert, C., Kelche, C., et al. (2005). MDMA (ecstasy) effects in pubescent rats: Males are more sensitive than females. *Pharmacology Biochemistry and Behavior, 81*, 635-644.
- Kosiorek, P., Hryniewicz, A., Bialuk, I., Zawadzka, A., & Winnicka, M. M. (2003). Cannabinoids alter recognition memory in rats. *Polish Journal of Pharmacology*, *55*, 903-910.
- Kouri, E. M., Pope, H. G., & Lukas, S. E. (1999). Changes in aggressive behavior during withdrawal from long-term marijuana use. *Psychopharmacology*, *143*, 302-308.
- Kurup, V. P., Resnick, A., Kagen, S. L., Cohen, S. H., & Fink, J. N. (1983). Allergenic fungi and actinomycetes in smoking materials and their health implications. *Mycopathologia*, 82, 61-64.
- Landfield, P. W., Cadwallader, L. B., & Vinsant, S. (1988). Quantitative changes in hippocampal structure following long-term exposure to delta 9-tetrahydrocannabinol: Possible mediation by glucocorticoid systems. *Brain Research, 443*, 47-62.
- Landsman, R. S., Burkey, T. H., Consroe, P., Roeske, W. R., & Yamamura, H. I. (1997). SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. *European Journal of Pharmacology, 334*, R1-R2.
- Lawrence, J., Stroman, P. W., Bascaramurty, S., Jordan, L. M., & Malisza, K. L. (2004). Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. *NeuroImage*, 22, 1802-1807.
- Leech, S. L., Richardson, G. A., Goldschmidt, L., & Day, N. L. (1999). Prenatal substance exposure: Effects on attention and impulsivity of 6year-olds. *Neurotoxicology and Teratology, 21*, 109-118.
- Leighty, E. G., Fentiman, A. F., & Foltz, R. L. (1976). Long-retained metabolites of delta9- and delta8-tetrahydrocannabinols identified as novel fatty acid conjugates. *Research Communications in Chemical Pathology and Pharmacology*, *14*, 13-28.
- Lichtman, A. H., Dimen, K. R., & Martin, B. R. (1995). Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. *Psychopharmacology*, *119*, 282-290.

- Lister, R. G. (1991). Ethologically based animal models of anxiety disorders. In S. E. File (Ed.), *Psychopharmacology of Anxiolytics and Antidepressants* (pp. 155-185). New York: Pergamon Press.
- Little, P. J., Compton, D. R., Johnson, M. R., Melvin, L. S., & Marin, B. R. (1988). Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. *Journal of Pharmacology and Experimental Therapeutics*, 247, 1046-1051.
- Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. *NeuroImage*, *13*, 786-793.
- Luthra, U. L., Rosenkrantz, H., Heyman, I. A., & Braude, M. C. (1975). Differential neurochemistry and temporal pattern in rats treated orally with delta9-tetrahydrocannabinol for periods up to six months. *Toxicology and Applied Pharmacology, 32*, 418-431.
- Machula, A. I., Dudkin, S. M., & Barkov, N. K. (1992). Systemic character of mechanisms mediating the effects of  $\Delta^9$ -tetrahydrocannabinol on behavior. In L. Murphy & A. Bartke (Eds.), *Marijuana/Cannabinoids: Neurobiology and Neurophysiology* (pp. 525-538). Boca Raton: CRC Press.
- Macri, S., & Laviola, G. (2004). Single episode of maternal deprivation and adult depressive profile in mice: Interaction with cannabinoid exposure during adolescence. *Behavioural Brain Research*, *154*, 231-238.
- Mallet, P. E., & Beninger, R. J. (1993). The double Y-maze as a tool for assessing memory in rats. *Neuroscience Protocols, Module 2*, 1-11.
- Mallet, P. E., & Beninger, R. J. (1996). The endogenous cannabinoid receptor agonist anandamide impairs memory in rats. *Behavioural Pharmacology*, 7, 276-284.
- Martin, M., Ledent, C., Parmentier, M., Maldonado, R., & Valverde, O. (2002). Involvement of CB1 cannabinoid receptors in emotional behaviour. *Psychopharmacology*, 159, 379-387.
- Mason, K. I., Mallet, P. E., Jhamandas, K., Boegman, R. J., & Beninger, R. J. (1999). Nucleus basalis injections of N-methyl-D-aspartate enhance memory of rats in the double Y-maze. *Brain Research Bulletin, 48*, 65-71.

- Matochik, J. A., Eldreth, D. A., Cadet, J. L., & Bolla, K. I. (2005). Altered brain tissue composition in heavy marijuana users. *Drug and Alcohol Dependence*, 77, 23-30.
- Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., & Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. *Nature*, *346*, 561-564.
- McCreary Centre Society. (1999). Healthy Connections: Listening to BC Youth. Burnaby, BC: The McCreary Centre Society.
- McDonald, M. P., & Overmier, J. B. (1998). Present imperfect: A critical review of animal models of the mnemonic impairments in Alzheimers-disease. *Neuroscience and Biobehavioral Reviews*, 22, 99-120.
- McGregor, I. S., Gurtman, C. G., Morley, K. C., Clemens, K. J., Blokland, A., Li, K. M., et al. (2003). Increased anxiety and "depressive" symptoms months after MDMA ("ecstasy") in rats: Drug-induced hyperthermia does not predict long-term outcomes. *Psychopharmacology*, *168*, 465-474.
- Mechoulam, R. (2002). Discovery of endocannabinoids and some random thoughts on their possible roles in neuroprotection and aggression. *Prostaglandins, Leukotrienes and Essential Fatty Acids, 66*, 93-99.
- Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., et al. (1995). Identification of an endogenous 2monoglyceride, present in canine gut, that binds to cannabinoid receptors. *Biochemical Pharmacology*, *50*, 83-90.
- Mechoulam, R., & Hanus, L. (2000). A historical overview of chemical research on cannabinoids. *Chemistry and Physics of Lipids, 108*, 1-13.
- Mereu, G., Fa, M., Ferraro, L., Cagiano, R., Antonelli, T., Tattoli, M., et al. (2003). Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. *Proceedings of the National Academy of Sciences* of the United States of America, 100, 4915-4920.
- Meyer, J. S., & Kunkle, R. (1999). Behavioral responses to a  $D_1$  dopamine agonist in weanling rats treated neonatally with cocaine and  $\Delta^9$ -tetrahydrocannabinol. *Neurotoxicology and Teratology, 21*, 375-380.

- Meyer, R. E. (1986). How to understand the relationship between psychopathology and addictive disorders: Another example of the chicken and the egg. In R. E. Meyer (Ed.), *Psychopathology and Addictive Disorders* (pp. 3-16). New York: Guilford Press.
- Miczek, K. A. (1976). Mouse-killing and motor activity: Effects of chronic delta9-tetrahydrocannabinol and pilocarpine. *Psychopharmacology*, *47*, 59-64.
- Miczek, K. A. (1999). Does THC induce aggression? Suppression and induction of aggressive reactions by chronic and acute Delta(9)tetrahydrocannabinol treatment in laboratory rats. In G. G. Nahas, K. M. Sutin, D. J. Harvey & S. Agurell (Eds.), *Marihuana and medicine* (pp. 233-241). Totowa, New Jersey: Humana Press.
- Miczek, K. A., DeBold, J. F., Haney, M., Tidey, J., Vivian, J., & Weerts, E. M. (1994). Alcohol, drugs of abuse, aggression, and violence. In A. J. Reiss & J. A. Roth (Eds.), *Understanding and Preventing Violence* (Vol. 3, pp. 377-570). Washington, DC: National Academy Press.
- Minor, T. R., Dess, N. K., Ben-David, E., & Chang, W. C. (1994). Individual differences in vulnerability to inescapable shock in rats. *Journal of Experimental Psychology: Animal Behavior Processes, 20*, 402-412.
- Mirmiran, M., & Swaab, D. F. (1987). Influence of drugs on brain neurotransmitters and behavioral states during development. *Developmental Pharmacology and Therapeutics, 10*, 377-384.
- Moreno, M., Trigo, J. M., Escuredo, L., Rodríguez de Fonseca, F., & Navarro, M. (2003). Perinatal exposure to delta 9-tetrahydrocannabinol increases presynaptic dopamine D<sub>2</sub> receptor sensitivity: A behavioral study in rats. *Pharmacology Biochemistry and Behavior, 75*, 565-575.
- Morley, K. C., Gallate, J. E., Hunt, G. E., Mallet, P. E., & McGregor, I. S. (2001). Increased anxiety and impaired memory in rats 3 months after administration of 3,4-methylenedioxymethamphetamine ("Ecstasy"). *European Journal of Pharmacology*, 433, 91-99.
- Morozov, Y. M., & Freund, T. F. (2003). Post-natal development of type 1 cannabinoid receptor immunoreactivity in the rat hippocampus. *European Journal of Neuroscience, 18*, 1213-1222.

- Myerscough, R., & Taylor, S. P. (1986). The effects of marijuana on human physical aggression. *Journal of Personality and Social Psychology, 49*, 1541-1546.
- Nakamura, E. M., da Silva, E. A., Concilio, G. V., Wilkinson, D. A., & Masur, J. (1991). Reversible effects of acute and long-term administration of  $\Delta^9$ -tetrahydrocannabinol (THC) on memory in the rat. *Drug and Alcohol Dependence*, *28*, 167-175.
- Navarro, M., de Miguel, R., Rodríguez de Fonseca, F., Ramos, J. A., & Fernández-Ruiz, J. J. (1996). Perinatal cannabinoid exposure modifies the sociosexual approach behavior and the mesolimbic dopaminergic activity of adult male rats. *Behavioural Brain Research*, *75*, 91-98.
- Navarro, M., Fernández-Ruiz, J. J., de Miguel, R., Hernández, M. L., Cebeira, M., & Ramos, J. A. (1993). An acute dose of  $\Delta^9$ -tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. *Behavioural Brain Research*, *57*, 37-46.
- Navarro, M., Rubio, P., & Rodríguez de Fonseca, F. (1994). Sex-dimorphic psychomotor activation after perinatal exposure to (-)-∆<sup>9</sup>tetrahydrocannabinol. An ontogenic study in Wistar rats. Psychopharmacology, 116, 414-422.
- Navarro, M., Rubio, P., & Rodríguez de Fonseca, F. (1995). Behavioural consequences of maternal exposure to natural cannabinoids in rats. *Psychopharmacology*, *122*, 1-14.
- Nelson, R. J., & Young, K. A. (1998). Behavior in mice with targeted disruption of single genes. *Neuroscience and Biobehavioral Reviews*, 22, 453-462.
- Niveau, G., & Dang, C. (2003). Cannabis and violent crime. *Medicine, Science and the Law, 43*, 115-121.
- Ojeda, S. R., & Urbanski, H. F. (1994). Puberty in the rat. In E. Knobil & J. D. Neill (Eds.), *The Physiology of Reproduction* (pp. 363-409). New York: Raven Press.
- Onaivi, E. S., Chakrabarti, A., Gwebu, E. T., & Chaudhuri, G. (1995). Neurobehavioral effects of delta 9-THC and cannabinoid (CB1) receptor gene expression in mice. *Behavioural Brain Research*, 72, 115-125.

- Onaivi, E. S., Green, M. R., & Martin, B. R. (1990). Pharmacological characterization of cannabinoids in the elevated plus maze. *Journal of Pharmacology and Experimental Therapeutics,* 253, 1002-1009.
- Oscar-Berman, M. (1991). Clinical and experimental approaches to varieties of memory. *International Journal of Neuroscience, 58*, 135-150.
- O'Shea, M., Singh, M. E., McGregor, I. S., & Mallet, P. E. (2004). Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. *Journal of Psychopharmacology*, *18*, 502-508.
- Patton, G. C., Coffey, C., Carlin, J. B., Degenhardt, L., Lynskey, M., & Hall, W. (2002). Cannabis use and mental health in young people: Cohort study. *British Medical Journal, 325*, 1195-1198.
- Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. *Nature Reviews Neuroscience*, *4*, 873-884.
- Pope, H. G. (2002). Cannabis, cognition, and residual confounding. *Journal of the American Medical Association*, 287, 1172-1174.
- Pope, H. G., Gruber, A. J., Hudson, J. I., Cohane, G., Huestis, M. A., & Yurgelun-Todd, D. (2003). Early-onset cannabis use and cognitive deficits: What is the nature of the association? *Drug and Alcohol Dependence*, 69, 303-310.
- Pope, H. G., Gruber, A. J., & Yurgelun-Todd, D. (1995). The residual neuropsychological effects of cannabis: The current status of research. *Drug and Alcohol Dependence, 38*, 25-34.
- Pope, H. G., Jacobs, A., Mialet, J. P., Yurgelun-Todd, D., & Gruber, S. (1997). Evidence for a sex-specific residual effect of cannabis on visuospatial memory. *Psychotherapy and Psychosomatics, 66*, 179-184.
- Pope, H. G., & Yurgelun-Todd, D. (1996). The residual cognitive effects of heavy marijuana use in college students. *Journal of the American Medical Association, 275*, 521-527.
- Primus, R. J., & Kellogg, C., K. (1990). Gonadal hormones during puberty organize environment-related social interaction in the male rat. *Hormones and Behavior, 24*, 311-323.

- Rees, V., Copeland, J., & Swift, W. (1998). A brief cognitive-behavioural intervention for cannabis dependence: Therapists' treatment manual (Technical Report No. 64). Sydney: National Drug and Alcohol Research Centre.
- Richardson, G. A., Ryan, C., Willford, J., Day, N. L., & Goldschmidt, L. (2002). Prenatal alcohol and marijuana exposure: Effects on neuropsychological outcomes at 10 years. *Neurotoxicology and Teratology, 24*, 309-320.
- Rodgers, R. J., Cao, B. J., Dalvi, A., & Holmes, A. (1997). Animal models of anxiety: An ethological perspective. *Brazilian Journal of Medical and Biological Research*, 30, 289-304.
- Rodríguez de Fonseca, F., Carrera, M. R. A., Navarro, M., Koob, G. F., & Weiss, F. (1997). Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. *Science*, 276, 2050-2054.
- Rodríguez de Fonseca, F., Cebeira, M., Fernández-Ruiz, J. J., Navarro, M., & Ramos, J. A. (1991). Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons. *Neuroscience, 43*, 713-723.
- Rodríguez de Fonseca, F., Chu, R., Caron, M. G., & Wetsel, W. C. (2004). Aberrant responses in social interaction of dopamine transporter knockout mice. *Behavioural Brain Research, 148*, 185-198.
- Rodríguez de Fonseca, F., Fernández-Ruiz, J. J., Murphy, L. L., Cebeira, M., Steger, R. W., Bartke, A., et al. (1992). Acute effects of delta-9tetrahydrocannabinol on dopaminergic activity in several rat brain areas. *Pharmacology Biochemistry and Behavior, 42*, 269-275.
- Rodríguez de Fonseca, F., Gorriti, M. A., Fernández-Ruiz, J. J., Palomo, T., & Ramos, J. A. (1994). Downregulation of rat brain cannabinoid binding sites after chronic delta 9-tetrahydrocannabinol treatment. *Pharmacology Biochemistry and Behavior, 47*, 33-40.
- Rodríguez de Fonseca, F., Ramos, J. A., Bonnin, A., & Fernández-Ruiz, J. J. (1993). Presence of cannabinoid binding sites in the brain from early postnatal ages. *Neuroreport, 4*, 135-138.

- Rodríguez de Fonseca, F., Rubio, P., Menzaghi, F., Merlo-Pich, E., Rivier, J., Koob, G. F., et al. (1996). Corticotropin-releasing factor (CRF) antagonist [D-Phe12,Nle21,38,C alpha MeLeu37]CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats. *Journal of Pharmacology and Experimental Therapeutics, 276*, 56-64.
- Rounsaville, B. J., Kosten, T. R., Weissman, M. M., Prusoff, B., Pauls, D., Anton, S. F., et al. (1991). Psychiatric disorders in relatives of probands with opiate addiction. *Archives of General Psychiatry*, *48*, 33-42.
- Rubio, P., Rodríguez de Fonseca, F., Muñoz, R. M., Ariznavarreta, C., Martín-Calderón, J. L., & Navarro, M. (1995). Long-term behavioral effects of perinatal exposure to delta 9-tetrahydrocannabinol in rats: Possible role of pituitary-adrenal axis. *Life Sciences*, *56*, 2169-2176.
- Russo, E. (2002a). Cannabis treatments in obstetrics and gynecology: A historical review. *Journal of Cannabis Therapeutics*, 2, 5-35.
- Russo, E., Dreher, M., & Mathre, M. L. (2002b). *Women and Cannabis: Medicine, Science, and Sociology*. Binghamton, NY: Haworth Press.
- Salchner, P., Lubec, G., & Singewald, N. (2004). Decreased social interaction in aged rats may not reflect changes in anxiety-related behaviour. *Behavioural Brain Research*, *151*, 1-8.
- Scallet, A. C. (1991). Neurotoxicology of cannabis and THC: A review of chronic exposure studies in animals. *Pharmacology Biochemistry and Behavior, 40*, 671-676.
- Scallet, A. C., Uemura, E., Andrews, A., Ali, S. F., McMillan, D. E., Paule, M. G., et al. (1987). Morphometric studies of the rat hippocampus following chronic delta-9-tetrahydrocannabinol (THC). *Brain Research*, 436, 193-198.
- Schlesinger, S. (1840). Untersuchung der Cannabis sativa. *Repertorium für die Pharmacie*.
- Schneider, M., & Koch, M. (2002). The cannabinoid agonist WIN 55,212-22 reduces sensorimotor gating and recognition memory in rats. *Behavioural Pharmacology*, *13*, 29-37.

- Schneider, M., & Koch, M. (2003). Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. *Neuropsychopharmacology*, *28*, 1760-1769.
- Schneider, M., & Koch, M. (2004). Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: Effects of chronic pubertal cannabinoid treatment. *Neuropsychopharmacology*, 1-14.
- Schwartz, R. H., Gruenewald, P. J., Klitzner, M., & Fedio, P. (1989). Shortterm memory impairment in cannabis-dependent adolescents. *American Journal of Diseases of Children, 143*, 1214-1219.
- Sethi, B. B., Trivedi, J. K., Kumar, P., Gulati, A., Agarwal, A. K., & Sethi, N. (1986). Antianxiety effect of cannabis: Involvement of central benzodiazepine receptors. *Biological Psychiatry*, *21*, 3-10.
- Sieber, B., Frischknecht, H. R., & Waser, P. G. (1980a). Behavioral effects of hashish in mice. I. Social interactions and nest-building behavior of males. *Psychopharmacology*, *70*, 149-154.
- Sieber, B., Frischknecht, H. R., & Waser, P. G. (1980b). Behavioral effects of hashish in mice. III. Social interactions between two residents and an intruder male. *Psychopharmacology*, *70*, 273-278.
- Singh, M. E., McGregor, I. S., & Mallet, P. E. (2005). Repeated exposure to  $\Delta^9$ -tetrahydrocannabinol alters heroin-induced locomotor sensitisation and Fos-immunoreactivity. *Neuropharmacology*, *49*, 1189-1200.
- Singh, M. E., McGregor, I. S., & Mallet, P. E. (In press). Perinatal exposure to  $\Delta^9$ -tetrahydrocannabinol alters heroin-induced place conditioning and Fos-immunoreactivity. *Neuropsychopharmacology*.
- Sisk, C., & Foster, D. L. (2004). The neural basis of puberty and adolescence. *Nature Neuroscience*, *7*, 1040-1047.
- Sisk, C. L., Schulz, K. M., & Zehr, J. L. (2003). Puberty: A finishing school for male social behavior. *Annals of the New York Academy of Sciences*, 1007, 189-198.

- Slikker, W., Paule, M. G., Ali, S. F., Scallet, A. C., & Bailey, J. R. (1992). Behavioral, neurochemical, and neurohistological effects of chronic marijuana smoke exposure in the nonhuman primate. In L. Murphy & A. Bartke (Eds.), *Marijuana/Cannabinoids: Neurobiology and Neurophysiology* (pp. 219-273). Boca Raton: CRC Press.
- Smith, C. G., Beninger, R. J., Mallet, P. E., Jhamandas, K., & Boegman, R. J. (1994). Basal forebrain injections of the benzodiazepine partial inverse agonist FG 7142 enhance memory of rats in the double Y-maze. *Brain Research*, 666, 61-67.
- Smith, R. F. (2003). Animal models of periadolescent substance abuse. *Neurotoxicology and Teratology, 25*, 291-301.
- Solowij, N. (1998). *Cannabis and Cognitive Functioning*. Cambridge, UK: Cambridge University Press.
- Solowij, N., Grenyer, B. F. S., Chesher, G., & Lewis, J. (1995). Biopsychosocial changes associated with cessation of cannabis use: A single case study of acute and chronic cognitive effects, withdrawal and treatment. *Life Sciences*, *56*, 2127-2134.
- Soueif, M. I. (1971). The use of cannabis in Egypt: A behavioural study. *Bulletin on Narcotics, 23,* 17-28.
- Soueif, M. I. (1975). Chronic cannabis users: Further analysis of objective test results. *Bulletin on Narcotics*, 27, 1-26.
- Soueif, M. I. (1976). Some determinants of psychological deficits associated with chronic cannabis consumption. *Bulletin on Narcotics, 28*, 25-42.
- Spear, L. P. (2002). The adolescent brain and the college drinker: Biological basis of propensity to use and misuse alcohol. *Journal of Studies on Alcohol, Supplement No.14*, 71-81.
- Stella, N., Schweitzer, P., & Piomelli, D. (1997). A second endogenous cannabinoid that modulates long-term potentiation. *Nature*, *388*, 773-778.
- Stiglick, A., & Kalant, H. (1982a). Learning impairment in the radial-arm maze following prolonged cannabis treatment in rats. *Psychopharmacology*, 77, 117-123.

- Stiglick, A., & Kalant, H. (1982b). Residual effects of prolonged cannabis administration on exploration and DRL performance in rats. *Psychopharmacology*, 77, 124-128.
- Stiglick, A., & Kalant, H. (1983). Behavioral effects of prolonged administration of  $\Delta^9$ -tetrahydrocannabinol in the rat. *Psychopharmacology*, *80*, 325-330.
- Stiglick, A., & Kalant, H. (1985). Residual effects of chronic cannabis treatment in behavior in mature rats. *Psychopharmacology*, *85*, 436-439.
- Stiglick, A., Llewellyn, M. E., & Kalant, H. (1984). Residual effects of prolonged cannabis treatment on shuttle-box avoidance in the rat. *Psychopharmacology*, *84*, 476-479.
- Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., et al. (1995). 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. *Biochemical and Biophysical Research Communications*, 215, 89-87.
- Sulcova, E., Mechoulam, R., & Fride, E. (1998). Biphasic effects of anandamide. *Pharmacology Biochemistry and Behavior, 59*, 347-352.
- Suwanprathes, P., Ngu, M., Ing, A., Hunt, G., & Seow, F. (2003). c-Fos immunoreactivity in the brain after esophageal acid stimulation. *American Journal of Medicine, 115*, 31S-38S.
- Szallasi, A., & Di Marzo, V. (2000). New perspectives on enigmatic vanilloid receptors. *Trends in Neurosciences, 10*, 491-497.
- Tart, C. T. (1970). Marijuana intoxication common experiences. *Nature*, 23, 701-704.
- Taylor, D. N., Wachsmuth, I. K., Shangkuan, Y. H., Schmidt, E. V., Barrett, T. J., Schrader, J. S., et al. (1982). Salmonellosis associated with marijuana: A multistate outbreak traced by plasmid fingerprinting. *New England Journal of Medicine, 306*, 1249-1253.
- Taylor, S. P., Vardatis, R. M., Rautich, A. B., Gammon, C. B., Cranston, J. W., & Lubetkin, A. (1976). The effects of alcohol and delta-9tetrahydocannabinol on human physical aggression. *Aggressive Behavior, 2*, 153-161.

- Teicher, M. H., Andersen, S. L., & Hostetter, J. C. (1995). Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. *Developmental Brain Research*, *89*, 167-172.
- Thomas, H. (1996). A community survey of adverse effects of cannabis use. *Drug and Alcohol Dependence, 42*, 201-207.
- Tonkin, R. S. (2002). Marijuana use in adolescence. *Paediatric Child Health,* 7, 73-75.
- Tournier, M., Sorbara, F., Gindre, C., Swendsen, J. D., & Verdoux, H. (2003). Cannabis use and anxiety in daily life: A naturalistic investigation in a non-clinical population. *Psychiatry Research*, 118, 1-8.
- Tseng, A. H., & Craft, R. M. (2001). Sex differences in antinociceptive and motoric effects of cannabinoids. *European Journal of Pharmacology, 430*, 41-47.
- Tsuru, A., Mizuguchi, M., Uyemura, K., & Takashima, S. (1996). Immunohistochemical expression of cell adhesion molecule L1 during development of the human brain. *Early Human Development, 45*, 93-101.
- Turner, C. E., Elsohly, M. A., & Boeren, E. G. (1980). Constituents of Cannabis sativa L. XVII. A review of the natural constituents. *Journal of Natural Products, 43*, 169-234.
- Tzilos, G. K., Cintron, C. B., Wood, J. B., Simpson, N. S., Young, A. D., Pope, H. G., et al. (2005). Lack of hippocampal volume change in long-term heavy cannabis users. *American Journal on Addictions, 14*, 64-72.
- United Nations Office on Drugs and Crime. (2003). Global Illicit Drug Trends 2003. Vienna, Austria: UNODC.
- United Nations Office on Drugs and Crime. (2004). 2004 World Drug Report. Vienna, Austria: UNODC.
- Urigüen, L., Pérez-Rial, S., Ledent, C., Palomo, T., & Manzanares, J. (2004). Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. *Neuropharmacology*, *46*, 966-973.

- van Ree, J. M., Niesink, R. J., & Nir, I. (1984). delta 1-Tetrahydrocannabinol but not cannabidiol reduces contact and aggressive behavior of rats tested in dyadic encounters. *Psychopharmacology*, *84*, 561-565.
- Verrico, C. D., Jentsch, J. D., Roth, R. H., & Taylor, J. R. (2004). Repeated intermittent  $\Delta^9$ -tetrahydrocannabinol administration to rats impairs acquisition and performance of a test of visuospatial divided attention. *Neuropsychopharmacology*, 29, 522-529.
- Wenger, T., Croix, D., Tramu, G., & Leonardelli, J. (1992). Effects of  $\Delta^9$ tetrahydrocannabinol on pregnancy, puberty, and the neuroendocrine system. In L. Murphy & A. Bartke (Eds.), *Marijuana/Cannabinoids: Neurobiology and Neurophysiology* (pp. 539-560). Boca Raton: CRC Press.
- Westfall, R. E. (2004). Use of anti-emetic herbs in pregnacy: Women's choices, and the question of safety and efficacy. *Complementary Therapies in Nursing and Midwifery, 10*, 30-36.
- Westlake, T. M., Howlett, A. C., Ali, S. F., Paule, M. G., Scallet, A. C., & Slikker, W. (1991). Chronic exposure to Δ<sup>9</sup>-tetrahydrocannabinol fails to irreversibly alter brain cannabinoid receptor. *Brain Research*, *544*, 145-149.
- Wilson, W., Mathew, R., Turkington, T., Hawk, T., Coleman, R. E., & Provenzale, J. (2000). Brain morphological changes and early marijuana use: A magnetic resonance and positron emission tomography study. *Journal of Addictive Diseases, 19*, 1-22.

#### APPENDIX A: STATISTICS OUTPUTS

| Source                 |                        | Type III Sum<br>of Squares | df       | Mean Square | F      | Sig. |
|------------------------|------------------------|----------------------------|----------|-------------|--------|------|
| day                    | Sphericity<br>Assumed  | 10400.144                  | 24       | 433.339     | 32.177 | .000 |
| Greenhouse-<br>Geisser | 10400.144              | 1.082                      | 9609.978 | 32.177      | .000   |      |
|                        | Huynh-Feldt            | 10400.144                  | 1.232    | 8441.689    | 32.177 | .000 |
|                        | Lower-bound            | 10400.144                  | 1.000    | 10400.144   | 32.177 | .000 |
| day * Group            | Sphericity<br>Assumed  | 731.403                    | 24       | 30.475      | 2.263  | .001 |
|                        | Greenhouse-<br>Geisser | 731.403                    | 1.082    | 675.834     | 2.263  | .161 |
|                        | Huynh-Feldt            | 731.403                    | 1.232    | 593.672     | 2.263  | .156 |
|                        | Lower-bound            | 731.403                    | 1.000    | 731.403     | 2.263  | .163 |
| Error(day)             | Sphericity<br>Assumed  | 3232.152                   | 240      | 13.467      |        |      |
|                        | Greenhouse-<br>Geisser | 3232.152                   | 10.822   | 298.658     |        |      |
|                        | Huynh-Feldt            | 3232.152                   | 12.320   | 262.350     |        |      |
|                        | Lower-bound            | 3232.152                   | 10.000   | 323.215     |        |      |

### Appendix A1 Tests of within-subjects effects in perinatal groups for the spatial discrimination component of the double Y-maze

#### Appendix A2 Tests of between-subjects effects in perinatal groups for the spatial discrimination component of the double-Y maze

| Source    | Type III Sum<br>of Squares | df | Mean Square | F              | Sig. |
|-----------|----------------------------|----|-------------|----------------|------|
| Intercept | 2832066.972                | 1  | 2832066.972 | 153092.58<br>2 | .000 |
| Group     | 39.417                     | 1  | 39.417      | 2.131          | .175 |
| Error     | 184.990                    | 10 | 18.499      |                |      |

|             |                        | Type III Sum |         | Mean      |        |      |
|-------------|------------------------|--------------|---------|-----------|--------|------|
| Source      |                        | of Squares   | df      | Square    | F      | Sig. |
| day         | Sphericity<br>Assumed  | 35772.282    | 24      | 1490.512  | 16.028 | .000 |
|             | Greenhouse-<br>Geisser | 35772.282    | 6.696   | 5342.305  | 16.028 | .000 |
|             | Huynh-Feldt            | 35772.282    | 23.715  | 1508.443  | 16.028 | .000 |
|             | Lower-bound            | 35772.282    | 1.000   | 35772.282 | 16.028 | .003 |
| day * Group | Sphericity<br>Assumed  | 15131.901    | 24      | 630.496   | 6.780  | .000 |
|             | Greenhouse-<br>Geisser | 15131.901    | 6.696   | 2259.828  | 6.780  | .000 |
|             | Huynh-Feldt            | 15131.901    | 23.715  | 638.081   | 6.780  | .000 |
|             | Lower-bound            | 15131.901    | 1.000   | 15131.901 | 6.780  | .026 |
| Error(day)  | Sphericity<br>Assumed  | 22318.344    | 240     | 92.993    |        |      |
|             | Greenhouse-<br>Geisser | 22318.344    | 66.960  | 333.307   |        |      |
|             | Huynh-Feldt            | 22318.344    | 237.147 | 94.112    |        |      |
|             | Lower-bound            | 22318.344    | 10.000  | 2231.834  |        |      |

Appendix A3 Tests of within-subjects effects in perinatal groups for the delayed alternation component of the double Y-maze

#### Appendix A4 Tests of between-subjects effects in perinatal groups for the delayed alternation component of the double-Y maze

| Source    | Type III Sum<br>of Squares | df | Mean<br>Square | F        | Sig. |
|-----------|----------------------------|----|----------------|----------|------|
| Intercept | 1169448.14<br>5            | 1  | 1169448.145    | 3135.931 | .000 |
| Group     | 3608.108                   | 1  | 3608.108       | 9.675    | .011 |
| Error     | 3729.189                   | 10 | 372.919        |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean<br>Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|----------------|-------|------|
| delay         | Sphericity<br>Assumed  | 4079.034                   | 2      | 2039.517       | 1.402 | .257 |
|               | Greenhouse-<br>Geisser | 4079.034                   | 1.798  | 2268.842       | 1.402 | .257 |
|               | Huynh-Feldt            | 4079.034                   | 2.000  | 2039.517       | 1.402 | .257 |
|               | Lower-bound            | 4079.034                   | 1.000  | 4079.034       | 1.402 | .249 |
| delay * Group | Sphericity<br>Assumed  | 344.279                    | 2      | 172.139        | .118  | .889 |
|               | Greenhouse-<br>Geisser | 344.279                    | 1.798  | 191.495        | .118  | .869 |
|               | Huynh-Feldt            | 344.279                    | 2.000  | 172.139        | .118  | .889 |
|               | Lower-bound            | 344.279                    | 1.000  | 344.279        | .118  | .734 |
| Error(delay)  | Sphericity<br>Assumed  | 64010.068                  | 44     | 1454.774       |       |      |
|               | Greenhouse-<br>Geisser | 64010.068                  | 39.553 | 1618.350       |       |      |
|               | Huynh-Feldt            | 64010.068                  | 44.000 | 1454.774       |       |      |
|               | Lower-bound            | 64010.068                  | 22.000 | 2909.549       |       |      |

#### Appendix A5 Tests of within-subjects effects in perinatal groups for T1 of the object recognition task

# Appendix A6 Tests of between-subjects effects in perinatal groups for T1 of the object recognition task

| Source    | Type III Sum<br>of Squares | df | Mean<br>Square | F       | Sig. |
|-----------|----------------------------|----|----------------|---------|------|
| Intercept | 452184.650                 | 1  | 452184.650     | 255.866 | .000 |
| Group     | 734.083                    | 1  | 734.083        | .415    | .526 |
| Error     | 38879.936                  | 22 | 1767.270       | _       |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 7720.005                   | 2      | 3860.003    | 5.220 | .009 |
|               | Greenhouse-<br>Geisser | 7720.005                   | 1.541  | 5008.132    | 5.220 | .016 |
|               | Huynh-Feidt            | 7720.005                   | 1.711  | 4513.099    | 5.220 | .013 |
|               | Lower-bound            | 7720.005                   | 1.000  | 7720.005    | 5.220 | .032 |
| delay * Group | Sphericity<br>Assumed  | 1667.847                   | 2      | 833.923     | 1.128 | .333 |
|               | Greenhouse-<br>Geisser | 1667.847                   | 1.541  | 1081.968    | 1.128 | .322 |
|               | Huynh-Feldt            | 1667.847                   | 1.711  | 975.020     | 1.128 | .327 |
|               | Lower-bound            | 1667.847                   | 1.000  | 1667.847    | 1.128 | .300 |
| Error(delay)  | Sphericity<br>Assumed  | 32536.188                  | 44     | 739.459     |       |      |
|               | Greenhouse-<br>Geisser | 32536.188                  | 33.913 | 959.405     |       |      |
|               | Huynh-Feldt            | 32536.188                  | 37.633 | 864.572     |       |      |
|               | Lower-bound            | 32536.188                  | 22.000 | 1478.918    |       |      |

#### Appendix A7 Tests of within-subjects effects in adolescent groups for T1 of the object recognition task

## Appendix A8 Tests of between-subjects effects in adolescent groups for T1 of the object recognition task

| Source    | Type III Sum<br>of Squares | df | Mean Square | F       | Sig. |
|-----------|----------------------------|----|-------------|---------|------|
| Intercept | 444687.369                 | 1  | 444687.369  | 185.678 | .000 |
| Group     | 1124.961                   | 1  | 1124.961    | .470    | .500 |
| Error     | 52688.711                  | 22 | 2394.941    |         |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F    | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|------|------|
| delay         | Sphericity<br>Assumed  | 520.330                    | 2      | 260.165     | .382 | .684 |
|               | Greenhouse-<br>Geisser | 520.330                    | 1.796  | 289.767     | .382 | .662 |
|               | Huynh-Feldt            | 520.330                    | 2.000  | 260.165     | .382 | .684 |
|               | Lower-bound            | 520.330                    | 1.000  | 520.330     | .382 | .543 |
| delay * Group | Sphericity<br>Assumed  | 882.003                    | 2      | 441.002     | .648 | .528 |
|               | Greenhouse-<br>Geisser | 882.003                    | 1.796  | 491.179     | .648 | .512 |
|               | Huynh-Feldt            | 882.003                    | 2.000  | 441.002     | .648 | .528 |
|               | Lower-bound            | 882.003                    | 1.000  | 882.003     | .648 | .429 |
| Error(delay)  | Sphericity<br>Assumed  | 29929.680                  | 44     | 680.220     |      |      |
|               | Greenhouse-<br>Geisser | 29929.680                  | 39.505 | 757.615     |      |      |
|               | Huynh-Feldt            | 29929.680                  | 44.000 | 680.220     |      |      |
|               | Lower-bound            | 29929.680                  | 22.000 | 1360.440    |      |      |

# Appendix A9 Tests of within-subjects effects in adult groups for T1 of the object recognition task

## Appendix A10 Tests of between-subjects effects in adult groups for T1 of the object recognition task

| Source    | Type III Sum<br>of Squares | df | Mean Square | F       | Sig. |
|-----------|----------------------------|----|-------------|---------|------|
| Intercept | 182952.005                 | 1  | 182952.005  | 159.825 | .000 |
| Group     | 36.980                     | 1  | 36.980      | .032    | .859 |
| Error     | 25183.462                  | 22 | 1144.703    |         |      |

# Appendix A11 Tests of within-subjects effects in perinatal groups for T2 of the object recognition task

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 537.224                    | 2      | 268.612     | 1.594 | .215 |
|               | Greenhouse-<br>Geisser | 537.224                    | 1.840  | 291.906     | 1.594 | .217 |
|               | Huynh-Feldt            | 537.224                    | 2.000  | 268.612     | 1.594 | .215 |
|               | Lower-bound            | 537.224                    | 1.000  | 537.224     | 1.594 | .220 |
| delay * Group | Sphericity<br>Assumed  | 94.376                     | 2      | 47.188      | .280  | .757 |
|               | Greenhouse-<br>Geisser | 94.376                     | 1.840  | 51.280      | .280  | .739 |
|               | Huynh-Feldt            | 94.376                     | 2.000  | 47.188      | .280  | .757 |
|               | Lower-bound            | 94.376                     | 1.000  | 94.376      | .280  | .602 |
| Error(delay)  | Sphericity<br>Assumed  | 7413.526                   | 44     | 168.489     |       |      |
|               | Greenhouse-<br>Geisser | 7413.526                   | 40.489 | 183.100     |       |      |
|               | Huynh-Feldt            | 7413.526                   | 44.000 | 168.489     |       |      |
|               | Lower-bound            | 7413.526                   | 22.000 | 336.978     |       |      |

### Appendix A12 Tests of between-subjects effects in perinatal groups for T2 of the object recognition task

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 251535.599                 | 1  | 251535.599  | 1259.423 | .000 |
| Group     | 899.766                    | 1  | 899.766     | 4.505    | .045 |
| Error     | 4393.904                   | 22 | 199.723     |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F    | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|------|------|
| delay         | Sphericity<br>Assumed  | 3.378                      | 2      | 1.689       | .008 | .992 |
|               | Greenhouse-<br>Geisser | 3.378                      | 1.983  | 1.703       | .008 | .992 |
|               | Huynh-Feldt            | 3.378                      | 2.000  | 1.689       | .008 | .992 |
|               | Lower-bound            | 3.378                      | 1.000  | 3.378       | .008 | .930 |
| delay * Group | Sphericity<br>Assumed  | 96.136                     | 2      | 48.068      | .224 | .800 |
|               | Greenhouse-<br>Geisser | 96.136                     | 1.983  | 48.478      | .224 | .798 |
|               | Huynh-Feldt            | 96.136                     | 2.000  | 48.068      | .224 | .800 |
|               | Lower-bound            | 96.136                     | 1.000  | 96.136      | .224 | .641 |
| Error(delay)  | Sphericity<br>Assumed  | 9440.729                   | 44     | 214.562     |      |      |
|               | Greenhouse-<br>Geisser | 9440.729                   | 43.627 | 216.395     |      |      |
|               | Huynh-Feldt            | 9440.729                   | 44.000 | 214.562     |      |      |
|               | Lower-bound            | 9440.729                   | 22.000 | 429.124     |      |      |

### Appendix A13 Tests of within-subjects effects in adolescent groups for T2 of the object recognition task

#### Appendix A14 Tests of between-subjects effects in adolescent groups for T2 of the object recognition task

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 268606.547                 | 1  | 268606.547  | 1172.789 | .000 |
| Group     | 2127.936                   | 1  | 2127.936    | 9.291    | .006 |
| Error     | 5038.708                   | 22 | 229.032     |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 626.549                    | 2      | 313.275     | 1.277 | .289 |
|               | Greenhouse-<br>Geisser | 626.549                    | 1.871  | 334.806     | 1.277 | .288 |
|               | Huynh-Feldt            | 626.549                    | 2.000  | 313.275     | 1.277 | .289 |
|               | Lower-bound            | 626.549                    | 1.000  | 626.549     | 1.277 | .271 |
| delay * Group | Sphericity<br>Assumed  | 209.005                    | 2      | 104.502     | .426  | .656 |
|               | Greenhouse-<br>Geisser | 209.005                    | 1.871  | 111.685     | .426  | .643 |
|               | Huynh-Feldt            | 209.005                    | 2.000  | 104.502     | .426  | .656 |
|               | Lower-bound            | 209.005                    | 1.000  | 209.005     | .426  | .521 |
| Error(delay)  | Sphericity<br>Assumed  | 10793.371                  | 44     | 245.304     |       |      |
|               | Greenhouse-<br>Geisser | 10793.371                  | 41.170 | 262.164     |       |      |
|               | Huynh-Feldt            | 10793.371                  | 44.000 | 245.304     |       |      |
|               | Lower-bound            | 10793.371                  | 22.000 | 490.608     |       |      |

### Appendix A15 Tests of within-subjects effects in adult groups for T2 of the object recognition task

### Appendix A16 Tests of between-subjects effects in adult groups for T2 of the object recognition task

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 261727.729                 | 1  | 261727.729  | 1397.128 | .000 |
| Group     | 874.051                    | 1  | 874.051     | 4.666    | .042 |
| Error     | 4121.318                   | 22 | 187.333     |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 3194.622                   | 2      | 1597.311    | 1.016 | .371 |
|               | Greenhouse-<br>Geisser | 3194.622                   | 1.692  | 1887.914    | 1.016 | .361 |
|               | Huynh-Feldt            | 3194.622                   | 1.901  | 1680.225    | 1.016 | .368 |
|               | Lower-bound            | 3194.622                   | 1.000  | 3194.622    | 1.016 | .325 |
| delay * Group | Sphericity<br>Assumed  | 302.255                    | 2      | 151.127     | .096  | .909 |
|               | Greenhouse-<br>Geisser | 302.255                    | 1.692  | 178.622     | .096  | .879 |
|               | Huynh-Feldt            | 302.255                    | 1.901  | 158.972     | .096  | .900 |
|               | Lower-bound            | 302.255                    | 1.000  | 302.255     | .096  | .759 |
| Error(delay)  | Sphericity<br>Assumed  | 69205.287                  | 44     | 1572.847    |       |      |
|               | Greenhouse-<br>Geisser | 69205.287                  | 37.227 | 1859.000    |       |      |
|               | Huynh-Feldt            | 69205.287                  | 41.829 | 1654.491    |       |      |
|               | Lower-bound            | 69205.287                  | 22.000 | 3145.695    |       |      |

# Appendix A17 Tests of within-subjects effects in perinatal groups for T1 locomotor activity

# Appendix A18 Tests of between-subjects effects in perinatal groups for T1 locomotor activity

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 7633423.383                | 1  | 7633423.383 | 8911.873 | .000 |
| Group     | 2180.549                   | 1  | 2180.549    | 2.546    | .125 |
| Error     | 18843.998                  | 22 | 856.545     |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 6547.105                   | 2      | 3273.553    | 1.512 | .232 |
|               | Greenhouse-<br>Geisser | 6547.105                   | 1.806  | 3624.911    | 1.512 | .233 |
|               | Huynh-Feldt            | 6547.105                   | 2.000  | 3273.553    | 1.512 | .232 |
|               | Lower-bound            | 6547.105                   | 1.000  | 6547.105    | 1.512 | .232 |
| delay * Group | Sphericity<br>Assumed  | 1835.445                   | 2      | 917.722     | .424  | .657 |
|               | Greenhouse-<br>Geisser | 1835.445                   | 1.806  | 1016.224    | .424  | .637 |
|               | Huynh-Feldt            | 1835.445                   | 2.000  | 917.722     | .424  | .657 |
|               | Lower-bound            | 1835.445                   | 1.000  | 1835.445    | .424  | .522 |
| Error(delay)  | Sphericity<br>Assumed  | 95241.833                  | 44     | 2164.587    |       |      |
|               | Greenhouse-<br>Geisser | 95241.833                  | 39.735 | 2396.918    |       |      |
|               | Huynh-Feldt            | 95241.833                  | 44.000 | 2164.587    |       |      |
|               | Lower-bound            | 95241.833                  | 22.000 | 4329.174    |       |      |

# Appendix A19 Tests of within-subjects effects in adolescent groups for T1 locomotor activity

### Appendix A20 Tests of between-subjects effects in adolescent groups for T1 locomotor activity

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 7966895.052                | 1  | 7966895.052 | 5407.436 | .000 |
| Group     | 3031.862                   | 1  | 3031.862    | 2.058    | .165 |
| Error     | 32413.088                  | 22 | 1473.322    |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 3231.077                   | 2      | 1615.539    | 1.408 | .255 |
|               | Greenhouse-<br>Geisser | 3231.077                   | 1.626  | 1987.181    | 1.408 | .256 |
|               | Huynh-Feldt            | 3231.077                   | 1.817  | 1778.084    | 1.408 | .256 |
|               | Lower-bound            | 3231.077                   | 1.000  | 3231.077    | 1.408 | .248 |
| delay * Group | Sphericity<br>Assumed  | 1462.084                   | 2      | 731.042     | .637  | .534 |
|               | Greenhouse-<br>Geisser | 1462.084                   | 1.626  | 899.213     | .637  | .503 |
|               | Huynh-Feldt            | 1462.084                   | 1.817  | 804.595     | .637  | .520 |
|               | Lower-bound            | 1462.084                   | 1.000  | 1462.084    | .637  | .433 |
| Error(delay)  | Sphericity<br>Assumed  | 50491.804                  | 44     | 1147.541    |       |      |
|               | Greenhouse-<br>Geisser | 50491.804                  | 35.771 | 1411.524    |       |      |
|               | Huynh-Feldt            | 50491.804                  | 39.978 | 1262.999    |       |      |
|               | Lower-bound            | 50491.804                  | 22.000 | 2295.082    | -     |      |

Appendix A21 Tests of within-subjects effects in adult groups for T1 locomotor activity

# Appendix A22 Tests of between-subjects effects in adult groups for T1 locomotor activity

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 6192693.662                | 1  | 6192693.662 | 1643.635 | .000 |
| Group     | 59.881                     | 1  | 59.881      | .016     | .901 |
| Error     | 82889.023                  | 22 | 3767.683    |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 4413.816                   | 2      | 2206.908    | 1.706 | .193 |
|               | Greenhouse-<br>Geisser | 4413.816                   | 1.827  | 2415.915    | 1.706 | .196 |
|               | Huynh-Feldt            | 4413.816                   | 2.000  | 2206.908    | 1.706 | .193 |
|               | Lower-bound            | 4413.816                   | 1.000  | 4413.816    | 1.706 | .205 |
| delay * Group | Sphericity<br>Assumed  | 442.204                    | 2      | 221.102     | .171  | .843 |
|               | Greenhouse-<br>Geisser | 442.204                    | 1.827  | 242.042     | .171  | .825 |
|               | Huynh-Feldt            | 442.204                    | 2.000  | 221.102     | .171  | .843 |
|               | Lower-bound            | 442.204                    | 1.000  | 442.204     | .171  | .683 |
| Error(delay)  | Sphericity<br>Assumed  | 56916.500                  | 44     | 1293.557    |       |      |
|               | Greenhouse-<br>Geisser | 56916.500                  | 40.193 | 1416.064    |       |      |
|               | Huynh-Feldt            | 56916.500                  | 44.000 | 1293.557    |       |      |
|               | Lower-bound            | 56916.500                  | 22.000 | 2587.114    |       |      |

### Appendix A23 Tests of within-subjects effects in perinatal groups for T2 locomotor activity

### Appendix A24 Tests of between-subjects effects in perinatal groups for T2 locomotor activity

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 7450794.047                | 1  | 7450794.047 | 6143.546 | .000 |
| Group     | 299.300                    | 1  | 299.300     | .247     | .624 |
| Error     | 26681.248                  | 22 | 1212.784    |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F     | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|-------|------|
| delay         | Sphericity<br>Assumed  | 5483.944                   | 2      | 2741.972    | 2.312 | .111 |
|               | Greenhouse-<br>Geisser | 5483.944                   | 1.906  | 2876.850    | 2.312 | .114 |
|               | Huynh-Feldt            | 5483.944                   | 2.000  | 2741.972    | 2.312 | .111 |
|               | Lower-bound            | 5483.944                   | 1.000  | 5483.944    | 2.312 | .143 |
| delay * Group | Sphericity<br>Assumed  | 282.356                    | 2      | 141.178     | .119  | .888 |
|               | Greenhouse-<br>Geisser | 282.356                    | 1.906  | 148.122     | .119  | .879 |
|               | Huynh-Feldt            | 282.356                    | 2.000  | 141.178     | .119  | .888 |
|               | Lower-bound            | 282.356                    | 1.000  | 282.356     | .119  | .733 |
| Error(delay)  | Sphericity<br>Assumed  | 52192.603                  | 44     | 1186.196    |       |      |
|               | Greenhouse-<br>Geisser | 52192.603                  | 41.937 | 1244.545    |       |      |
|               | Huynh-Feldt            | 52192.603                  | 44.000 | 1186.196    |       |      |
|               | Lower-bound            | 52192.603                  | 22.000 | 2372.391    |       |      |

### Appendix A25 Tests of within-subjects effects in adolescent groups for T2 locomotor activity

### Appendix A26 Tests of between-subjects effects in adolescent groups for T2 locomotor activity

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 7420849.295                | 1  | 7420849.295 | 4013.906 | .000 |
| Group     | 5396.052                   | 1  | 5396.052    | 2.919    | .102 |
| Error     | 40673.268                  | 22 | 1848.785    |          |      |

| Source        |                        | Type III Sum<br>of Squares | df     | Mean Square | F      | Sig. |
|---------------|------------------------|----------------------------|--------|-------------|--------|------|
| delay         | Sphericity<br>Assumed  | 23245.165                  | 2      | 11622.583   | 10.412 | .000 |
|               | Greenhouse-<br>Geisser | 23245.165                  | 1.759  | 13218.218   | 10.412 | .000 |
|               | Huynh-Feldt            | 23245.165                  | 1.986  | 11702.707   | 10.412 | .000 |
|               | Lower-bound            | 23245.165                  | 1.000  | 23245.165   | 10.412 | .004 |
| delay * Group | Sphericity<br>Assumed  | 3043.256                   | 2      | 1521.628    | 1.363  | .266 |
|               | Greenhouse-<br>Geisser | 3043.256                   | 1.759  | 1730.528    | 1.363  | .266 |
|               | Huynh-Feldt            | 3043.256                   | 1.986  | 1532.118    | 1.363  | .266 |
|               | Lower-bound            | 3043.256                   | 1.000  | 3043.256    | 1.363  | .255 |
| Error(delay)  | Sphericity<br>Assumed  | 49115.929                  | 44     | 1116.271    |        |      |
|               | Greenhouse-<br>Geisser | 49115.929                  | 38.689 | 1269.521    |        |      |
|               | Huynh-Feldt            | 49115.929                  | 43.699 | 1123.966    |        |      |
|               | Lower-bound            | 49115.929                  | 22.000 | 2232.542    |        |      |

# Appendix A27 Tests of within-subjects effects in adult groups for T2 locomotor activity

### Appendix A28 Tests of between-subjects effects in adult groups for T2 locomotor activity

| Source    | Type III Sum<br>of Squares | df | Mean Square | F        | Sig. |
|-----------|----------------------------|----|-------------|----------|------|
| Intercept | 5588301.272                | 1  | 5588301.272 | 1199.378 | .000 |
| Group     | 1343.884                   | 1  | 1343.884    | .288     | .597 |
| Error     | 102505.282                 | 22 | 4659.331    |          |      |

Appendix A29 Independent samples *t*-test in perinatal groups for total non-aggressive social interaction behaviours (sniffing, following, grooming, mounting, and crawling under/over the conspecific)

|        |                                      | Tes<br>Equa | ene's<br>t for<br>llity of<br>ances |       |        | t-te           | st for Equalit     | y of Means               |         |                               |
|--------|--------------------------------------|-------------|-------------------------------------|-------|--------|----------------|--------------------|--------------------------|---------|-------------------------------|
|        |                                      |             |                                     |       |        | Sig.           |                    |                          | Interva | nfidence<br>I of the<br>rence |
| Source |                                      | F           | Sig.                                | t     | df     | (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower   | Upper                         |
| Total  | Equal<br>variances<br>assumed        | .032        | .860                                | 3.342 | 22     | .003           | 37.0000            | 11.0696                  | 14.0431 | 59.9569                       |
|        | Equal<br>variances<br>not<br>assumed |             |                                     | 3.342 | 22.000 | .003           | 37.0000            | 11.0696                  | 14.0430 | 59.9570                       |

Appendix A30 Independent samples *t*-test in adolescent groups for total non-aggressive social interaction behaviours (sniffing, following, grooming, mounting, and crawling under/over the conspecific)

|        |                                      | Lever<br>Test<br>Equali<br>Variar | for<br>ty of |                                                 |        | t-te           | st for Equalit     | y of Means               |         |         |
|--------|--------------------------------------|-----------------------------------|--------------|-------------------------------------------------|--------|----------------|--------------------|--------------------------|---------|---------|
| Sig.   |                                      |                                   |              | 95% Confidence<br>Interval of the<br>Difference |        |                |                    |                          |         |         |
| Source | :                                    | F                                 | Sig.         | t                                               | df     | (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower   | Upper   |
| Total  | Equal<br>variances<br>assumed        | 10.502                            | .004         | 3.294                                           | 22     | .003           | 30.7083            | 9.3218                   | 11.3762 | 50.0405 |
|        | Equal<br>variances<br>not<br>assumed |                                   |              | 3.294                                           | 14.648 | .005           | 30.7083            | 9.3218                   | 10.7978 | 50.6188 |

Appendix A31 Independent samples *t*-test in adult groups for total nonaggressive social interaction behaviours (sniffing, following, grooming, mounting, and crawling under/over the conspecific)

|        |                                      | Leve<br>Test<br>Equal<br>Varia | for<br>lity of |                                                   |    | t-te | est for Equalit | y of Means |         |         |  |  |
|--------|--------------------------------------|--------------------------------|----------------|---------------------------------------------------|----|------|-----------------|------------|---------|---------|--|--|
|        |                                      |                                |                | 95% Confidence<br>Interval of the<br>Difference   |    |      |                 |            |         |         |  |  |
| Source |                                      | F                              | Sig.           | t df tailed) Difference Difference Lower Upper    |    |      |                 |            |         |         |  |  |
| Total  | Equal<br>variances<br>assumed        | 9.253                          | .006           | 3.612                                             | 22 | .002 | 51.2167         | 14.1802    | 21.8087 | 80.6247 |  |  |
|        | Equal<br>variances<br>not<br>assumed |                                |                | 3.612 15.845 .002 51.2167 14.1802 21.1320 81.3013 |    |      |                 |            |         |         |  |  |

|                        |                                      | Lever<br>Test<br>Equali | for  |       |        | <u> </u>       |                    |                          |         |                                  |
|------------------------|--------------------------------------|-------------------------|------|-------|--------|----------------|--------------------|--------------------------|---------|----------------------------------|
|                        |                                      | Varian                  |      |       |        | t-te           | st for Equality    | of Means                 |         |                                  |
|                        |                                      |                         |      |       |        | Sig.           |                    |                          | Interv  | onfidence<br>al of the<br>erence |
| Source                 |                                      | F                       | Sig. | t_    | df     | (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower   | Upper                            |
| Sniffing               | Equal variances assumed              | .277                    | .604 | 2.447 | 22     | .023           | 26.3500            | 10.7671                  | 4.0203  | 48.6797                          |
|                        | Equal<br>variances<br>not<br>assumed |                         |      | 2.447 | 21.961 | .023           | 26.3500            | 10.7671                  | 4.0180  | 48.6820                          |
| Following              | Equal<br>variances<br>assumed        | 7.436                   | .012 | 2.718 | 22     | .013           | 4.4500             | 1.6372                   | 1.0546  | 7.8454                           |
|                        | Equal<br>variances<br>not<br>assumed |                         |      | 2.718 | 12.119 | .019           | 4.4500             | 1.6372                   | .8867   | 8.0133                           |
| Grooming               | Equal<br>variances<br>assumed        | 4.840                   | .039 | 1.000 | 22     | .328           | .042               | .042                     | 045     | .128                             |
|                        | Equal<br>variances<br>not<br>assumed |                         |      | 1.000 | 11.000 | .339           | .042               | .042                     | 050     | .133                             |
| Mounting               | Equal<br>variances<br>assumed        | .112                    | .741 | .035  | 22     | .972           | .025               | .710                     | -1.448  | 1.498                            |
|                        | Equal<br>variances<br>not<br>assumed |                         |      | .035  | 17.259 | .972           | .025               | .710                     | -1.472  | 1.522                            |
| Jumping on             | Equal<br>variances<br>assumed        | .202                    | .657 | 1.300 | 22     | .207           | 2.0833             | 1.6031                   | -1.2414 | 5.4081                           |
|                        | Equal<br>variances<br>not<br>assumed |                         |      | 1.300 | 21.489 | .208           | 2.0833             | 1.6031                   | -1.2460 | 5.4127                           |
| Wrestling/boxing       | Equal<br>variances<br>assumed        | .222                    | .642 | 1.660 | 22     | .111           | 18.3000            | 11.0264                  | -4.5673 | 41.1673                          |
|                        | Equal<br>variances<br>not<br>assumed |                         |      | 1.660 | 21.827 | .111           | 18.3000            | 11.0264                  | -4.5778 | 41.1778                          |
| Crawling<br>under/over | Equal<br>variances<br>assumed        | 10.075                  | .004 | 2.656 | 22     | .014           | 6.133              | 2.310                    | 1.344   | 10.923                           |
|                        | Equal<br>variances<br>not            |                         |      | 2.656 | 13.816 | .019           | 6.133              | 2.310                    | 1.174   | 11.093                           |
|                        | assumed                              |                         |      |       |        |                |                    |                          |         |                                  |

### Appendix A32 Independent samples *t*-tests in perinatal groups for nonaggressive (Chapter 5) and aggressive (Chapter 6) social behaviours

Appendix A33 Independent samples *t*-tests in adolescent groups for non-aggressive (Chapter 5) and aggressive (Chapter 6) social behaviours

| · · · · · ·            |                                      | Levene's<br>for Equa<br>Variar | ality of |          |        |                        | -test for Equali   | ity of Means             |         |                                |
|------------------------|--------------------------------------|--------------------------------|----------|----------|--------|------------------------|--------------------|--------------------------|---------|--------------------------------|
|                        |                                      |                                |          | <u>.</u> |        |                        |                    |                          | Interva | nfidence<br>Il of the<br>rence |
| Source                 |                                      | F                              | Sig.     | t        | df     | Sig.<br>(2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower   | Upper                          |
| Sniffing               | Equal<br>variances<br>assumed        | 9.271                          | .006     | 3.518    | 22     | .002                   | 24.6083            | 6.9952                   | 10.1011 | 39.1156                        |
|                        | Equal<br>variances<br>not<br>assumed |                                |          | 3.518    | 15.599 | .003                   | 24.6083            | 6.9952                   | 9.7481  | 39.4686                        |
| Following              | Equal<br>variances<br>assumed        | 18.169                         | .000     | 2.318    | 22     | .030                   | 3.6417             | 1.5712                   | .3831   | 6.9002                         |
|                        | Equal<br>variances<br>not<br>assumed |                                |          | 2.318    | 12.016 | .039                   | 3.6417             | 1.5712                   | .2187   | 7.0646                         |
| Grooming               | Equal<br>variances<br>assumed        | 1.720                          | .203     | .553     | 22     | .586                   | .3417              | .6183                    | 9406    | 1.6239                         |
|                        | Equal<br>variances<br>not<br>assumed |                                |          | .553     | 13.006 | .590                   | .3417              | .6183                    | 9940    | 1.6773                         |
| Kicking                | Equal<br>variances<br>assumed        | 2.283                          | .145     | .687     | 22     | .499                   | .042               | .061                     | 084     | .167                           |
|                        | Equal<br>variances<br>not<br>assumed |                                |          | .687     | 12.784 | .504                   | .042               | .061                     | 090     | .173                           |
| Mounting               | Equal<br>variances<br>assumed        | 2.932                          | .101     | 024      | 22     | .981                   | 008                | .344                     | 721     | .705                           |
| •                      | Equal<br>variances<br>not<br>assumed |                                |          | 024      | 16.085 | .981                   | 008                | .344                     | 737     | .720                           |
| Jumping on             | Equal<br>variances<br>assumed        | 13.494                         | .001     | 2.680    | 22     | .014                   | 2.433              | .908                     | .550    | 4.316                          |
|                        | Equal<br>variances<br>not<br>assumed |                                |          | 2.680    | 13.215 | .019                   | 2.433              | .908                     | .475    | 4.392                          |
| Wrestling/boxing       | Equal<br>variances<br>assumed        | 7.410                          | .012     | .017     | 22     | .987                   | .142               | 8.536                    | -17.561 | 17.844                         |
| •                      | Equal<br>variances<br>not<br>assumed |                                |          | .017     | 17.164 | .987                   | .142               | 8.536                    | -17.855 | 18.138                         |
| Crawling<br>under/over | Equal<br>variances<br>assumed        | 3.530                          | .074     | 1.499    | 22     | .148                   | 2.125              | 1.417                    | 815     | 5.065                          |
|                        | Equal<br>variances<br>not<br>assumed |                                |          | 1.499    | 18.261 | .151                   | 2.125              | 1.417                    | 850     | 5.100                          |

|                        |                                      | Lever<br>Test<br>Equali<br>Varian | for<br>ty of |       |        | t-te           | est for Equalit    | y of Means               | <u> </u> |                               |
|------------------------|--------------------------------------|-----------------------------------|--------------|-------|--------|----------------|--------------------|--------------------------|----------|-------------------------------|
|                        |                                      |                                   |              |       |        | Sig.           |                    |                          | Interva  | nfidence<br>I of the<br>rence |
|                        |                                      | F                                 | Sig.         | t     | df     | (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower    | Upper                         |
| Sniffing               | Equal<br>variances<br>assumed        | 5.534                             | .028         | 3.909 | 22     | .001           | 38.1000            | 9.7457                   | 17.8886  | 58.3114                       |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | 3.909 | 15.892 | .001           | 38.1000            | 9.7457                   | 17.4286  | 58.7714                       |
| Following              | Equal<br>variances<br>assumed        | 1.596                             | .220         | 1.805 | 22     | .085           | 5.8250             | 3.2270                   | 8673     | 12.5173                       |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | 1.805 | 19.777 | .086           | 5.8250             | 3.2270                   | 9112     | 12.5612                       |
| Grooming               | Equal<br>variances<br>assumed        | 4.840                             | .039         | 1.000 | 22     | .328           | .167               | .167                     | 179      | .512                          |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | 1.000 | 11.000 | .339           | .167               | .167                     | 200      | .533                          |
| Mounting               | Equal<br>variances<br>assumed        | .339                              | .567         | .337  | 22     | .740           | .208               | .619                     | -1.075   | 1.492                         |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | .337  | 17.526 | .740           | .208               | .619                     | -1.094   | 1.511                         |
| Jumping on             | Equal variances assumed              | 16.835                            | .000         | 2.823 | 22     | .010           | 2.2083             | .7824                    | .5858    | 3.8309                        |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | 2.823 | 11.895 | .016           | 2.2083             | .7824                    | .5020    | 3.9147                        |
| Wrestling/boxing       | Equal<br>variances<br>assumed        | 9.468                             | .006         | 1.497 | 22     | .149           | 4.6667             | 3.1167                   | -1.7969  | 11.1303                       |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | 1.497 | 11.018 | .162           | 4.6667             | 3.1167                   | -2.1918  | 11.5251                       |
| Crawling<br>under/over | Equal<br>variances<br>assumed        | 5.648                             | .027         | 1.905 | 22     | .070           | 6.9167             | 3.6313                   | 6141     | 14.4474                       |
|                        | Equal<br>variances<br>not<br>assumed |                                   |              | 1.905 | 15.174 | .076           | 6.9167             | 3.6313                   | 8155     | 14.6488                       |

Appendix A34 Independent samples *t*-tests in adult groups for nonaggressive (Chapter 5) and aggressive (Chapter 6) social behaviours

#### Appendix A35 Independent samples *t*-test in perinatal groups for emergence latency (emergence test)

|                   |                                | Levene's<br>Equal<br>Varia | ity of |        |                           |                     | t-test for Equality o | f Means                  |          |        |
|-------------------|--------------------------------|----------------------------|--------|--------|---------------------------|---------------------|-----------------------|--------------------------|----------|--------|
|                   |                                |                            |        |        | 95% Confiden<br>the Diffe |                     |                       |                          |          |        |
|                   |                                | ц                          | Sig.   | t      | df                        | Sig. (2-<br>tailed) | Mean Difference       | Std. Error<br>Difference | Lower    | Upper  |
| Emergence latency | Equal variances<br>assumed     | 6.705                      | .017   | -1.607 | 22                        | .122                | -19.0250              | 11.8406                  | -43.5810 | 5.5310 |
|                   | Equal variances<br>not assumed |                            |        | -1.607 | 18.071                    | .125                | -19.0250              | 11.8406                  | -43.8943 | 5.8443 |

#### Appendix A36 Independent samples *t*-test in adolescent groups for emergence latency (emergence test)

|                   |                                                              | Levene's<br>Equality of |      |              | •            |                     | t-test for Equality c | of Means                 |                   |                            |
|-------------------|--------------------------------------------------------------|-------------------------|------|--------------|--------------|---------------------|-----------------------|--------------------------|-------------------|----------------------------|
|                   |                                                              |                         |      |              | :<br>-<br>-  |                     |                       |                          |                   | nce Interval of<br>ference |
|                   |                                                              | F                       | Sig. | t            | df           | Sig. (2-<br>tailed) | Mean Difference       | Std. Error<br>Difference | Lower             | Upper                      |
| Emergence latency | Equal variances<br>assumed<br>Equal variances<br>not assumed | 1.343                   | .259 | .604<br>.604 | 22<br>16.395 | .552<br>.554        | 4.092<br>4.092        | 6.779<br>6.779           | -9.968<br>-10.252 | 18.151<br>18.435           |

| Appendix A | 37 Independer | nt samples <i>t</i> | -test in adult of | aroups for | emergence | latency | (emergence test) |
|------------|---------------|---------------------|-------------------|------------|-----------|---------|------------------|
|            |               |                     |                   |            |           |         | (                |

|                      |                                |      | t for Equality of<br>ances | t-test for Equality of Means |        |                     |                    |                          |                                |        |  |  |
|----------------------|--------------------------------|------|----------------------------|------------------------------|--------|---------------------|--------------------|--------------------------|--------------------------------|--------|--|--|
|                      |                                |      |                            |                              |        |                     |                    |                          | 95% Con<br>Interval<br>Differe | of the |  |  |
|                      |                                | F    | Sig.                       | t                            | df     | Sig. (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                          | Upper  |  |  |
| Emergence<br>latency | Equal variances<br>assumed     | .000 | .985                       | 670                          | 22     | .510                | -1.6583            | 2.4742                   | -6.7894                        | 3.4727 |  |  |
|                      | Equal variances not<br>assumed |      |                            | 670                          | 21.994 | .510                | -1.6583            | 2.4742                   | -6.7895                        | 3.4728 |  |  |

|                        | <u></u>                        |      | Test for<br>Variances |        |        |                     | t-test for Equ     | uality of Means          |                          |         |
|------------------------|--------------------------------|------|-----------------------|--------|--------|---------------------|--------------------|--------------------------|--------------------------|---------|
|                        |                                |      |                       |        |        |                     |                    |                          | 95% Confider<br>the Diff |         |
|                        |                                | F    | Sig.                  | t      | df     | Sig. (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                    | Upper   |
| Emergence<br>frequency | Equal variances<br>assumed     | .123 | .729                  | 098    | 22     | .923                | 083                | .852                     | -1.851                   | 1.685   |
|                        | Equal variances<br>not assumed |      |                       | 098    | 21.990 | .923                | 083                | .852                     | -1.851                   | 1.685   |
| Open field             | Equal variances<br>assumed     | .061 | .807                  | .533   | 22     | .599                | 6.1917             | 11.6181                  | -17.9028                 | 30.2861 |
|                        | Equal variances<br>not assumed |      |                       | .533   | 21.373 | .600                | 6.1917             | 11.6181                  | -17.9438                 | 30.3272 |
| Risk<br>assessment     | Equal variances<br>assumed     | .369 | .550                  | -1.102 | 22     | .282                | -2.9667            | 2.6915                   | -8.5484                  | 2.6151  |
|                        | Equal variances<br>not assumed |      |                       | -1.102 | 21.769 | .282                | -2.9667            | 2.6915                   | -8.5519                  | 2.6185  |
| Line crosses           | Equal variances<br>assumed     | .053 | .819                  | 089    | 22     | .930                | 833                | 9.401                    | -20.329                  | 18.662  |
|                        | Equal variances<br>not assumed |      |                       | 089    | 21.332 | .930                | 833                | 9.401                    | -20.365                  | 18.698  |
| Hide box               | Equal variances<br>assumed     | .046 | .832                  | 784    | 22     | .442                | -8.4917            | 10.8372                  | -30.9666                 | 13.9832 |
|                        | Equal variances<br>not assumed |      |                       | 784    | 21.828 | .442                | -8.4917            | 10.8372                  | -30.9768                 | 13.9935 |

### Appendix A38 Independent samples *t*-tests in perinatal groups for more emergence test behaviours

|                        |                                | Levene's<br>Equality of | Test for<br>Variances |        |        | t-test for      | r Equality of N    | leans                    |                              |          |
|------------------------|--------------------------------|-------------------------|-----------------------|--------|--------|-----------------|--------------------|--------------------------|------------------------------|----------|
|                        |                                |                         |                       |        |        |                 |                    |                          | 95% Coi<br>Interva<br>Differ | l of the |
|                        |                                | F                       | Sig.                  | t      | df     | Sig. (2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                        | Upper    |
| Emergence<br>frequency | Equal variances<br>assumed     | 1.034                   | .320                  | .361   | 22     | .721            | .250               | .692                     | -1.186                       | 1.686    |
|                        | Equal variances<br>not assumed |                         |                       | .361   | 17.794 | .722            | .250               | .692                     | -1.206                       | 1.706    |
| Open field             | Equal variances<br>assumed     | 5.341                   | .031                  | -1.496 | 22     | .149            | -15.3917           | 10.2904                  | -36.7326                     | 5.9493   |
|                        | Equal variances<br>not assumed |                         | - · · · ·             | -1.496 | 17.868 | .152            | -15.3917           | 10.2904                  | -37.0224                     | 6.2391   |
| Risk assessment        | Equal variances<br>assumed     | 3.079                   | .093                  | 1.363  | 22     | .187            | 3.767              | 2.763                    | -1.963                       | 9.496    |
|                        | Equal variances<br>not assumed |                         |                       | 1.363  | 11.955 | .198            | 3.767              | 2.763                    | -2.255                       | 9.789    |
| Line crosses           | Equal variances<br>assumed     | .119                    | .734                  | .659   | 22     | .517            | 4.500              | 6.826                    | -9.656                       | 18.656   |
|                        | Equal variances<br>not assumed |                         |                       | .659   | 21.405 | .517            | 4.500              | 6.826                    | -9.679                       | 18.679   |
| Hide box               | Equal variances<br>assumed     | .409                    | .529                  | 2.225  | 22     | .037            | 17.0250            | 7.6507                   | 1.1584                       | 32.8916  |
|                        | Equal variances<br>not assumed |                         |                       | 2.225  | 21.900 | .037            | 17.0250            | 7.6507                   | 1.1542                       | 32.8958  |

#### Appendix A39 Independent samples *t*-tests in adolescent groups for more emergence test behaviours

|                        |                                |       | Test for<br>Variances | -      |        | t-test for      | r Equality of N    | leans                    |                              |          |
|------------------------|--------------------------------|-------|-----------------------|--------|--------|-----------------|--------------------|--------------------------|------------------------------|----------|
|                        |                                |       |                       |        |        |                 |                    |                          | 95% Cor<br>Interva<br>Differ | l of the |
|                        |                                | F     | Sig.                  | t      | df     | Sig. (2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                        | Upper    |
| Emergence<br>frequency | Equal variances<br>assumed     | .360  | .555                  | 1.023  | 22     | .317            | .583               | .570                     | 599                          | 1.766    |
|                        | Equal variances not assumed    |       |                       | 1.023  | 21.519 | .318            | .583               | .570                     | 601                          | 1.767    |
| Open field             | Equal variances<br>assumed     | .144  | .708                  | .940   | 22     | .358            | 9.4750             | 10.0823                  | -11.4345                     | 30.3845  |
|                        | Equal variances not assumed    |       |                       | .940   | 19.438 | .359            | 9.4750             | 10.0823                  | -11.5954                     | 30.5454  |
| Risk assessment        | Equal variances<br>assumed     | 3.092 | .093                  | 758    | 22     | .457            | 8417               | 1.1107                   | -3.1451                      | 1.4618   |
|                        | Equal variances not<br>assumed |       |                       | 758    | 17.500 | .459            | 8417               | 1.1107                   | -3.1800                      | 1.4966   |
| Line crosses           | Equal variances<br>assumed     | .517  | .480                  | 1.219  | 22     | .236            | 6.333              | 5.197                    | -4.445                       | 17.112   |
|                        | Equal variances not<br>assumed |       |                       | 1.219  | 20.905 | .237            | 6.333              | 5.197                    | -4.478                       | 17.144   |
| Hide box               | Equal variances<br>assumed     | 2.330 | .141                  | -1.074 | 22     | .295            | -6.2750            | 5.8434                   | -18.3934                     | 5.8434   |
|                        | Equal variances not<br>assumed |       |                       | -1.074 | 19.405 | .296            | -6.2750            | 5.8434                   | -18.4880                     | 5.9380   |

### Appendix A40 Independent samples *t*-tests in adult groups for more emergence test behaviours

|               |                                | Levene's<br>Equality of |      |        |        | t-test fo       | or Equality of M   | eans                     |                         |                           |
|---------------|--------------------------------|-------------------------|------|--------|--------|-----------------|--------------------|--------------------------|-------------------------|---------------------------|
|               |                                |                         |      |        |        |                 |                    |                          | 95% Confide<br>of the D | ence Interva<br>ifference |
|               |                                | F                       | Sig. | t      | df     | Sig. (2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                   | Upper                     |
| Cort insular  | Equal variances<br>assumed     | .170                    | .687 | 168    | 14     | .869            | 125                | .743                     | -1.718                  | 1.468                     |
|               | Equal variances<br>not assumed |                         |      | 168    | 13.880 | .869            | 125                | .743                     | -1.719                  | 1.469                     |
| Cort piriform | Equal variances<br>assumed     | .465                    | .506 | 554    | 14     | .588            | -6.625             | 11.948                   | -32.250                 | 19.000                    |
|               | Equal variances<br>not assumed |                         |      | 554    | 13.532 | .588            | -6.625             | 11.948                   | -32.334                 | 19.084                    |
| Med CPU       | Equal variances<br>assumed     | 6.214                   | .026 | -1.850 | 14     | .086            | -2.750             | 1.487                    | -5.938                  | .438                      |
|               | Equal variances<br>not assumed |                         |      | -1.850 | 8.604  | .099            | -2.750             | 1.487                    | -6.137                  | .637                      |
| NA core       | Equal variances<br>assumed     | 9.000                   | .010 | -1.323 | 14     | .207            | -1.000             | .756                     | -2.621                  | .621                      |
|               | Equal variances<br>not assumed |                         |      | -1.323 | 7.000  | .227            | -1.000             | .756                     | -2.787                  | .787                      |
| NA shell      | Equal variances<br>assumed     | .803                    | .385 | 957    | 14     | .355            | 625                | .653                     | -2.025                  | .775                      |
|               | Equal variances<br>not assumed |                         |      | 957    | 9.614  | .362            | 625                | .653                     | -2.088                  | .838                      |
| Lat Sep ven   | Equal variances<br>assumed     | 1.263                   | .280 | -1.091 | 14     | .294            | -4.250             | 3.895                    | -12.604                 | 4.104                     |
|               | Equal variances<br>not assumed |                         |      | -1.091 | 11.732 | .297            | -4.250             | 3.895                    | -12.758                 | 4.258                     |
| BNST Id       | Equal variances<br>assumed     | 2.178                   | .162 | .632   | 14     | .537            | .250               | .395                     | 598                     | 1.098                     |

### Appendix A41 Independent samples *t*-test in perinatal groups for *c-fos* immunohistochemistry

| ·              |                                |        |       |        | -      |       |        |       |         |       |
|----------------|--------------------------------|--------|-------|--------|--------|-------|--------|-------|---------|-------|
|                | Equal variances<br>not assumed |        |       | .632   | 8.537  | .544  | .250   | .395  | 652     | 1.152 |
| Amy bas nuc    | Equal variances<br>assumed     | 1.626  | .223  | .727   | 14     | .479  | 1.000  | 1.376 | -1.951  | 3.951 |
|                | Equal variances<br>not assumed |        |       | .727   | 12.962 | .480  | 1.000  | 1.376 | -1.973  | 3.973 |
| Amy cen nuc    | Equal variances<br>assumed     | 1.680  | .216  | 1.586  | 14     | .135  | 3.625  | 2.285 | -1.276  | 8.526 |
|                | Equal variances<br>not assumed |        |       | 1.586  | 10.816 | .141  | 3.625  | 2.285 | -1.415  | 8.665 |
| Amy med nuc    | Equal variances<br>assumed     | .110   | .745  | 518    | 14     | .613  | -1.625 | 3.139 | -8.358  | 5.108 |
|                | Equal variances<br>not assumed |        |       | 518    | 13.152 | .613  | -1.625 | 3.139 | -8.399  | 5.149 |
| Peri gray dor  | Equal variances<br>assumed     | 3.136  | .098  | 1.723  | 14     | .107  | 3.625  | 2.104 | 887     | 8.137 |
|                | Equal variances<br>not assumed |        |       | 1.723  | 12.301 | .110  | 3.625  | 2.104 | 947     | 8.197 |
| Peri gray lat  | Equal variances<br>assumed     | 2.422  | .142  | .881   | 14     | .393  | 2.500  | 2.837 | -3.585  | 8.585 |
|                | Equal variances<br>not assumed |        |       | .881   | 13.172 | .394  | 2.500  | 2.837 | -3.621  | 8.621 |
| Peri gray vent | Equal variances<br>assumed     | .146   | .708  | 810    | 14     | .432  | -3.125 | 3.859 | -11.401 | 5.151 |
|                | Equal variances<br>not assumed |        |       | 810    | 13.626 | .432  | -3.125 | 3.859 | -11.423 | 5.173 |
| Hipp CA1       | Equal variances<br>assumed     | 13.186 | .003  | -1.426 | 14     | .176  | 375    | .263  | 939     | .189  |
|                | Equal variances<br>not assumed |        |       | -1.426 | 7.000  | .197  | 375    | .263  | 997     | .247  |
| Hipp CA3       | Equal variances<br>assumed     | .000   | 1.000 | .000   | 14     | 1.000 | .000   | .378  | 811     | .811  |
|                | Equal variances<br>not assumed |        |       | .000   | 14.000 | 1.000 | .000   | .378  | 811     | .811  |

|               |                                | Levene's<br>Equality of |      |      |        | t-test fo       | or Equality of N   | leans                    | eans        |                           |  |
|---------------|--------------------------------|-------------------------|------|------|--------|-----------------|--------------------|--------------------------|-------------|---------------------------|--|
|               |                                |                         |      |      |        |                 |                    |                          | 95% Confide | ence Interva<br>ifference |  |
|               |                                | F                       | Sig. | t    | df     | Sig. (2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower       | Upper                     |  |
| Cort insular  | Equal variances<br>assumed     | 1.145                   | .303 | 403  | 14     | .693            | 125                | .310                     | 789         | .539                      |  |
|               | Equal variances<br>not assumed |                         |      | 403  | 11.713 | .694            | 125                | .310                     | 802         | .552                      |  |
| Cort piriform | Equal variances<br>assumed     | 1.362                   | .263 | 292  | 14     | .775            | -2.625             | 8.996                    | -21.919     | 16.669                    |  |
|               | Equal variances<br>not assumed |                         |      | 292  | 9.164  | .777            | -2.625             | 8.996                    | -22.920     | 17.670                    |  |
| Med CPU       | Equal variances<br>assumed     | .692                    | .419 | 298  | 14     | .770            | 125                | .420                     | -1.026      | .776                      |  |
|               | Equal variances<br>not assumed |                         |      | 298  | 13.380 | .771            | 125                | .420                     | -1.030      | .780                      |  |
| NA core       | Equal variances<br>assumed     | .337                    | .571 | .000 | 14     | 1.000           | .000               | .320                     | 687         | .687                      |  |
|               | Equal variances<br>not assumed |                         |      | .000 | 12.489 | 1.000           | .000               | .320                     | 695         | .695                      |  |
| NA shell      | Equal variances<br>assumed     | 1.577                   | .230 | 607  | 14     | .554            | 125                | .206                     | 567         | .317                      |  |
|               | Equal variances<br>not assumed |                         |      | 607  | 13.093 | .554            | 125                | .206                     | 570         | .320                      |  |
| Lat Sep ven   | Equal variances<br>assumed     | 1.217                   | .288 | .701 | 14     | .495            | 1.000              | 1.427                    | -2.060      | 4.060                     |  |
|               | Equal variances<br>not assumed |                         |      | .701 | 11.741 | .497            | 1.000              | 1.427                    | -2.116      | 4.116                     |  |
| BNST Id       | Equal variances<br>assumed     | .011                    | .917 | .208 | 14     | .838            | .250               | 1.201                    | -2.325      | 2.825                     |  |

### Appendix A42 Independent samples *t*-test in adolescent groups for *c-fos* immunohistochemistry

| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equal variances<br>assumed     | .039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>assumed     | .059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>assumed     | .029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>assumed     | 2.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>assumed     | .433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Equal variances<br>assumed     | 2.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equal variances<br>assumed     | 5.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Equal variances<br>not assumed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | not assumed<br>Equal variances<br>assumed<br>Equal variances<br>not assumed<br>Equal variances<br>assumed<br>Equal variances<br>not assumed<br>Equal variances<br>not assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>not assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed<br>Equal variances<br>assumed | not assumedEqual variances<br>assumed.039Equal variances<br>not assumed.059Equal variances<br>assumed.059Equal variances<br>not assumed.029Equal variances<br>not assumed.029Equal variances<br>not assumed2.232Equal variances<br>not assumed2.232Equal variances<br>not assumed.433Equal variances<br>not assumed.433Equal variances<br>not assumed.433Equal variances<br>not assumed.433Equal variances<br>not assumed.433Equal variances<br>not assumed.434Equal variances<br>not assumed.434Equal variances<br>not assumed.434Equal variances<br>assumed.434Equal variances<br>not assumed.434Equal variances<br>assumed.434Equal variances<br>assumed.434 | not assumedEqual variances<br>assumed.039.846Equal variances<br>not assumed.039.846Equal variances<br>assumed.059.812Equal variances<br>not assumed.059.812Equal variances<br>not assumed.029.867Equal variances<br>not assumed.029.867Equal variances<br>not assumed2.232.157Equal variances<br>not assumed2.232.157Equal variances<br>not assumed.433.521Equal variances<br>not assumed.433.521Equal variances<br>not assumed2.012.178Equal variances<br>not assumed2.012.178Equal variances<br>not assumed5.444.035Equal variances<br>assumed5.444.035 | not assumed.208Equal variances<br>assumed.039.846.133Equal variances<br>not assumed.133.133Equal variances<br>assumed.059.812.306Equal variances<br>not assumed.059.812.306Equal variances<br>not assumed.029.867.197Equal variances<br>assumed.029.867.197Equal variances<br>assumed.029.867.197Equal variances<br>assumed.136.136Equal variances<br>not assumed.137.136Equal variances<br>not assumed.133.521.000Equal variances<br>not assumed.433.521.000Equal variances<br>not assumed.012.178.758Equal variances<br>assumed2.012.178.758Equal variances<br>assumed.133.524.000Equal variances<br>assumed.035-1.000Equal variances<br>assumed.1400.100 | not assumed         .208         13.998           Equal variances<br>assumed         .039         .846         .133         14           Equal variances<br>not assumed         .039         .846         .133         14           Equal variances<br>assumed         .059         .812        306         14           Equal variances<br>not assumed         .059         .812        306         13.978           Equal variances<br>assumed         .029         .867         .197         14           Equal variances<br>not assumed         .029         .867         .197         14           Equal variances<br>assumed         .029         .867         .197         14           Equal variances<br>assumed         .133         .521         .000         14           Equal variances<br>not assumed         .433         .521         .000         14           Equal variances<br>assumed         .433         .521         .000         10.155           Equal variances<br>not assumed         .012         .178        758         14           Equal variances<br>assumed         2.012         .178        758         12.314           Equal variances<br>not assumed         5.444         .035         -1.000         14 | not assumed         .208         13.998         .838           Equal variances<br>assumed         .039         .846         .133         14         .896           Equal variances<br>not assumed         .133         13.985         .896           Equal variances<br>assumed         .059         .812        306         14         .764           Equal variances<br>assumed         .029         .867         .197         14         .847           Equal variances<br>assumed         .029         .867         .197         14         .847           Equal variances<br>not assumed         .029         .867         .197         14         .847           Equal variances<br>assumed         .029         .867         .197         14         .847           Equal variances<br>assumed         .029         .867         .197         14         .847           Equal variances<br>assumed         .029         .867         .197         12.844         .847           Equal variances<br>assumed         .029         .867         .197         14         .894           Equal variances<br>assumed         .033         .521         .000         14         .000           Equal variances<br>assumed         .433         .521         . | not assumed         .208         13.998         .838         .250           Equal variances<br>assumed         .039         .846         .133         14         .896         .125           Equal variances<br>not assumed         .059         .812        306         14         .764        250           Equal variances<br>not assumed         .059         .812        306         14         .764        250           Equal variances<br>not assumed         .029         .867         .197         14         .847         .500           Equal variances<br>assumed         .029         .867         .197         14         .847         .500           Equal variances<br>not assumed         .029         .867         .197         14         .847         .500           Equal variances<br>assumed         .029         .867         .197         14         .847         .500           Equal variances<br>assumed         .029         .867         .197         14         .847         .500           Equal variances<br>assumed         .029         .867         .197         14         .847         .500           Equal variances<br>not assumed         .023         .157         .136         14         .894         .1 | not assumed         .208         13.998         .838         .250         1.201           Equal variances<br>assumed         .039         .846         .133         14         .896         .125         .939           Equal variances<br>not assumed         .059         .812        306         14         .764        250         .818           Equal variances<br>assumed         .059         .812        306         14         .764        250         .818           Equal variances<br>not assumed         .029         .867         .197         14         .847         .500         2.535           Equal variances<br>not assumed         .029         .867         .197         14         .847         .500         2.535           Equal variances<br>not assumed         .157        136         14         .894        125         .920           Equal variances<br>assumed         .433         .521         .000         14         1.000         .000         .417           Equal variances<br>assumed         .2012         .178         .758         14         .461         -1.875         2.474           Equal variances<br>assumed         .010         10.155         1.000         .000         .417 <tr< td=""><td>not assumed         .208         13.998         .838         .250         1.201         .2.326           Equal variances<br/>assumed         .039         .846         .133         14         .896         .125         .939         .1.889           Equal variances<br/>not assumed         .059         .812        306         14         .764        250         .818         .2.005           Equal variances<br/>assumed         .059         .812        306         14         .764        250         .818         .2.005           Equal variances<br/>assumed         .029         .867         .197         14         .847         .500         2.535         .4.938           Equal variances<br/>not assumed         .029         .867         .197         12.844         .847         .500         2.535         .4.938           Equal variances<br/>not assumed         .029         .867         .197         12.844         .847         .500         2.535         .4.938           Equal variances<br/>not assumed        197         .12.844         .847         .500         2.535         .4.984           Equal variances<br/>not assumed        196         .11070         .894        125         .920         .2.148</td></tr<> | not assumed         .208         13.998         .838         .250         1.201         .2.326           Equal variances<br>assumed         .039         .846         .133         14         .896         .125         .939         .1.889           Equal variances<br>not assumed         .059         .812        306         14         .764        250         .818         .2.005           Equal variances<br>assumed         .059         .812        306         14         .764        250         .818         .2.005           Equal variances<br>assumed         .029         .867         .197         14         .847         .500         2.535         .4.938           Equal variances<br>not assumed         .029         .867         .197         12.844         .847         .500         2.535         .4.938           Equal variances<br>not assumed         .029         .867         .197         12.844         .847         .500         2.535         .4.938           Equal variances<br>not assumed        197         .12.844         .847         .500         2.535         .4.984           Equal variances<br>not assumed        196         .11070         .894        125         .920         .2.148 |

|               |                                | Levene's<br>Equality of |      |       |        | t-test fo       | or Equality of M   | leans                    |                          |        |  |
|---------------|--------------------------------|-------------------------|------|-------|--------|-----------------|--------------------|--------------------------|--------------------------|--------|--|
|               |                                |                         |      |       |        |                 |                    |                          | 95% Confide<br>of the Di |        |  |
|               |                                | F                       | Sig. | t     | df     | Sig. (2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                    | Upper  |  |
| Cort insular  | Equal variances<br>assumed     | .441                    | .517 | .793  | 14     | .441            | 1.000              | 1.261                    | -1.704                   | 3.704  |  |
|               | Equal variances<br>not assumed |                         |      | .793  | 13.194 | .442            | 1.000              | 1.261                    | -1.719                   | 3.719  |  |
| Cort piriform | Equal variances<br>assumed     | 3.978                   | .066 | .384  | 14     | .707            | 3.750              | 9.760                    | -17.184                  | 24.684 |  |
|               | Equal variances<br>not assumed |                         |      | .384  | 10.488 | .708            | 3.750              | 9.760                    | -17.861                  | 25.361 |  |
| Med CPU       | Equal variances<br>assumed     | .099                    | .757 | 255   | 14     | .803            | 375                | 1.472                    | -3.533                   | 2.783  |  |
|               | Equal variances<br>not assumed |                         |      | 255   | 12.217 | .803            | 375                | 1.472                    | -3.576                   | 2.826  |  |
| NA core       | Equal variances<br>assumed     | 3.316                   | .090 | 661   | 14     | .519            | 500                | .756                     | -2.121                   | 1.121  |  |
|               | Equal variances<br>not assumed |                         |      | 661   | 11.200 | .522            | 500                | .756                     | -2.160                   | 1.160  |  |
| NA shell      | Equal variances<br>assumed     | 1.679                   | .216 | .788  | 14     | .444            | 1.625              | 2.063                    | -2.800                   | 6.050  |  |
|               | Equal variances<br>not assumed |                         |      | .788  | 11.445 | .447            | 1.625              | 2.063                    | -2.895                   | 6.145  |  |
| Lat Sep ven   | Equal variances<br>assumed     | 1.079                   | .317 | 089   | 14     | .930            | 125                | 1.407                    | -3.143                   | 2.893  |  |
|               | Equal variances<br>not assumed |                         |      | 089   | 10.737 | .931            | 125                | 1.407                    | -3.231                   | 2.981  |  |
| BNST Id       | Equal variances<br>assumed     | 7.192                   | .018 | 1.256 | 14     | .230            | .625               | .498                     | 443                      | 1.693  |  |

### Appendix A43 Independent samples *t*-test in adult groups for *c-fos* immunohistochemistry

|                | Equal variances<br>not assumed |       |       | 1.256  | 7.000  | .250 | .625   | .498  | 552    | 1.802 |
|----------------|--------------------------------|-------|-------|--------|--------|------|--------|-------|--------|-------|
| Amy bas nuc    | Equal variances<br>assumed     | 1.852 | .195  | .927   | 14     | .369 | 1.875  | 2.022 | -2.461 | 6.211 |
|                | Equal variances<br>not assumed |       |       | .927   | 8.472  | .379 | 1.875  | 2.022 | -2.742 | 6.492 |
| Amy cen nuc    | Equal variances<br>assumed     | .622  | .443  | -1.000 | 14     | .334 | -1.250 | 1.250 | -3.931 | 1.431 |
|                | Equal variances<br>not assumed |       |       | -1.000 | 13.898 | .334 | -1.250 | 1.250 | -3.933 | 1.433 |
| Amy med nuc    | Equal variances<br>assumed     | .141  | .713  | -1.424 | 14     | .176 | -2.250 | 1.580 | -5.638 | 1.138 |
|                | Equal variances<br>not assumed |       |       | -1.424 | 13.929 | .176 | -2.250 | 1.580 | -5.640 | 1.140 |
| Peri gray dor  | Equal variances<br>assumed     | 7.290 | .017  | .993   | 14     | .338 | 1.250  | 1.259 | -1.450 | 3.950 |
|                | Equal variances<br>not assumed |       |       | .993   | 7.468  | .352 | 1.250  | 1.259 | -1.689 | 4.189 |
| Peri gray lat  | Equal variances<br>assumed     | .000  | 1.000 | 333    | 14     | .744 | 125    | .375  | 929    | .679  |
|                | Equal variances<br>not assumed |       | _     | 333    | 13.996 | .744 | 125    | .375  | 929    | .679  |
| Peri gray vent | Equal variances<br>assumed     | .819  | .381  | .432   | 14     | .672 | .875   | 2.024 | -3.466 | 5.216 |
|                | Equal variances<br>not assumed |       |       | .432   | 12.119 | .673 | .875   | 2.024 | -3.530 | 5.280 |
| Hipp CA1       | Equal variances<br>assumed     | 1.145 | .303  | .403   | 14     | .693 | .125   | .310  | 539    | .789  |
|                | Equal variances<br>not assumed |       |       | .403   | 11.713 | .694 | .125   | .310  | 552    | .802  |
| Hipp CA3       | Equal variances<br>assumed     | 5.444 | .035  | -1.000 | 14     | .334 | 125    | .125  | 393    | .143  |
|                | Equal variances<br>not assumed |       |       | -1.000 | 7.000  | .351 | 125    | .125  | 421    | .171  |

### APPENDIX B: DATA

Appendix B1 Data for spatial discrimination (SD) component of the double Y-maze for 25-day training period for perinatal vehicle (group= 1) and THC (groups= 2) treated rats

| Rat | Group | SD 1  | SD 2  | SD 3  | SD 4  | SD 5  | SD 6  | SD 7  | SD 8  | SD 9  | SD 10 | SD 11 | SD 12 | SD 13 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 31  | 1     | 26.7  | 86.7  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 32  | 1     | 60.0  | 93.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 33  | 1     | 73.3  | 86.7  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 34  | 1     | 60.0  | 93.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 35  | 1     | 53.3  | 86.7  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 36  | 1     | 80.0  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 43  | 1     | 80.0  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 38  | 2     | 73.3  | 93.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 39  | 2     | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 40  | 2     | 86.7  | 93.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 41  | 2     | 56.7  | 93.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 42  | 2     | 73.3  | 93.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |

| SD 14 | SD 15 | SD 16 | SD 17 | SD 18 | SD 19 | SD 20 | SD 21 | SD 22 | SD 23 | SD 24 | SD 25 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |

\*The number of correct entries out of 30 trials (per day) in the spatial discrimination component was converted to a percentage for each rat for each of the 25 test sessions.

| Rat | Group | DA 1 | DA 2 | DA 3 | DA 4 | DA 5 | DA 6 | DA 7 | DA 8 | DA 9 | DA 10 | DA 11 | DA 12 | DA 13 |
|-----|-------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|
| 31  | 1     | 50.0 | 43.3 | 63.3 | 46.7 | 30.0 | 56.7 | 63.3 | 43.3 | 63.3 | 63.3  | 33.3  | 60.0  | 46.7  |
| 32  | 1     | 50.0 | 26.7 | 63.3 | 46.7 | 33.3 | 46.7 | 43.3 | 40.0 | 50.0 | 56.7  | 43.3  | 53.3  | 70.0  |
| 33  | 1     | 50.0 | 40.0 | 70.0 | 70.0 | 30.0 | 40.0 | 56.7 | 60.0 | 60.0 | 46.7  | 63.3  | 70.0  | 83.3  |
| 34  | 1     | 33.3 | 50.0 | 66.7 | 56.7 | 60.0 | 43.3 | 53.3 | 50.0 | 63.3 | 33.3  | 60.0  | 53.3  | 46.7  |
| 35  | 1     | 40.0 | 66.7 | 60.0 | 56.7 | 43.3 | 46.7 | 50.0 | 50.0 | 60.0 | 53.3  | 73.3  | 76.7  | 73.3  |
| 36  | 1     | 33.3 | 66.7 | 46.7 | 46.7 | 60.0 | 50.0 | 36.7 | 60.0 | 46.7 | 26.7  | 53.3  | 56.7  | 40.0  |
| 43  | 1     | 40.0 | 36.7 | 63.3 | 56.7 | 36.7 | 50.0 | 43.3 | 50.0 | 56.7 | 53.3  | 66.7  | 50.0  | 66.7  |
| 38  | 2     | 43.3 | 50.0 | 56.7 | 56.7 | 60.0 | 53.3 | 43.3 | 73.3 | 63.3 | 50.0  | 50.0  | 50.0  | 56.7  |
| 39  | 2     | 56.7 | 50.0 | 63.3 | 46.7 | 53.3 | 56.7 | 53.3 | 73.3 | 66.7 | 56.7  | 40.0  | 43.3  | 60.0  |
| 40  | 2     | 36.7 | 56.7 | 36.7 | 83.3 | 50.0 | 76.7 | 50.0 | 50.0 | 56.7 | 80.0  | 40.0  | 66.7  | 73.3  |
| 41  | 2     | 23.3 | 43.3 | 60.0 | 66.7 | 53.3 | 66.7 | 53.3 | 50.0 | 56.7 | 50.0  | 33.3  | 66.7  | 46.7  |
| 42  | 2     | 40.0 | 70.0 | 56.7 | 53.3 | 66.7 | 50.0 | 70.0 | 60.0 | 66.7 | 50.0  | 53.3  | 66.7  | 63.3  |

Appendix B2 Data for delayed alternation (DA) component of the double Y-maze for 25-day training period for perinatal vehicle (group= 1) and THC (group= 2) treated rats

| DA 14 | DA 15 | DA 16 | DA 17 | DA 18 | DA 19 | DA 20 | DA 21 | DA 22 | DA 23 | DA 24 | DA 25 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 70.0  | 80.0  | 83.3  | 70.0  | 83.3  | 73.3  | 83.3  | 80.0  | 90.0  | 80.0  | 83.3  | 86.7  |
| 56.7  | 66.7  | 80.0  | 93.3  | 96.7  | 83.3  | 80.0  | 93.3  | 83.3  | 80.0  | 86.7  | 83.3  |
| 76.7  | 76.7  | 80.0  | 96.7  | 80.0  | 90.0  | 100.0 | 86.7  | 86.7  | 73.3  | 90.0  | 76.7  |
| 53.3  | 73.3  | 76.7  | 90.0  | 73.3  | 100.0 | 83.3  | 83.3  | 96.7  | 86.7  | 90.0  | 90.0  |
| 80.0  | 96.7  | 80.0  | 90.0  | 86.7  | 93.3  | 83.3  | 100.0 | 100.0 | 80.0  | 80.0  | 80.0  |
| 53.3  | 66.7  | 63.3  | 80.0  | 73.3  | 73.3  | 76.7  | 83.3  | 90.0  | 86.7  | 93.3  | 86.7  |
| 56.7  | 83.3  | 93.3  | 86.7  | 90.0  | 90.0  | 83.3  | 80.0  | 86.7  | 93.3  | 83.3  | 96.7  |
| 50.0  | 60.0  | 60.0  | 50.0  | 63.3  | 40.0  | 40.0  | 53.3  | 56.7  | 53.3  | 60.0  | 70.0  |
| 86.7  | 76.7  | 46.7  | 66.7  | 43.3  | 56.7  | 53.3  | 40.0  | 50.0  | 70.0  | 80.0  | 80.0  |
| 66.7  | 66.7  | 72.1  | 63.3  | 66.7  | 60.0  | 73.3  | 66.7  | 83.3  | 86.7  | 90.0  | 90.0  |
| 60.0  | 83.3  | 60.0  | 53.3  | 53.3  | 63.3  | 50.0  | 56.7  | 60.0  | 80.0  | 73.3  | 70.0  |
| 56.7  | 56.7  | 70.0  | 56.7  | 80.0  | 66.7  | 53.3  | 60.0  | 63.3  | 80.0  | 76.7  | 80.0  |

\*The number of correct entries out of 30 trials (per day) in the delayed alternation component was converted to a percentage for each rat for each of the 25 test sessions.

| Rat | Group | Trial | 2 h   | 6 h   | 48 h  |
|-----|-------|-------|-------|-------|-------|
| 251 | Gibup | T1    | 50.4  | 38.1  | 75.5  |
|     |       |       |       |       |       |
| 252 | 1     | T1    | 53.2  | 92.8  | 46.8  |
| 253 | 1     | T1    | 70.9  | 139.4 | 76.9  |
| 254 | 1     | T1    | 115.4 | 81.9  | 116.1 |
| 255 | 1     | T1    | 103.5 | 106.3 | 69.5  |
| 256 | 1     | T1    | 130.6 | 123.0 | 36.7  |
| 257 | 1     | T1    | 103.8 | 92.8  | 48.8  |
| 258 | 1     | T1    | 60.3  | 52.9  | 86.4  |
| 259 | 1     | T1    | 75.0  | 80.6  | 68.0  |
| 260 | 1     | T1    | 44.7  | 67.6  | 158.7 |
| 261 | 1     | T1    | 62.7  | 45.9  | 14.3  |
| 262 | 1     | T1    | 36.6  | 93.6  | 18.3  |
| 263 | 2     | T1    | 31.1  | 38.7  | 53.2  |
| 264 | 2     | T1    | 27.8  | 83.2  | 40.3  |
| 265 | 2     | T1    | 55.7  | 186.2 | 85.7  |
| 266 | 2     | T1    | 78.7  | 63.8  | 81.6  |
| 267 | 2     | T1    | 79.7  | 80.9  | 63.3  |
| 268 | 2     | T1    | 193.6 | 94.4  | 45.5  |
| 269 | 2     | T1    | 109.1 | 78.9  | 100.4 |
| 270 | 2     | T1    | 68.0  | 72.3  | 22.1  |
| 271 | 2     | T1    | 84.0  | 85.7  | 68.0  |
| 272 | 2     | T1    | 52.4  | 136.3 | 208.7 |
| 273 | 2     | T1    | 61.5  | 104.5 | 118.6 |
| 274 | 2     | T1    | 68.8  | 113.2 | 32.0  |

### Appendix B3 Data for trial 1 (T1) in the object recognition task for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Individual value represents the final duration of time (sec) attending to novel objects in each 10 minute trial for each rat.

|     | 0     | <b>T</b> .: | 0.1   |       | 401   |
|-----|-------|-------------|-------|-------|-------|
| Rat | Group | Trial       | 2 h   | 6 h   | 48 h  |
| 137 | 11    | T1          | 19.5  | 38.8  | 38.6  |
| 138 | 1     | T1          | 110.2 | 86.5  | 43.8  |
| 139 | 1     | T1          | 84.6  | 117.0 | 57.4  |
| 140 | 1     | T1          | 62.1  | 48.7  | 38.6  |
| 141 | 1     | T1          | 85.6  | 103.3 | 57.3  |
| 142 | 1     | T1          | 68.6  | 102.9 | 82.6  |
| 143 | 1     | T1          | 98.8  | 186.3 | 95.0  |
| 144 | 1     | T1          | 29.6  | 66.5  | 52.4  |
| 145 | 1     | T1          | 101.4 | 49.3  | 76.8  |
| 146 | 1     | T1          | 84.9  | 38.2  | 53.4  |
| 147 | 1     | T1          | 51.9  | 75.5  | 49.0  |
| 148 | 1     | T1          | 97.0  | 166.8 | 68.0  |
| 149 | 2     | T1          | 13.7  | 75.9  | 33.9  |
| 150 | 2     | T1          | 60.3  | 68.2  | 61.7  |
| 151 | 2     | T1          | 99.0  | 168.0 | 86.4  |
| 152 | 2     | T1          | 109.4 | 142.3 | 117.6 |
| 153 | 2     | T1          | 65.9  | 145.8 | 80.3  |
| 154 | 2     | T1          | 73.6  | 104.3 | 50.8  |
| 155 | 2     | T1          | 72.4  | 64.1  | 41.7  |
| 156 | 2     | T1          | 126.2 | 52.3  | 103.8 |
| 157 | 2     | T1          | 34.8  | 59.4  | 82.1  |
| 158 | 2     | T1          | 115.2 | 83.5  | 148.5 |
| 159 | 2     | T1          | 27.0  | 51.3  | 44.5  |
| 160 | 2     | T1          | 61.2  | 139.5 | 106.9 |

### Appendix B4 Data for trial 1 (T1) in the object recognition task for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Individual value represents the final duration of time (sec) attending to novel objects in each 10 minute trial for each rat.

| Rat | Group | Trial | 2 h  | 6 h   | 48 h  |
|-----|-------|-------|------|-------|-------|
| 57  | 1     | T1    | 66.6 | 73.5  | 102.0 |
| 58  | 1     | T1    | 76.4 | 29.9  | 41.3  |
| 59  | 1     | T1    | 71.9 | 26.8  | 33.6  |
| 60  | 1     | T1    | 27.4 | 20.9  | 15.4  |
| 61  | 1     | T1    | 24.6 | 20.0  | 58.5  |
| 62  | 1     | T1    | 31.8 | 109.6 | 59.1  |
| 63  | 1     | T1    | 69.3 | 44.8  | 68.9  |
| 64  | 1     | T1    | 53.1 | 17.2  | 63.0  |
| 65  | 1     | T1    | 34.4 | 39.7  | 132.9 |
| 66  | 1     | T1    | 13.7 | 20.3  | 56.2  |
| 67  | 1     | T1    | 22.9 | 38.0  | 17.5  |
| 68  | 1     | T1    | 62.5 | 103.5 | 41.7  |
| 69  | 2     | T1    | 34.3 | 40.1  | 39.9  |
| 70  | 2     | T1    | 66.7 | 18.7  | 46.9  |
| 71  | 2     | T1    | 49.8 | 139.6 | 48.9  |
| 72  | 2     | T1    | 43.3 | 33.6  | 47.0  |
| 73  | 2     | T1    | 33.0 | 36.9  | 47.6  |
| 74  | 2     | T1    | 96.4 | 135.8 | 67.2  |
| 75  | 2     | T1    | 27.3 | 26.7  | 42.8  |
| 76  | 2     | T1    | 77.4 | 34.9  | 57.0  |
| 77  | 2     | T1    | 58.1 | 31.8  | 46.8  |
| 78  | 2     | T1    | 37.7 | 30.1  | 70.4  |
| 79  | 2     | T1    | 18.3 | 54.4  | 44.9  |
| 80  | 2     | T1    | 36.5 | 78.0  | 41.7  |

### Appendix B5 Data for trial 1 (T1) in the object recognition task for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Individual value represents the final duration of time (sec) attending to novel objects in each 10 minute trial for each rat.

| Rat | Group | Trial | 2 h  | 6 h  | 48 h |
|-----|-------|-------|------|------|------|
| 251 | 1     | T2    | 93.2 | 82.8 | 50.0 |
| 252 | 1     | T2    | 60.1 | 54.4 | 60.8 |
|     |       |       |      |      |      |
| 253 | 1     | T2    | 70.6 | 56.0 | 48.9 |
| 254 | 1     | T2    | 47.7 | 80.5 | 64.4 |
| 255 | 1     | T2    | 41.8 | 69.0 | 67.5 |
| 256 | 1     | T2    | 47.4 | 59.7 | 61.3 |
| 257 | 1     | T2    | 37.7 | 53.1 | 55.2 |
| 258 | 1     | T2    | 58.2 | 68.0 | 53.9 |
| 259 | 1     | T2    | 75.9 | 63.2 | 82.7 |
| 260 | 1     | T2    | 65.0 | 75.7 | 69.1 |
| 261 | 1     | T2    | 56.3 | 63.5 | 60.6 |
| 262 | 1     | T2    | 61.2 | 59.2 | 80.9 |
| 263 | 2     | T2    | 73.2 | 31.0 | 44.3 |
| 264 | 2     | T2    | 51.5 | 75.5 | 68.2 |
| 265 | 2     | T2    | 50.2 | 66.6 | 23.4 |
| 266 | 2     | T2    | 27.9 | 67.8 | 48.8 |
| 267 | 2     | T2    | 68.1 | 75.8 | 79.6 |
| 268 | 2     | T2    | 55.9 | 52.9 | 48.0 |
| 269 | 2     | T2    | 27.1 | 64.3 | 51.9 |
| 270 | 2     | T2    | 43.0 | 52.1 | 63.5 |
| 271 | 2     | T2    | 56.0 | 59.5 | 49.8 |
| 272 | 2     | T2    | 57.1 | 56.2 | 63.7 |
| 273 | 2     | T2    | 79.8 | 68.6 | 44.8 |
| 274 | 2     | T2    | 54.1 | 54.5 | 46.1 |

### Appendix B6 Data for Trial 2 (T2) in the object recognition task for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Individual value represents the percentage of time each rat spent investigating the novel (N) from the familiar (F) object calculated according to the formula N  $\div$  (N + F) x 100 for each 10 minute trial.

|     | · · · · · · · · · · · · · · · · · · · |       |      | r    |      |
|-----|---------------------------------------|-------|------|------|------|
| Rat | Group                                 | Trial | 2 h  | 6 h  | 48 h |
| 137 | 1                                     | T2    | 75.8 | 65.1 | 60.9 |
| 138 | 1                                     | T2    | 55.5 | 70.1 | 84.3 |
| 139 | 1                                     | T2    | 83.4 | 49.2 | 53.2 |
| 140 | 1                                     | T2    | 61.3 | 82.2 | 39.9 |
| 141 | 1                                     | T2    | 78.2 | 64.2 | 84.9 |
| 142 | 1                                     | T2    | 66.4 | 62.5 | 80.8 |
| 143 | 1                                     | T2    | 50.4 | 54.0 | 58.6 |
| 144 | 1                                     | T2    | 49.2 | 80.1 | 70.6 |
| 145 | 1                                     | T2    | 73.6 | 78.8 | 63.6 |
| 146 | 1                                     | T2    | 68.2 | 72.8 | 72.8 |
| 147 | 1                                     | T2    | 73.6 | 75.7 | 57.6 |
| 148 | 1                                     | T2    | 52.5 | 59.3 | 65.2 |
| 149 | 2                                     | T2    | 88.2 | 89.6 | 71.9 |
| 150 | 2                                     | T2    | 55.8 | 71.7 | 40.3 |
| 151 | 2                                     | T2    | 56.2 | 48.0 | 29.0 |
| 152 | 2                                     | T2    | 46.4 | 21.8 | 67.5 |
| 153 | 2                                     | T2    | 39.5 | 69.1 | 72.6 |
| 154 | 2                                     | T2    | 67.0 | 38.0 | 59.0 |
| 155 | 2                                     | T2    | 56.8 | 39.1 | 49.1 |
| 156 | 2                                     | T2    | 49.5 | 37.9 | 60.4 |
| 157 | 2                                     | T2    | 71.4 | 61.0 | 34.5 |
| 158 | 2                                     | T2    | 71.5 | 48.5 | 77.3 |
| 159 | 2                                     | T2    | 21.1 | 63.6 | 63.6 |
| 160 | 2                                     | T2    | 58.1 | 56.3 | 51.7 |

### Appendix B7 Data for Trial 2 (T2) in the object recognition task for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Individual value represents the percentage of time each rat spent investigating the novel (N) from the familiar (F) object calculated according to the formula N  $\div$  (N + F) x 100 for each 10 minute trial.

| Rat | Group | Trial | 2 h  | 6 h  | 48 h |
|-----|-------|-------|------|------|------|
| 57  | 1     | T2    | 70.9 | 47.6 | 53.0 |
| 58  | 1     | T2    | 65.7 | 46.0 | 76.3 |
| 59  | 1     | T2    | 53.9 | 64.2 | 55.6 |
| 60  | 1     | T2    | 53.3 | 53.4 | 82.7 |
| 61  | 1     | T2    | 81.9 | 60.9 | 39.9 |
| 62  | 1     | T2    | 63.7 | 48.1 | 71.4 |
| 63  | 1     | T2    | 41.6 | 54.4 | 68.8 |
| 64  | 1     | T2    | 44.4 | 58.8 | 64.7 |
| 65  | 1     | T2    | 75.5 | 72.2 | 84.2 |
| 66  | 1     | T2    | 94.1 | 54.4 | 73.7 |
| 67  | 1     | T2    | 96.5 | 78.3 | 52.7 |
| 68  | 1     | T2    | 53.3 | 61.9 | 77.6 |
| 69  | 2     | T2    | 55.8 | 71.0 | 37.4 |
| 70  | 2     | T2    | 55.3 | 60.3 | 41.8 |
| 71  | 2     | T2    | 72.4 | 34.7 | 69.6 |
| 72  | 2     | T2    | 24.3 | 44.8 | 85.5 |
| 73  | 2     | T2    | 73.0 | 47.7 | 78.9 |
| 74  | 2     | T2    | 49.8 | 42.8 | 67.5 |
| 75  | 2     | T2    | 21.2 | 52.6 | 35.5 |
| 76  | 2     | T2    | 61.6 | 75.0 | 53.4 |
| 77  | 2     | T2    | 48.5 | 60.5 | 69.8 |
| 78  | 2     | T2    | 48.5 | 60.5 | 69.8 |
| 79  | 2     | T2    | 76.9 | 63.0 | 51.8 |
| 80  | 2     | T2    | 68.6 | 45.1 | 69.8 |

### Appendix B8 Data for trial 2 (T2) in the object recognition task for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Individual value represents the percentage of time each rat spent investigating the novel (N) from the familiar (F) object calculated according to the formula N  $\div$  (N + F) x 100 for each 10 minute trial.

| Rat | Group | Trial | 2 h   | 6 h   | 48 h  |
|-----|-------|-------|-------|-------|-------|
| 251 | 1     | T1    | 265.9 | 354.4 | 277.1 |
| 252 | 1     | T1    | 281.4 | 344.5 | 283.4 |
| 253 | 1     | T1    | 330.1 | 275.2 | 338.6 |
| 254 | 1     | T1    | 346.4 | 205.3 | 346.9 |
| 255 | 1     | T1    | 241.3 | 350.6 | 352.5 |
| 256 | 1     | T1    | 330.9 | 324.5 | 349.1 |
| 257 | 1     | T1    | 310.6 | 284.8 | 341.9 |
| 258 | 1     | T1    | 356.8 | 316.6 | 343.7 |
| 259 | 1     | T1    | 357.2 | 321.1 | 303.2 |
| 260 | 1     | T1    | 365.3 | 316.6 | 305.1 |
| 261 | 1     | T1    | 311.1 | 313.0 | 350.4 |
| 262 | 1     | T1    | 315.5 | 358.5 | 354.0 |
| 263 | 2     | T1    | 303.5 | 401.9 | 290.0 |
| 264 | 2     | T1    | 309.0 | 361.7 | 289.1 |
| 265 | 2     | T1    | 365.0 | 293.6 | 411.9 |
| 266 | 2     | T1    | 278.5 | 299.4 | 340.4 |
| 267 | 2     | T1    | 361.4 | 336.9 | 370.0 |
| 268 | 2     | T1    | 337.8 | 262.9 | 328.0 |
| 269 | 2     | T1    | 331.1 | 298.9 | 363.1 |
| 271 | 2     | T1    | 358.1 | 308.9 | 323.6 |
| 271 | 2     | T1    | 345.9 | 292.5 | 306.6 |
| 272 | 2     | T1    | 377.9 | 306.2 | 317.9 |
| 273 | 2     | T1    | 289.9 | 320.3 | 354.1 |
| 274 | 2     | T1    | 354.0 | 365.4 | 364.4 |

# Appendix B9 Data for trial 1 (T1) locomotor activity for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Each value represents the total duration (sec) time each rat spent in locomotor activity for each 10 minute session.

|     |       |       |       | <u></u> |       |
|-----|-------|-------|-------|---------|-------|
| Rat | Group | Trial | 2 h   | 6 h     | 48 h  |
| 137 | 1     | T1    | 223.5 | 390.9   | 299.8 |
| 138 | 1     | T1    | 306.4 | 407.9   | 299.2 |
| 139 | 1     | T1    | 352.1 | 255.9   | 317.7 |
| 140 | 1     | T1    | 301.9 | 240.5   | 360.0 |
| 141 | 1     | T1    | 323.2 | 276.1   | 367.6 |
| 142 | 1     | T1    | 323.2 | 308.1   | 353.9 |
| 143 | 1     | T1    | 338.7 | 304.1   | 362.5 |
| 144 | 1     | T1    | 310.7 | 277.1   | 373.3 |
| 145 | 1     | T1    | 339.9 | 319.3   | 255.7 |
| 146 | 1     | T1    | 432.0 | 363.4   | 372.0 |
| 147 | 1     | T1    | 274.4 | 319.7   | 339.7 |
| 148 | 1     | T1    | 329.4 | 335.6   | 386.1 |
| 149 | 2     | T1    | 291.8 | 423.5   | 273.7 |
| 150 | 2     | T1    | 267.4 | 403.5   | 329.6 |
| 151 | 2     | T1    | 365.2 | 331.2   | 380.0 |
| 152 | 2     | T1    | 329.9 | 327.6   | 362.3 |
| 153 | 2     | T1    | 253.1 | 326.3   | 362.4 |
| 154 | 2     | T1    | 345.3 | 318.0   | 381.4 |
| 155 | 2     | T1    | 268.0 | 295.0   | 377.7 |
| 156 | 2     | T1    | 337.9 | 290.4   | 372.9 |
| 157 | 2     | T1    | 345.1 | 310.4   | 296.9 |
| 158 | 2     | T1    | 406.6 | 365.8   | 339.1 |
| 159 | 2     | T1    | 322.1 | 364.2   | 367.4 |
| 160 | 2     | T1    | 354.3 | 362.7   | 360.0 |

### Appendix B10 Data for trial 1 (T1) locomotor activity for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Each value represents the total duration (sec) time each rat spent in locomotor activity for each 10 minute session.

| Det | <u>Onever</u> | Trial | 2 6   | Ch    | 40 h  |
|-----|---------------|-------|-------|-------|-------|
| Rat | Group         | Trial | 2 h   | 6 h   | 48 h  |
| 57  | 1             | T1    | 313.2 | 350.8 | 285.2 |
| 58  | 1             | T1    | 322.0 | 279.4 | 283.1 |
| 59  | 1             | T1    | 312.1 | 332.0 | 314.3 |
| 60  | 1             | T1    | 246.1 | 260.4 | 240.6 |
| 61  | 1             | T1    | 269.2 | 277.9 | 272.2 |
| 62  | 1             | T1    | 294.6 | 314.4 | 278.4 |
| 63  | 1             | T1    | 334.4 | 313.0 | 290.0 |
| 64  | 1             | T1    | 330.6 | 302.0 | 285.7 |
| 65  | 1             | T1    | 353.1 | 346.7 | 312.0 |
| 66  | 1             | T1    | 134.0 | 206.5 | 305.1 |
| 67  | 1             | T1    | 167.4 | 299.9 | 297.5 |
| 68  | 1             | T1    | 354.8 | 370.3 | 341.6 |
| 69  | 2             | T1    | 273.3 | 286.5 | 292.2 |
| 70  | 2             | T1    | 294.5 | 307.0 | 307.2 |
| 71  | 2             | T1    | 333.9 | 344.3 | 306.0 |
| 72  | 2             | T1    | 271.0 | 194.9 | 313.3 |
| 73  | 2             | T1    | 254.6 | 252.9 | 217.5 |
| 74  | 2             | T1    | 300.0 | 338.9 | 309.7 |
| 75  | 2             | T1    | 241.4 | 282.1 | 319.3 |
| 76  | 2             | T1    | 332.0 | 330.0 | 340.3 |
| 77  | 2             | T1    | 266.4 | 250.5 | 226.8 |
| 78  | 2             | T1    | 282.7 | 285.2 | 313.5 |
| 79  | 2             | T1    | 271.2 | 318.3 | 327.0 |
| 80  | 2             | T1    | 259.6 | 325.4 | 355.7 |

### Appendix B11 Data for trial 1 (T1) locomotor activity for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Each value represents the total duration (sec) time each rat spent in locomotor activity for each 10 minute session.

| Rat | Group | Trial | 2 h   | 6 h   | 48 h  |
|-----|-------|-------|-------|-------|-------|
| 251 | 1     | T2    | 284.3 | 308.7 | 252.0 |
| 252 | 1     | T2    | 323.9 | 365.6 | 257.9 |
| 253 | 1     | T2    | 324.2 | 284.5 | 267.1 |
| 254 | 1     | T2    | 346.2 | 329.5 | 304.5 |
| 255 | 1     | T2    | 254.4 | 302.1 | 383.9 |
| 256 | 1     | T2    | 326.1 | 359.6 | 341.7 |
| 257 | 1     | T2    | 271.2 | 318.8 | 340.9 |
| 258 | 1     | T2    | 335.7 | 320.7 | 387.2 |
| 259 | 1     | T2    | 367.9 | 375.2 | 307.6 |
| 260 | 1     | T2    | 355.7 | 341.4 | 300.3 |
| 261 | 1     | T2    | 330.0 | 274.4 | 299.1 |
| 262 | 1     | T2    | 309.3 | 354.7 | 301.2 |
| 263 | 2     | T2    | 281.0 | 393.1 | 256.7 |
| 264 | 2     | T2    | 296.4 | 341.1 | 338.1 |
| 265 | 2     | T2    | 359.7 | 320.8 | 326.7 |
| 266 | 2     | T2    | 303.7 | 273.6 | 292.7 |
| 267 | 2     | T2    | 352.9 | 367.8 | 362.4 |
| 268 | 2     | T2    | 297.8 | 355.1 | 305.9 |
| 269 | 2     | T2    | 304.8 | 313.4 | 338.6 |
| 270 | 2     | T2    | 309.1 | 328.5 | 347.4 |
| 271 | 2     | T2    | 335.7 | 382.7 | 264.3 |
| 272 | 2     | T2    | 366.6 | 323.9 | 298.9 |
| 273 | 2     | Т2    | 256.6 | 328.9 | 314.8 |
| 274 | 2     | T2    | 334.0 | 318.4 | 361.7 |

### Appendix B12 Data for trial 2 (T2) locomotor activity for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Each value represents the total duration (sec) time each rat spent in locomotor activity for each 10 minute session

| Rat | Group | Trial | 2 h   | 6 h   | 48 h  |
|-----|-------|-------|-------|-------|-------|
| 137 | 1     | T2    | 286.0 | 337.9 | 279.4 |
| 138 | 1     | T2    | 347.2 | 367.9 | 291.4 |
| 139 | 1     | T2    | 334.6 | 253.0 | 262.7 |
| 140 | 1     | T2    | 326.9 | 318.4 | 293.6 |
| 141 | 1     | T2    | 249.4 | 191.9 | 343.1 |
| 142 | 1     | T2    | 236.6 | 296.0 | 300.3 |
| 143 | 1     | T2    | 292.3 | 344.9 | 348.6 |
| 144 | 1     | T2    | 281.9 | 350.2 | 342.4 |
| 145 | 1     | T2    | 320.5 | 338.5 | 341.6 |
| 146 | 1     | T2    | 377.5 | 336.1 | 320.7 |
| 147 | 1     | T2    | 252.0 | 317.9 | 348.6 |
| 148 | 1     | T2    | 310.9 | 350.2 | 354.6 |
| 149 | 2     | T2    | 280.9 | 299.7 | 355.4 |
| 150 | 2     | T2    | 287.6 | 290.5 | 295.5 |
| 151 | 2     | T2    | 339.3 | 341.0 | 332.1 |
| 152 | 2     | T2    | 324.8 | 342.1 | 352.2 |
| 153 | 2     | T2    | 264.5 | 302.8 | 354.5 |
| 154 | 2     | T2    | 309.8 | 354.9 | 282.5 |
| 155 | 2     | T2    | 278.7 | 335.4 | 339.2 |
| 156 | 2     | T2    | 320.8 | 282.2 | 376.6 |
| 157 | 2     | T2    | 318.4 | 332.6 | 345.6 |
| 158 | 2     | T2    | 383.7 | 335.6 | 351.9 |
| 159 | 2     | T2    | 363.4 | 356.4 | 325.6 |
| 160 | 2     | T2    | 336.1 | 388.7 | 388.1 |

### Appendix B13 Data for trial 2 (T2) locomotor activity for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Each value represents the total duration (sec) time each rat spent in locomotor activity for each 10 minute session.

| Rat | Group | Trial | 2 h   | 6 h   | 48 h  |
|-----|-------|-------|-------|-------|-------|
| 57  | 1     | T2    | 306.0 | 300.9 | 290.6 |
| 58  | 1     | T2    | 315.4 | 322.3 | 267.7 |
| 59  | 1     | T2    | 328.1 | 360.6 | 299.0 |
| 60  | 1     | T2    | 227.0 | 250.1 | 276.9 |
| 61  | 1     | T2    | 202.2 | 244.0 | 280.0 |
| 62  | 1     | T2    | 268.3 | 271.0 | 293.7 |
| 63  | 1     | T2    | 295.3 | 337.1 | 305.9 |
| 64  | 1     | T2    | 300.9 | 304.9 | 332.7 |
| 65  | 1     | T2    | 304.4 | 303.9 | 309.2 |
| 66  | 1     | T2    | 81.9  | 294.0 | 261.0 |
| 67  | 1     | T2    | 158.1 | 280.1 | 230.3 |
| 68  | 1     | T2    | 326.5 | 329.6 | 325.0 |
| 69  | 2     | T2    | 260.1 | 295.7 | 278.7 |
| 70  | 2     | T2    | 279.1 | 247.4 | 305.0 |
| 71  | 2     | T2    | 291.6 | 308.4 | 310.0 |
| 72  | 2     | T2    | 205.3 | 168.2 | 260.0 |
| 73  | 2     | T2    | 156.8 | 176.2 | 261.4 |
| 74  | 2     | T2    | 301.8 | 306.7 | 355.5 |
| 75  | 2     | T2    | 221.7 | 305.2 | 322.7 |
| 76  | 2     | T2    | 260.0 | 326.6 | 326.4 |
| 77  | 2     | T2    | 235.5 | 242.0 | 249.7 |
| 78  | 2     | T2    | 245.8 | 303.6 | 294.7 |
| 79  | 2     | T2    | 268.4 | 337.8 | 294.7 |
| 80  | 2     | T2    | 240.2 | 312.1 | 318.9 |

# Appendix B14 Data for trial 2 (T2) locomotor activity for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

\*Each value represents the total duration (sec) time each rat spent in locomotor activity for each 10 minute session.

Appendix B15 Data (see column "Total") used to calculated the total social behaviour (Chapter 5) for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group | Sniffing | Following | Grooming | Mounting | Crawling<br>under/over | Total |
|-----|-------|----------|-----------|----------|----------|------------------------|-------|
| 251 | 1     | 21.9     | 0.8       | 0        | 0        | 10                     | 32.7  |
| 252 | 1     | 17.4     | 4.2       | 0        | 0        | 7.6                    | 29.2  |
| 253 | 1     | 40.5     | 6.8       | 0        | 0.2      | 12                     | 59.5  |
| 254 | 1     | 76.9     | 2.2       | 0.5      | 0.4      | 1                      | 81    |
| 255 | 1     | 66.6     | 4.4       | 0        | 0        | 4.5                    | 75.5  |
| 256 | 1     | 85.9     | 17.8      | 0        | 0        | 3.1                    | 106.8 |
| 257 | 1     | 39.7     | 1.9       | 0        | 7.5      | 4.7                    | 53.8  |
| 258 | 1     | 47.2     | 4.7       | 0        | 0        | 23.4                   | 75.3  |
| 259 | 1     | 54.3     | 6.3       | 0        | 0        | 20.4                   | 81    |
| 260 | 1     | 101.1    | 3.1       | 0        | 0.2      | 1.6                    | 106   |
| 261 | 1     | 40.1     | 0.2       | 0        | 0        | 18.1                   | 58.4  |
| 262 | 1     | 87.8     | 15.5      | 0        | 0        | 7.7                    | 111   |
| 263 | 2     | 16.8     | 0.1       | 0        | 0        | 4.9                    | 21.8  |
| 264 | 2     | 29.2     | 2.6       | 0        | 0        | 3.7                    | 35.5  |
| 265 | 2     | 20.8     | 3.7       | 0        | 0        | 3.6                    | 28.1  |
| 266 | 2     | 19.2     | 1         | 0        | 0        | 0.6                    | 20.8  |
| 267 | 2     | 24.3     | 0.6       | 0        | 0        | 0.6                    | 25.5  |
| 268 | 2     | 89.4     | 2.8       | 0        | 2.2      | 2.6                    | 97    |
| 269 | 2     | 4.8      | 0.1       | 0        | 0        | 2.5                    | 7.4   |
| 270 | 2     | 2.4      | 0.2       | 0        | 3.5      | 6.9                    | 13    |
| 271 | 2     | 18.9     | 0.2       | 0        | 0        | 1.1                    | 20.2  |
| 272 | 2     | 65.7     | 1.8       | 0        | 0        | 9.5                    | 77    |
| 273 | 2     | 52.1     | 1.3       | 0        | 0.3      | 0.8                    | 54.5  |
| 274 | 2     | 19.6     | 0.1       | 0        | 2        | 3.7                    | 25.4  |

\*Each value represents the cumulative duration (sec) of each social behaviour for each rat for each 10 minute session. These behaviours were then summed to obtain a total social behaviour score.

# Appendix B16 Data (see column "Total") used to calculated the total social behaviour (Chapter 5) for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group | Sniffing | Following | Grooming | Mounting | Crawling<br>under/over | Total |
|-----|-------|----------|-----------|----------|----------|------------------------|-------|
| 137 | 1     | 76.4     | 12.4      | 7.1      | 0        | 6                      | 101.9 |
| 143 | 1     | 15.9     | 0         | 0        | 0        | 0                      | 15.9  |
| 138 | 1     | 28.7     | 0         | 0        | 0        | 1.8                    | 30.5  |
| 144 | 1     | 24.9     | 0         | 0        | 0        | 0                      | 24.9  |
| 139 | 1     | 58.2     | 15.3      | 0        | 3.3      | 12.1                   | 88.9  |
| 145 | 1     | 19.1     | 0.1       | 0        | 0        | 5.3                    | 24.5  |
| 140 | 1     | 48.8     | 1.8       | 0        | 0        | 0.9                    | 51.5  |
| 146 | 1     | 64.4     | 5.5       | 0        | 0        | 0                      | 69.9  |
| 141 | 1     | 41.6     | 5.5       | 0        | 0        | 2.3                    | 49.4  |
| 147 | 1     | 58.6     | 10.1      | 0        | 1.2      | 7.2                    | 77.1  |
| 142 | 1     | 6.2      | 1.3       | 0        | 1.9      | 4.1                    | 13.5  |
| 148 | 1     | 51       | 6.2       | 0        | 0        | 10.8                   | 68    |
| 149 | 2     | 21.7     | 0.3       | 0        | 0.6      | 5.2                    | 27.8  |
| 155 | 2     | 12.2     | 0.3       | 0        | 0        | 0.9                    | 13.4  |
| 150 | 2     | 20.8     | 1.6       | 0        | 1.4      | 8.5                    | 32.3  |
| 156 | 2     | 10.5     | 1.2       | 0        | 0        | 0.3                    | 12    |
| 151 | 2     | 5.2      | 0.9       | 0        | 1.1      | 0.1                    | 7.3   |
| 157 | 2     | 4.3      | 0.7       | 1        | 0.6      | 0.2                    | 6.8   |
| 152 | 2     | 13.5     | 1.2       | 0        | 0        | 0.7                    | 15.4  |
| 158 | 2     | 8.1      | 0.5       | 0        | 0.7      | 3.9                    | 13.2  |
| 153 | 2     | 26.6     | 0.8       | 0        | 1        | 0.3                    | 28.7  |
| 159 | 2     | 19.7     | 1         | 0        | 0        | 1.8                    | 22.5  |
| 154 | 2     | 15.1     | 1.4       | 0        | 1.1      | 1                      | 18.6  |
| 160 | 2     | 40.8     | 4.6       | 2        | 0        | 2.1                    | 49.5  |

\*Each value represents the cumulative duration (sec) of each social behaviour for each rat for each 10 minute session. These behaviours were then summed to obtain a total social behaviour score.

# Appendix B17 Data (see column "Total") used to calculated the total social behaviour (Chapter 5) for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group | Sniffing | Following | Grooming | Mounting | Crawling<br>under/over | Total |
|-----|-------|----------|-----------|----------|----------|------------------------|-------|
| 57  | 1     | 55.3     | 12.3      | 0        | 0        | 10.2                   | 77.8  |
| 58  | 1     | 13.7     | 0.3       | 0        | 6.5      | 2.4                    | 22.9  |
| 59  | 1     | 51.7     | 4         | 0        | 0        | 0.1                    | 55.8  |
| 60  | 1     | 122.5    | 9         | 0        | 0.1      | 24.5                   | 156.1 |
| 61  | 1     | 97.7     | 23.5      | 0        | 0        | 18.7                   | 139.9 |
| 62  | 1     | 51.7     | 2.1       | 2        | 1.1      | 1                      | 57.9  |
| 63  | 1     | 74.4     | 27.5      | 0        | 0.4      | 16                     | 118.3 |
| 64  | 1     | 50.7     | 0.8       | 0        | 0        | 0.2                    | 51.7  |
| 65  | 1     | 81.9     | 16.9      | 0        | 0        | 37.4                   | 136.2 |
| 66  | 1     | 25.7     | 1         | 0        | 0.1      | 5.7                    | 32.5  |
| 67  | 1     | 84.1     | 8.6       | 0        | 0        | 4                      | 96.7  |
| 68  | 1     | 79.8     | 13.9      | 0        | 0        | 9                      | 102.7 |
| 69  | 2     | 33.2     | 15.2      | 0        | 0        | 0                      | 48.4  |
| 70  | 2     | 12.3     | 0.8       | 0        | 0        | 6.3                    | 19.4  |
| 71  | 2     | 28.1     | 0.8       | 0        | 0.2      | 4.7                    | 33.8  |
| 72  | 2     | 16.3     | 0.8       | 0        | 0        | 0                      | 17.1  |
| 73  | 2     | 34.8     | 1         | 0        | 0        | 6.4                    | 42.2  |
| 74  | 2     | 23.9     | 10        | 0        | 0        | 1.4                    | 35.3  |
| 75  | 2     | 15.4     | 0.4       | 0        | 0        | 0.3                    | 16.1  |
| 76  | 2     | 42.6     | 0.6       | 0        | 0        | 7.3                    | 50.5  |
| 77  | 2     | 4.1      | 0.2       | 0        | 0        | 0                      | 4.3   |
| 78  | 2     | 24.2     | 1.7       | 0        | 0        | 0.6                    | 26.5  |
| 79  | 2     | 41.2     | 0.4       | 0        | 2.9      | 17.4                   | 61.9  |
| 80  | 2     | 55.9     | 18.1      | 0        | 2.6      | 1.8                    | 78.4  |

\*Each value represents the cumulative duration (sec) of each social behaviour for each rat for each 10 minute session. These behaviours were then summed to obtain a total social behaviour score.

| Rat | Group | Sniffing | Following | Grooming | Kicking | Mounting | Jumping on | Wrestling/ | Crawling under/ |
|-----|-------|----------|-----------|----------|---------|----------|------------|------------|-----------------|
|     |       |          |           |          |         |          |            | boxing     | over            |
| 251 | 1     | 21.9     | 0.8       | 0        | 0       | 0        | 0.5        | 58.5       | 10              |
| 252 | 1     | 17.4     | 4.2       | 0        | 0       | 0        | 6.7        | 92.3       | 7.6             |
| 253 | 1     | 40.5     | 6.8       | 0        | 0       | 0.2      | 3.2        | 30.1       | 12              |
| 254 | 1     | 76.9     | 2.2       | 0.5      | 0       | 0.4      | 14.7       | 25.1       | 1               |
| 255 | 1     | 66.6     | 4.4       | 0        | 0       | 0        | 4.4        | 23         | 4.5             |
| 256 | 1     | 85.9     | 17.8      | 0        | 0       | 0        | 2.9        | 37.1       | 3.1             |
| 257 | 1     | 39.7     | 1.9       | 0        | 0       | 7.5      | 5.1        | 67.2       | 4.7             |
| 258 | 1     | 47.2     | 4.7       | 0        | 0       | 0        | 7.7        | 100.5      | 23.4            |
| 259 | 1     | 54.3     | 6.3       | 0        | 0       | 0        | 2          | 25.1       | 20.4            |
| 260 | 1     | 101.1    | 3.1       | 0        | 0       | 0.2      | 11.1       | 28.5       | 1.6             |
| 261 | 1     | 40.1     | 0.2       | 0        | 0       | 0        | 5.3        | 16.3       | 18.1            |
| 262 | 1     | 87.8     | 15.5      | 0        | 0       | 0        | 0.7        | 35.5       | 7.7             |
| 263 | 2     | 16.8     | 0.1       | 0        | 0       | 0        | 0.6        | 23.1       | 4.9             |
| 264 | 2     | 29.2     | 2.6       | 0        | 0       | 0        | 0.2        | 26.1       | 3.7             |
| 265 | 2     | 20.8     | 3.7       | 0        | 0       | 0        | 3.9        | 81.2       | 3.6             |
| 266 | 2     | 19.2     | 1         | 0        | 0       | 0        | 0          | 0          | 0.6             |
| 267 | 2     | 24.3     | 0.6       | 0        | 0       | 0        | 2.9        | 12.9       | 0.6             |
| 268 | 2     | 89.4     | 2.8       | 0        | 0       | 2.2      | 7.4        | 0.6        | 2.6             |
| 269 | 2     | 4.8      | 0.1       | 0        | 0       | 0        | 2.4        | 58         | 2.5             |
| 270 | 2     | 2.4      | 0.2       | 0        | 0       | 3.5      | 4.3        | 38.5       | 6.9             |
| 271 | 2     | 18.9     | 0.2       | 0        | 0       | 0        | 0          | 39.6       | 1.1             |
| 272 | 2     | 65.7     | 1.8       | 0        | 0       | 0        | 0.8        | 0          | 9.5             |
| 273 | 2     | 52.1     | 1.3       | 0        | 0       | 0.3      | 12.1       | 37.8       | 0.8             |
| 274 | 2     | 19.6     | 0.1       | 0        | 0       | 2        | 4.7        | 1.8        | 3.7             |

Appendix B18 Data used to analyse each social interaction behaviour inclusive of both non-aggressive (Chapter 5) and aggressive (Chapter 6) social behaviours for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group | Sniffing | Following | Grooming | Kicking | Mounting | Jumping on | Wrestling/<br>boxing | Crawling under/<br>over |
|-----|-------|----------|-----------|----------|---------|----------|------------|----------------------|-------------------------|
| 137 | 1     | 76.4     | 12.4      | 7.1      | 0       | 0        | 8          | 0                    | 6                       |
| 143 | 1     | 15.9     | 0         | 0        | 0       | 0        | 0.2        | 0                    | 0                       |
| 138 | 1     | 28.7     | 0         | 0        | 0       | 0        | 0          | 0                    | 1.8                     |
| 144 | 1     | 24.9     | 0         | 0        | 0       | 0        | 0          | 0                    | 0                       |
| 139 | 1     | 58.2     | 15.3      | 0        | 0       | 3.3      | 7.5        | 35.2                 | 12.1                    |
| 145 | 1     | 19.1     | 0.1       | 0        | 0       | 0        | 6.3        | 72.6                 | 5.3                     |
| 140 | 1     | 48.8     | 1.8       | 0        | 0       | 0        | 4.6        | 0.6                  | 0.9                     |
| 146 | 1     | 64.4     | 5.5       | 0        | 0       | 0        | 4.6        | 0                    | 0                       |
| 141 | 1     | 41.6     | 5.5       | 0        | 0       | 0        | 4          | 48.7                 | 2.3                     |
| 147 | 1     | 58.6     | 10.1      | 0        | 0       | 1.2      | 5.6        | 44.2                 | 7.2                     |
| 142 | 1     | 6.2      | 1.3       | 0        | 0.7     | 1.9      | 0          | 1.2                  | 4.1                     |
| 148 | 1     | 51       | 6.2       | 0        | 0       | 0        | 4.4        | 1.8                  | 10.8                    |
| 149 | 2     | 21.7     | 0.3       | 0        | 0       | 0.6      | 0.4        | 0                    | 5.2                     |
| 155 | 2     | 12.2     | 0.3       | 0        | 0       | 0        | 1.3        | 0                    | 0.9                     |
| 150 | 2     | 20.8     | 1.6       | 0        | 0       | 1.4      | 2.3        | 14.6                 | 8.5                     |
| 156 | 2     | 10.5     | 1.2       | 0        | 0       | 0        | 0          | 16                   | 0.3                     |
| 151 | 2     | 5.2      | 0.9       | 0        | 0       | 1.1      | 2.1        | 43.1                 | 0.1                     |
| 157 | 2     | 4.3      | 0.7       | 11       | 0       | 0.6      | 1.1        | 44.1                 | 0.2                     |
| 152 | 2     | 13.5     | 1.2       | 0        | 0       | 0        | 2.7        | 11.4                 | 0.7                     |
| 158 | 2     | 8.1      | 0.5       | 0        | 0.2     | 0.7      | 0          | 13.9                 | 3.9                     |
| 153 | 2     | 26.6     | 0.8       | 0        | 0       | 1        | 2.4        | 5.4                  | 0.3                     |
| 159 | 2     | 19.7     | 1         | 0        | 0       | 0        | 0.6        | 12.1                 | 1.8                     |
| 154 | 2     | 15.1     | 1.4       | 0        | 0       | 1.1      | 1.1        | 17.5                 | 1                       |
| 160 | 2     | 40.8     | 4.6       | 2        | 0       | 0        | 2          | 24.5                 | 2.1                     |

# Appendix B19 Data used to analyse each social interaction behaviour inclusive of both non-aggressive (Chapter 5) and aggressive (Chapter 6) social behaviours for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group | Sniffing | Following | Grooming | Kicking | Mounting | Jumping on | Wrestling/ | Crawling under/ |
|-----|-------|----------|-----------|----------|---------|----------|------------|------------|-----------------|
|     |       |          |           |          |         |          |            | boxing     | over            |
| 57  | 1     | 55.3     | 12.3      | 0        | 0       | 0        | 1.8        | 0.2        | 10.2            |
| 58  | 1     | 13.7     | 0.3       | 0        | 0       | 6.5      | 4.9        | 17         | 2.4             |
| 59  | 1     | 51.7     | 4         | 0        | 0       | 0        | 1          | 0          | 0.1             |
| 60  | 1     | 122.5    | 9         | 0        | 0       | 0.1      | 0          | 0.1        | 24.5            |
| 61  | 1     | 97.7     | 23.5      | 0        | 0       | 0        | 8          | 3          | 18.7            |
| 62  | 1     | 51.7     | 2.1       | 2        | 0       | 1.1      | 1          | 0          | 1               |
| 63  | 1     | 74.4     | 27.5      | 0        | 0       | 0.4      | 6.5        | 1.2        | 16              |
| 64  | 1     | 50.7     | 0.8       | 0        | 0       | 0        | 2.7        | 35.5       | 0.2             |
| 65  | 1     | 81.9     | 16.9      | 0        | 0       | 0        | 0          | 0          | 37.4            |
| 66  | 1     | 25.7     | 1         | 0        | 0       | 0.1      | 1.4        | 0          | 5.7             |
| 67  | 1     | 84.1     | 8.6       | 0        | 0       | 0        | 3.6        | 0.9        | 4               |
| 68  | 1     | 79.8     | 13.9      | 0        | 0       | 0        | 0.1        | 0          | 9               |
| 69  | 2     | 33.2     | 15.2      | 0        | 0       | 0        | 0.4        | 0          | 0               |
| 70  | 2     | 12.3     | 0.8       | 0        | 0       | 0        | 0          | 0          | 6.3             |
| 71  | 2     | 28.1     | 0.8       | 0        | 0       | 0.2      | 0.1        | 0.5        | 4.7             |
| 72  | 2     | 16.3     | 0.8       | 0        | 0       | 0        | 0.2        | 0.2        | 0               |
| 73  | 2     | 34.8     | 1         | 0        | 0       | 0        | 0          | 0          | 6.4             |
| 74  | 2     | 23.9     | 10        | 0        | 0       | 0        | 0.3        | 0          | 1.4             |
| 75  | 2     | 15.4     | 0.4       | 0        | 0       | 0        | 0          | 0          | 0.3             |
| 76  | 2     | 42.6     | 0.6       | 0        | 0       | 0        | 0.8        | 0          | 7.3             |
| 77  | 2     | 4.1      | 0.2       | 0        | 0       | 0        | 0.2        | 1          | 0               |
| 78  | 2     | 24.2     | 1.7       | 0        | 0       | 0        | 1.9        | 0          | 0.6             |
| 79  | 2     | 41.2     | 0.4       | 0        | 0       | 2.9      | 0.5        | 0.2        | 17.4            |
| 80  | 2     | 55.9     | 18.1      | 0        | 0       | 2.6      | 0.1        | 0          | 1.8             |

### Appendix B20 Data used to analyse each social interaction behaviour inclusive of both non-aggressive (Chapter 5) and aggressive (Chapter 6) social behaviours for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group                                | Emergence<br>latency |
|-----|--------------------------------------|----------------------|
| 253 | 1                                    | 45.4                 |
| 252 | 1                                    | 2.9                  |
| 251 | 1                                    | 27.1                 |
| 262 | 1                                    | 62.3                 |
| 260 | 1                                    | 12.2                 |
| 259 | 1                                    | 10.1                 |
| 254 | 1                                    | 49.5                 |
| 255 | 1                                    | 8.5                  |
| 261 | 1                                    | 29.7                 |
| 257 | 1                                    | 0.7                  |
| 256 | 1                                    | 1.1                  |
| 258 | 1                                    | 6                    |
| 269 | 2                                    | 67.7                 |
| 266 | 2                                    | 5.6                  |
| 274 | 2                                    | 27.1                 |
| 271 | 2                                    | 3.1                  |
| 267 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 69.2                 |
| 264 | 2                                    | 18                   |
| 273 | 2                                    | 10.6                 |
| 270 | 2                                    | 30.6                 |
| 268 | 2<br>2<br>2                          | 99.2                 |
| 263 |                                      | 89.5                 |
| 272 | 2                                    | 2.4                  |
| 265 | 2                                    | 60.8                 |

Appendix B21 Data used to analyse emergence latency for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

Appendix B22 Data used to analyse emergence latency for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Croup | Emorgonoo    |
|-----|-------|--------------|
| Rai | Group | Emergence    |
| 139 | 1     | latency<br>9 |
|     |       |              |
| 155 | 2     | 12.2         |
| 138 | 1     | 37           |
| 152 | 2     | 36.6         |
| 137 |       | 10.8         |
| 160 | 2     | 18.7         |
| 148 |       | 3.7          |
| 157 | 2     | 1.2          |
| 146 | 1     | 0.7          |
| 153 | 2     | 2.1          |
| 145 | 1     | 8.6          |
| 150 | 2     | 5.1          |
| 140 |       | 6.6          |
| 159 | 2     | 6.4          |
| 141 |       | 5.2          |
| 156 | 2     | 4.8          |
| 147 |       | 7.7          |
| 154 | 2     | 7.4          |
| 143 | 1     | 73.2         |
| 149 | 2     | 21.1         |
| 142 | 1     | 1.5          |
| 158 | 2     | 1.5          |
| 144 |       | 4.1          |
| 151 | 2     | 1.9          |

### Appendix B23 Data used to analyse emergence latency for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group            | Emergence<br>latency |
|-----|------------------|----------------------|
| 59  | 1                | latency<br>9.7       |
| 75  | 2                | 13.3                 |
| 58  | 2                | 21.6                 |
| 72  |                  | 8.8                  |
| 57  | 2<br>1<br>2<br>1 | 21.1                 |
| 80  | 2                | 13.8                 |
| 68  |                  | 6.6                  |
| 77  | 2<br>1           | 19.5                 |
| 66  |                  | 15                   |
| 73  | 2                | 4                    |
| 65  |                  | 5.1                  |
| 70  | 2<br>1           | 8.2                  |
| 60  | 1                | 13.5                 |
| 79  | 2                | 18.9                 |
| 61  | 1                | 7.7                  |
| 76  | 2<br>1           | 4.2                  |
| 67  |                  | 16.4                 |
| 74  | 2                | 17.5                 |
| 63  |                  | 10.4                 |
| 69  | 2                | 17.4                 |
| 62  |                  | 7.9                  |
| 78  | 2                | 10.3                 |
| 64  |                  | 2.6                  |
| 71  | 2                | 21.6                 |

| Rat | Group | Emergence | Open  | Risk       | Rears | Line    | Hide  |
|-----|-------|-----------|-------|------------|-------|---------|-------|
|     |       | frequency | field | assessment |       | crosses | box   |
| 253 | 1     | 5         | 203.1 | 14.1       | 0     | 29      | 61.8  |
| 252 | 1     | 4         | 246.2 | 0.7        | 0     | 52      | 35.4  |
| 251 | 1     | 2         | 230.3 | 1.4        | 0     | 65      | 53.9  |
| 262 | 1     | 4         | 144.4 | 18.8       | 0     | 26      | 131.9 |
| 260 | 1     | 5         | 224.1 | 6.6        | 0     | 87      | 54.1  |
| 259 | 1     | 4         | 228   | 0.8        | 0     | 77      | 52.7  |
| 254 | 1     | 5         | 210   | 8.3        | 0     | 64      | 69.1  |
| 255 | 1     | 6         | 212.5 | 0          | 0     | 40      | 65.8  |
| 261 | 1     | 10        | 164   | 0          | 0     | 28      | 109.7 |
| 257 | 1     | 2         | 243.1 | 0.7        | 0     | 64      | 42.9  |
| 256 | 1     | 4         | 232.8 | 0          | 0     | 75      | 52.2  |
| 258 | 1     | 3         | 226.4 | 3.8        | 0     | 68      | 60.1  |
| 269 | 2     | 2         | 216.9 | 20.6       | 0     | 19      | 73    |
| 266 | 2     | 4         | 227.3 | 8.3        | 0     | 57      | 53.4  |
| 274 | 2     | 2         | 180.5 | 14.9       | 0     | 56      | 86.7  |
| 271 | 2     | 4         | 219.5 | 0          | 0     | 90      | 51    |
| 267 | 2     | 4         | 183.4 | 15         | 0     | 22      | 105.5 |
| 264 | 2     | 5         | 227.9 | 8.5        | 0     | 59      | 60.7  |
| 273 | 2     | 4         | 216.4 | 1.6        | 0     | 78      | 62.9  |
| 270 | 2     | 4         | 211.1 | 12.7       | 0     | 67      | 58.5  |
| 268 | 2     | 8         | 180.3 | 1.4        | 0     | 38      | 104.6 |
| 263 | 2     | 7         | 161.8 | 5.7        | 0     | 37      | 121   |
| 272 | 2     | 3         | 253.2 | 0.2        | 0     | 99      | 38.4  |
| 265 | 2     | 8         | 212.3 | 1.9        | 0     | 63      | 75.8  |

# Appendix B24 Data used to analyse emergence test behaviours for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Rat | Group | Emergence<br>frequency | Open<br>field | Risk<br>assessment | Rears | Line<br>crosses | Hide<br>box |
|-----|-------|------------------------|---------------|--------------------|-------|-----------------|-------------|
| 139 | 1     | 3                      | 219.3         | 1                  | 0     | 77              | 51.6        |
| 138 | 1     | 3                      | 211.5         | 8.4                | 0     | 67              | 70.7        |
| 137 | 1     | 6                      | 232.4         | 5.9                | 0     | 59              | 55.1        |
| 148 | 1     | 3                      | 221.8         | 4.2                | 0     | 72              | 67.2        |
| 146 | 1     | 4                      | 243.7         | 0.6                | 0     | 96              | 27.6        |
| 145 | 1     | 3                      | 240.8         | 4.5                | 0     | 67              | 49.4        |
| 140 | 1     | 5                      | 249.5         | 1.1                | 0     | 83              | 40.9        |
| 141 | 1     | 10                     | 227.5         | 0.6                | 0     | 88              | 60.2        |
| 147 | 1     | 4                      | 241.6         | 3.5                | 0     | 74              | 44.9        |
| 143 | 1     | 3                      | 190.9         | 34                 | 0     | 41              | 88.2        |
| 142 | 1     | 4                      | 254.1         | 0                  | 0     | 111             | 25.9        |
| 144 | 1     | 6                      | 216.9         | 1                  | 0     | 67              | 67.1        |
| 155 | 2     | 5                      | 269.3         | 0.4                | 0     | 59              | 19.4        |
| 152 | 2     | 4                      | 206           | 4                  | 0     | 74              | 70.6        |
| 160 | 2     | 5                      | 263.7         | 6.2                | 0     | 42              | 28.4        |
| 157 | 2     | 3                      | 243.4         | 1.9                | 0     | 54              | 35.4        |
| 153 | 2     | 3                      | 274.5         | 0                  | 0     | 100             | 16.1        |
| 150 | 2     | 3                      | 219.7         | 1.6                | 0     | 68              | 51.7        |
| 159 | 2     | 6                      | 262.6         | 1.1                | 0     | 78              | 26          |
| 156 | 2     | 3                      | 270.7         | 0                  | 0     | 79              | 21.7        |
| 154 | 2     | 5                      | 262.8         | 0.3                | 0     | 60              | 23.9        |
| 149 | 2     | 3                      | 184.4         | 3.4                | 0     | 73              | 62.3        |
| 158 | 2     | 5                      | 264.7         | 0.1                | 0     | 83              | 26.1        |
| 151 | 2     | 6                      | 212.9         | 0.6                | 0     | 78              | 62.9        |

### Appendix B25 Data used to analyse emergence test behaviours for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

|     |       | -         |       |            |       |         |      |
|-----|-------|-----------|-------|------------|-------|---------|------|
| Rat | Group | Emergence | Open  | Risk       | Rears | Line    | Hide |
|     |       | frequency | field | assessment |       | crosses | box  |
| 59  | 1     | 4         | 252.5 | 0.3        | 0     | 93      | 35.5 |
| 58  | 1     | 8         | 184   | 2.2        | 0     | 71      | 89.8 |
| 57  | 1     | 3         | 204.8 | 1.1        | 0     | 95      | 44.2 |
| 68  | 1     | 7         | 200.3 | 0.4        | 0     | 74      | 34.5 |
| 66  | 1     | 6         | 210.6 | 1.9        | 0     | 77      | 69.7 |
| 65  | 1     | 5         | 246.5 | 0.8        | 0     | 88      | 41.4 |
| 60  | 1     | 5         | 216.7 | 4.5        | 0     | 71      | 63.7 |
| 61  | 1     | 4         | 239.5 | 2.4        | 0     | 66      | 52.2 |
| 67  | 1     | 7         | 221.6 | 6.6        | 0     | 67      | 71   |
| 63  | 1     | 5         | 221   | 1.1        | 0     | 60      | 67.2 |
| 62  | 1     | 6         | 224.1 | 1.7        | 0     | 79      | 67.2 |
| 64  | 1     | 4         | 230.6 | 0          | 0     | 67      | 58.8 |
| 75  | 2     | 3         | 214.1 | 0          | 0     | 73      | 61.9 |
| 72  | 2     | 5         | 237.4 | 0.2        | 0     | 94      | 43.9 |
| 80  | 2     | 4         | 207.6 | 0          | 0     | 73      | 56.7 |
| 77  | 2     | 4         | 212.4 | 5.2        | 0     | 76      | 58.3 |
| 73  | 2     | 4         | 129.5 | 1.4        | 0     | 42      | 66.4 |
| 70  | 2     | 5         | 221   | 2.2        | 0     | 81      | 70   |
| 79  | 2     | 4         | 225.7 | 8.6        | 0     | 60      | 64.7 |
| 76  | 2     | 7         | 215   | 9.8        | 0     | 56      | 76.3 |
| 74  | 2     | 6         | 203.4 | 2.4        | 0     | 76      | 77.5 |
| 69  | 2     | 7         | 200.3 | 0.7        | 0     | 76      | 82.9 |
| 78  | 2     | 4         | 239.7 | 1.8        | 0     | 72      | 49.9 |
| 71  | 2     | 4         | 232.4 | 0.8        | 0     | 53      | 62   |

# Appendix B26 Data used to analyse emergence test behaviours for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Peri | Group | Cort    | Med | Cort     | NA   | NA    | Lat Sep | BNST | Amy bas | Amy cen | Amy med | Peri gray | Peri gray | Peri gray | Hipp | Hipp |
|------|-------|---------|-----|----------|------|-------|---------|------|---------|---------|---------|-----------|-----------|-----------|------|------|
| Rat  |       | insular | CPU | piriform | core | shell | ven     | ld   | nuc     | nuc     | nuc     | dor       | lat       | vent      | CA1  | CA3  |
| 251  | 1     | 0       | 0   | 1        | 0    | 0     | 2       | 0    | 0       | 0       | 1       | 0         | 0         | 0         | 0    | 0    |
| 252  | 1     | 4       | 3   | 54       | 0    | 2     | 18      | 3    | 1       | 2       | 7       | 9         | 2         | 1         | 0    | 0    |
| 253  | 1     | 1       | 1   | 55       | 0    | 0     | 0       | 0    | 7       | 18      | 22      | 11        | 15        | 2         | 0    | 0    |
| 254  | 1     | 1       | 0   | 34       | 0    | 0     | 6       | 0    | 4       | 5       | 5       | 10        | 15        | 17        | 0    | 2    |
| 257  | 1     | 0       | 0   | 6        | 0    | 0     | 1       | 0    | 4       | 4       | 3       | 1         | 2         | 1         | 0    | 1    |
| 258  | 1     | 2       | 3   | 51       | 0    | 0     | 5       | 0    | 6       | 8       | 5       | 13        | 9         | 8         | 0    | 1    |
| 259  | 1     | 0       | 0   | 18       | 0    | 0     | 9       | 0    | 3       | 11      | 12      | 9         | 13        | 17        | 0    | 0    |
| 260  | 1     | 0       | 2   | 24       | 0    | 1     | 3       | 0    | 3       | 6       | 1       | 3         | 3         | 5         | 0    | 0    |
| 263  | 2     | 0       | 0   | 9        | 0    | 0     | 1       | 0    | 1       | 3       | 1       | 2         | 1         | 1         | 0    | 0    |
| 264  | 2     | 4       | 2   | 50       | 0    | 1     | 9       | 0    | 0       | 0       | 5       | 1         | 2         | 19        | 0    | 0    |
| 265  | 2     | 0       | 1   | 15       | 0    | 1     | 6       | 1    | 0       | 2       | 3       | 3         | 6         | 3         | 0    | 0    |
| 266  | 2     | 1       | 11  | 84       | 6    | 1     | 18      | 0    | 6       | 5       | 16      | 7         | 2         | 8         | 0    | 0    |
| 269  | 2     | 0       | 5   | 55       | 0    | 0     | 29      | 0    | 4       | 9       | 11      | 10        | 15        | 23        | 1    | 1    |
| 270  | 2     | 0       | 0   | 17       | 0    | 0     | 2       | 0    | 0       | 0       | 8       | 2         | 0         | 12        | 0    | 0    |
| 271  | 2     | 3       | 4   | 46       | 2    | 5     | 7       | 0    | 8       | 5       | 15      | 1         | 8         | 10        | 2    | 2    |
| 272  | 2     | 1       | 8   | 20       | 0    | 0     | 6       | 0    | 1       | 1       | 10      | 1         | 5         | 0         | 0    | 1    |

### Appendix B27 Data used to compare Fos for perinatal vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Adol | Group | Cort    | Med | Cort     | NA   | NA    | Lat Sep | BNST | Amy bas | Amy cen | Amy med | Peri gray | Peri gray | Peri gray | Hipp | Hipp |
|------|-------|---------|-----|----------|------|-------|---------|------|---------|---------|---------|-----------|-----------|-----------|------|------|
| Rat  |       | insular | CPU | piriform | core | shell | ven     | ld   | nuc     | nuc     | nuc     | dor       | lat       | vent      | CA1  | CA3  |
| 137  | 1     | 1       | 0   | 4        | 1    | 0     | 1       | 1    | 0       | 3       | 1       | 0         | 0         | 0         | 0    | 0    |
| 138  | 1     | 0       | 2   | 30       | 1    | 1     | 7       | 7    | 5       | 0       | 1       | 2         | 3         | 5         | 0    | 0    |
| 139  | 1     | 0       | 0   | 13       | 0    | 0     | 2       | 2    | 3       | 0       | 9       | 0         | 0         | 0         | 0    | 0    |
| 140  | 1     | 0       | 0   | 1        | 0    | 0     | 1       | 1    | 0       | 0       | 0       | 0         | 0         | 9         | 0    | 0    |
| 143  | 1     | 1       | 1   | 12       | 1    | 0     | 3       | 0    | 1       | 0       | 9       | 0         | 0         | 2         | 0    | 0    |
| 144  | 1     | 0       | 0   | 8        | 0    | 0     | 3       | 0    | 0       | 0       | 0       | 1         | 0         | 10        | 0    | 0    |
| 145  | 1     | 0       | 0   | 2        | 0    | 0     | 4       | 0    | 2       | 1       | 9       | 6         | 0         | 5         | 0    | 0    |
| 146  | 1     | 0       | 0   | 5        | 0    | 0     | 11      | 0    | 0       | 4       | 3       | 4         | 0         | 1         | 0    | 0    |
| 149  | 2     | 0       | 0   | 1        | 0    | 0     | 3       | 0    | 0       | 1       | 1       | 0         | 0         | 10        | 0    | 0    |
| 150  | 2     | 0       | 2   | 70       | 2    | 0     | 7       | 7    | 5       | 1       | 1       | 3         | 1         | 4         | 0    | 0    |
| 151  | 2     | 0       | 0   | 10       | 0    | 1     | 5       | 0    | 0       | 1       | 2       | 1         | 1         | 0         | 0    | 0    |
| 152  | 2     | 1       | 2   | 5        | 0    | 0     | 2       | 0    | 0       | 5       | 17      | 3         | 0         | 12        | 0    | 1    |
| 155  | 2     | 0       | 0   | 0        | 1    | 0     | 2       | 1    | 3       | 0       | 0       | 0         | 0         | 1         | 0    | 0    |
| 156  | 2     | 0       | 0   | 5        | 0    | 0     | 2       | 0    | 2       | 2       | 6       | 3         | 0         | 15        | 0    | 0    |
| 157  | 2     | 2       | 0   | 3        | 0    | 1     | 3       | 0    | 0       | 0       | 1       | 2         | 1         | 5         | 0    | 0    |
| 158  | 2     | 0       | 0   | 2        | 0    | 0     | 0       | 1    | 0       | 0       | 0       | 2         | 0         | 0         | 0    | 0    |

### Appendix B28 Data used to compare Fos for adolescent vehicle (group= 1) and CP 55,940 (group= 2) treated rats

| Adult | Group | Cort    | Med | Cort     | NA   | NA    | Lat Sep | BNST | Amy bas | Amy cen | Amy med | Peri gray | Peri gray | Peri gray | Hipp | Hipp |
|-------|-------|---------|-----|----------|------|-------|---------|------|---------|---------|---------|-----------|-----------|-----------|------|------|
| Rat   |       | insular | CPU | piriform | core | shell | ven     | ld   | nuc     | nuc     | nuc     | dor       | lat       | vent      | CA1  | CA3  |
| 57    | 1     | 0       | 0   | 2        | 0    | 3     | 1       | 0    | 0       | 0       | 3       | 5         | 1         | 2         | 0    | 0    |
| 58    | 1     | 5       | 5   | 64       | 1    | 10    | 10      | 1    | 16      | 7       | 0       | 0         | 1         | 9         | 0    | 0    |
| 59    | 1     | 0       | 0   | 8        | 0    | 0     | 0       | 4    | 0       | 0       | 1       | 0         | 0         | 3         | 0    | 0    |
| 60    | 1     | 2       | 0   | 20       | 0    | 0     | 1       | 0    | 2       | 3       | 5       | 2         | 0         | 0         | 0    | 0    |
| 64    | 1     | 8       | 5   | 60       | 3    | 13    | 4       | 0    | 3       | 3       | 10      | 1         | 2         | 13        | 2    | 0    |
| 65    | 1     | 1       | 0   | 10       | 0    | 0     | 0       | 0    | 0       | 2       | 1       | 0         | 0         | 0         | 1    | 0    |
| 66    | 1     | 1       | 0   | 9        | 0    | 3     | 0       | 0    | 2       | 0       | 1       | 10        | 0         | 1         | 0    | 0    |
| 67    | 1     | 1       | 0   | 12       | 0    | 1     | 0       | 0    | 0       | 1       | 2       | 1         | 0         | 1         | 0    | 0    |
| 69    | 2     | 0       | 0   | 6        | 0    | 0     | 2       | 0    | 0       | 6       | 5       | 1         | 2         | 7         | 0    | 0    |
| 70    | 2     | 0       | 0   | 16       | 0    | 0     | 3       | 0    | 0       | 4       | 5       | 1         | 0         | 4         | 0    | 1    |
| 71    | 2     | 0       | 0   | 15       | 0    | 0     | 0       | 0    | 0       | 1       | 2       | 1         | 0         | 0         | 1    | 0    |
| 72    | 2     | 0       | 0   | 23       | 0    | 1     | 4       | 0    | 1       | 5       | 4       | 1         | 1         | 0         | 0    | 0    |
| 75    | 2     | 6       | 1   | 11       | 4    | 3     | 0       | 0    | 2       | 1       | 3       | 2         | 0         | 7         | 1    | 0    |
| 76    | 2     | 1       | 10  | 48       | 0    | 8     | 4       | 0    | 5       | 7       | 12      | 1         | 1         | 0         | 0    | 0    |
| 77    | 2     | 3       | 0   | 20       | 0    | 0     | 0       | 0    | 0       | 2       | 4       | 0         | 0         | 0         | 0    | 0    |
| 78    | 2     | 0       | 2   | 16       | 4    | 5     | 4       | 0    | 0       | 0       | 6       | 2         | 1         | 4         | 0    | 0    |

### Appendix B29 Data used to compare Fos for adult vehicle (group= 1) and CP 55,940 (group= 2) treated rats

#### FOREWORD TO APPENDIX C

The following article was published in the *Journal of Psychopharmacology*, Issue 18(4), pages 503-509, 2004. Malini E. Singh, a PhD colleague; Paul E. Mallet, my primary PhD supervisor; and Dr. Iain S. McGregor, my cosupervisor appear as co-authors on the paper, which is titled "Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats". This research was supported by an ARC Discovery Grant, a UNERA, and an Australian Postgraduate Award (APA). Although a large part of this research took place during PhD candidature, a portion constituted partial requirement of the MPsych (Clinical), therefore, this publication is presented here for the reader's interest only.

### Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats

Melanie O'Shea School of Psychology, University of New England, Armidale, New South Wales, Australia. Malini E. Singh School of Psychology, University of New England, Armidale, New South Wales, Australia. Iain S. McGregor School of Psychology, Sydney University, New South Wales, Australia. Paul E. Mallet School of Psychology, University of New England, Armidale, New South Wales, Australia.

#### Abstract

Although many studies have examined the acute behavioural effects of cannabinoids in rodents, few have examined the lasting effects of cannabinoids at different developmental ages. This study compared lasting effects of cannabinoid exposure occurring in adolescence to that occurring in early adulthood. Forty, 30-day old (adolescent) and 18, 56-day old (adult) female albino Wistar rats were injected with vehicle or incremental doses of the cannabinoid receptor agonist (–)-*cis*-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-*trans*-4-(3-hydroxypropyl) cyclohexanol (CP 55,940) once per day for 21 consecutive days (150, 200 and 300  $\mu$ g/kg i.p. for 3, 8 and 10 days, respectively). Following a 21-day drug-free period, working memory was assessed using an object recognition task. Locomotor activity was also measured in the object recognition apparatus via a ceiling-mounted passive infrared sensor. Three days later, anxiety was assessed using a social interaction test. In



10.1177/0269881104047277

the object recognition task, significantly poorer working memory was observed in the adolescent but not adult CP 55,940-treated rats. Adolescent, but not adult CP 55,940-treated rats, also exhibited a significant decrease in social interaction with a novel conspecific. These results suggest that chronic exposure to a cannabinoid receptor agonist well after the immediate postnatal period, but before reaching sexual maturity, can lead to increased anxiety and a lasting impairment of working memory.

#### Keywords

adolescent, anxiety, cannabinoid, CP 55,940, memory, object recognition, rat, social interaction

#### Introduction

*Cannabis sativa* has been used for thousands of years for both recreational and medical purposes but, despite this long history, very little is known about the long-lasting neurobehavioural effects of chronic cannabis use. The residual effects of cannabinoids, defined as the effects that persist long after the drug has left the central nervous system (CNS) (Pope *et al.*, 1995), have received only sparse research interest. In particular, the effects of cannabis initiation occurring in and around the adolescent period remains relatively unknown. Human cannabis use is commonly initiated in adolescence (Scallet, 1991), which coincides with major neuronal changes in the CNS (Ehrenreich *et al.*, 1999). Furthermore, in recent years, the age of initiation of cannabis use is becoming earlier in life. For example, a survey conducted in 1998 found that

over 78% of adolescents had reported cannabis initiation at 14 years or younger compared to previous findings of 64% in 1992 (McCreary Centre Society, 1999). It is therefore of interest to determine whether adolescent cannabis use can produce lasting effects on cognitive function and emotion.

In the rat, adolescence can be defined as the period just before reaching sexual maturity (6–8 weeks; Fallon, 1995). Major changes in neuronal structure occur at this age, and the administration of cannabinoids at this time may produce marked changes in neuronal function (Rodríguez de Fonseca *et al.*, 1991). A few studies on rats corresponding to the same age (30–40 days old) have addressed the residual effects of cannabinoids on learning (Fehr *et al.*, 1976; Stiglick and Kalant, 1982, 1983). In these studies, varying doses of  $\Delta^9$ -tetrahydrocannabinol (THC) were administered to 30-day old rats for 1–6 months, followed by a

Corresponding author: Paul E. Mallet, School of Psychology, University of New England, Armidale NSW 2351, Australia. Email: paul.mallet@une.edu.au

drug-free period of 1–2 months. Impairments on radial arm maze (note that this is a test of memory as well as learning) and motor coordination tasks were observed in rats treated with high doses for 6 months. The same investigators (Stiglick and Kalant, 1985) aimed to determine whether age at exposure could be a key determinant of these residual deficits. THC was administered to 70-day old adult rats for 3 months. After a 1–4 month drug-free period, no residual deficits were evident.

The possibility that human adolescents may be particularly vulnerable to adverse effects of cannabis is a matter of some recent speculation (Solowij and Grenyer, 2002). Although few human studies have specifically addressed this issue, there is some evidence that exposure during adolescence may lead to lasting deficits in attention (Ehrenreich *et al.*, 1999) and working memory (Schwartz *et al.*, 1989).

In humans, one of the most commonly reported effects of cannabinoid administration is an acute impairment of working memory (Miller, 1984). In animals, memory is impaired by the acute administration of THC, the endogenous cannabinoid anandamide (Compton et al., 1996; Mallet and Beninger, 1996), or synthetic cannabinoids including (-)-cis-3-[2-hydroxy-4-(1,1dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940) and WIN 55,212-2 (Lichtman et al., 1995). A second commonly reported outcome of acute cannabis intoxication in humans is increased anxiety (Thomas, 1996). Frequent use has also been found to result in an increase in symptoms of anxiety (Patton et al., 2002). In animals, these same anxiogenic effects are found by administering THC and other cannabinoids such as cannabinol (van Ree et al., 1984), HU-210 (Giuliani et al., 2000) and CP 55,940 (Arevalo et al., 2001; Marin et al., 2002). Some evidence of residual anxiety after discontinued administration has also been found (Ferrari et al., 1999; Giuliani et al., 2000).

The aim of the current study was to assess the possible lasting effects of chronic cannabinoid exposure on working memory and anxiety in adolescent and adult rats, using the synthetic cannabinoid CP 55,940. CP 55,940 produces behavioural and physiological effects analogous to THC including analgesia, catalepsy and hypothermia, which are similar in profile and time-course (Little *et al.*, 1988).

The object recognition task (Ennaceur and Delacour, 1988) was chosen to assess working memory because it has been found to be sensitive to both memory-enhancing (Ennaceur et al., 1989), and memory-impairing treatments (Ennaceur et al., 1997). Working memory is defined here as the immediate retention of information needed to respond to a current task or activity (Honig, 1978). The object recognition task is considered to be a test of 'pure' working memory because it has no reference memory component such as rule learning, and does not require the use of positive or negative reinforcers, such as food or electric shock (Ennaceur and Delacour, 1988). The task takes advantage of the rats' innate tendency to explore novel rather than familiar objects. A reduced tendency to prefer novel over familiar objects is indicative of working memory dysfunction. The task traditionally consists of two trials with intervening delays. Preference for the novel object relative to the familiar object typically decreases as the delays increase. The measurement of locomotor activity was introduced as an adjunct to this task to determine whether drug exposure results in long-term alterations in physical performance. Anxiety was assessed using the social interaction test (File, 1980), which involves measuring the interactions between a treated rat and an unfamiliar conspecific. The social interaction test has been well validated using a variety of anxiolytic (File *et al.*, 2001) and anxiogenic drugs (Irvine *et al.*, 2001) and has been recently used by our group to highlight residual anxiogenic effects of the popular recreational drug MDMA ('Ecstasy') (Morley *et al.*, 2001).

#### Materials and methods

#### Subjects

Fifty-eight female Wistar rats were used. The adolescent group (30 days old) comprised 20 drug-treated rats and 20 vehicle-treated rats. The adult group (56 days old) consisted of nine drug-treated rats and nine vehicle controls. Female rats were used because a previous study in humans found a larger association between cannabis use and anxiety in females compared to males (Patton *et al.*, 2002). Animals had access to food and water *ad libitum* and were group-housed in a temperature and humidity controlled colony room maintained on a 12 : 12 hour light/dark cycle.

#### Drug preparation and administration

CP 55,940 (Tocris Cookson, Avonmouth, UK) was dissolved in a vehicle containing 15  $\mu$ I Tween 80 (polyoxyethylene sorbitan monooleate, ICN Biochemicals, Seven Hills, NSW, Australia), per 2 ml physiological saline. All injections were administered intraperitoneally in a volume of 1 ml/kg body weight. Rats in the drug-treated group received increasing doses of CP 55,940 for 21 consecutive days (150, 200 and 300  $\mu$ g/kg for 3, 8 and 10 days, respectively), while the control group received similar exposure to the drug's vehicle. These moderate to high doses were chosen to be within the range known to produce behavioural effects in rats. Incrementally larger doses were used to counteract the development of drug tolerance because immature rats tend to develop tolerance to cannabinoids at a faster rate than mature rats (Barnes and Fried, 1974).

#### Apparatus and procedure

**The Object Recognition Task** The experimental chamber was a clear Perspex box ( $610 \times 260 \times 400$  mm). Experiments were run under low light conditions. Each trial was videotaped using a black and white CCD camera with infrared illumination. Locomotor activity was measured by a passive infrared sensor (Quantum passive infrared motion sensor, NESS Security Products, Sydney, Australia, part no. 890-087-2) connected to a computer with custom software to detect and record time spent in motion. A 10-µF capacitor located near LK2 of the printed circuit board of the sensor was replaced with a 0.1-µF capacitor serving to alter the sensor alarm period from 5 s to approximately 50 ms.

Objects used included coffee mugs, tin cans, plastic bottles, rice bowls, red plastic boxes and tubs of hair gel. A pilot study found this particular object set to elicit similar baseline rates of investigation. To eliminate any possible influence of olfactory cues, objects existed in triplicate such that two of the objects could be used in the first trial and the remaining object was used in the second trial. Objects were washed with Pyroneg (Johnson Diversey, Smithfield, NSW, Australia) before each trial, and the experimental chamber floor and walls were wiped between trials with a 1 : 10 vinegarwater solution. The assignment of objects used in any given trial was counterbalanced such that object combinations were distributed equally across groups.

Rats were habituated to the experimental chamber for two non-consecutive 2-min periods to reduce experimental chamber novelty. Formal testing began the next day. In the first trial  $(T_1)$ , each rat was presented with two identical objects for 10 min. The aim of this trial was simply to provide an opportunity for the rats to explore two similar copies of an object. During the second trial  $(T_2)$ , which occurred either 2 or 6 h later, the rats were again presented with two objects for 10 min. This time one object was novel, and the other was a triplicate of the original object presented in  $T_1$ . All rats were tested twice such that they experienced both delays between  $T_1$  and  $T_2$ . In half the rats, the 2-h delay occurred first; in the other half, the 6-h delay occurred first. Testing in the second delay condition took place on the day after the first delay condition. The time spent exploring the objects during  $T_1$  and  $T_2$  were videorecorded. Object exploration was said to occur when the rat's snout was placed within 2 cm of the object. Climbing on or sitting on the object was not recorded. An observer blind to the group allocations manually scored the video recordings of each trial using the software package ODLog (Macropod Software, 2001; www.macropodsoftware.com).

**The Social Interaction Test** The experimental chamber was a rectangular box constructed of clear glass  $(620 \times 300 \times 360 \text{ mm})$ , dimly lit by a floor lamp (60 W) located 1 m away from the box. On the day following social interaction testing, rats were habituated to the chamber for two non-consecutive 2-min periods. Testing began the next day, and involved the random pairing of each experimental rat with an untreated 'stimulus' rat for 10 min. Each trial was videotaped using a black and white CCD camera with infrared illumination. Subsequent behavioural analysis involved manually scoring the video recorded trials using ODLog software. Only the behaviour of the experimental rats was examined. Scored behaviours included sniffing, following, wrestling/boxing and grooming.

#### Statistical analysis

**Object recognition** The time spent exploring objects during  $T_1$  was calculated by summing the time spent exploring each identical object to produce a single score. These values were then compared using two (one for each age group) mixed design (treatment × delay) analysis of variance (ANOVA) with repeated measures on the delay factor. A three-way (age × treatment × delay) ANOVA with repeated measures on the delay factor was also used to compare treatments at each age group.

The percentage of time spent investigating the novel object in  $T_2$  was calculated according to the formula  $N/(N + F) \times 100$ , where

N and F represented time spent investigating the novel and familiar objects, respectively. These values were then analysed using the same tests described for the  $T_1$  data.

**Locomotor activity** Time spent in motion was recorded during all sessions. These values were then compared across experimental conditions using two age  $\times$  treatment ANOVAs and one age  $\times$  treatment  $\times$  delay ANOVA as described previously for object recognition data.

**Social interaction** For each rat, the amount of time spent sniffing, following, wrestling/boxing and grooming were summed to produce a single social interaction score. A two-way ANOVA (age  $\times$  treatment) was used to compare the social interaction between adolescent and adult groups. Separate *t*-tests were used to compare treatments at each age group.

Where the ANOVA assumptions were not met, randomization tests of scores were conducted using NPFact version 1.0. In all cases, the randomization tests supported the ANOVA findings. Thus, for ease of interpretation only, the ANOVA results have been presented. All ANOVAs were conducted using SPSS 11.0.2 (Chicago, Illinois, USA).

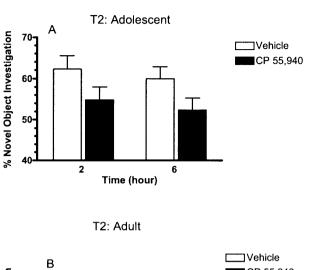
#### Results

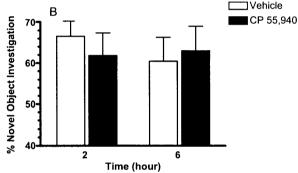
#### Object recognition

**Trial 1** In the adolescent rats, a mixed design ANOVA (treatment  $\times$  delay) with repeated measures on the second factor revealed that the main effect of treatment [F(1,38), p < 1.0] and the treatment by delay interaction [F(1,38), p < 1.0] were not significant, whereas the delay main effect was significant [F(1,38) = 5.47, p < 0.05] (Fig. 1A). Within the adult groups, the main effect of treatment [F(1,16), p < 1.0], the delay main effect [F(1,16) < 1.0] and the treatment by delay interaction [F(1,16), p < 1.0] were not significant (Fig. 1B).

The three-way ANOVA (age × treatment × delay) revealed no significant main effects for age [F(1,54), p < 1.0], treatment [F(1,54), p < 1.0] or delay [F(1,54) = 2.44, p > 0.05]. The age × treatment-delay interaction [F(1,54), p < 1.0], the age-treatment interaction [F(1,54), p < 1.0] and the age-delay interaction [F(1,54) = 1.19, p > 0.05] were not significant.

**Trial 2** Within adolescent treatment groups, the preference for novel over familiar objects was lower in the CP 55,940-treated group compared to vehicle controls. A mixed design (treatment × delay) ANOVA with repeated measures on delay revealed that the main effect of treatment was significant [F(1,38) = 8.23, p < 0.01]. However, the delay main effect [F(1,38), p < 1.0] and the treatment by delay interaction [F(1,38), p < 1.0] were not significant, suggesting that the delays had little effect on working memory (Fig. 2A). Within adult treatment groups, the main effect of treatment [F(1,16), p < 1.0] and the treatment by delay interaction [F(1,16), p < 1.0] and the treatment by delay interaction [F(1,16), p < 1.0] were not significant (Fig. 2, B).





**Figure 1** Object recognition: time (s) spent exploring identical objects in trial 1 ( $T_1$ ) for adolescent (A) and adult (B) rats (n = 40 and 18, respectively) 2 or 6 h before the recognition test. Rats in half of each age group received 21 daily injections of either vehicle or CP 55,940 ending 22 days before testing

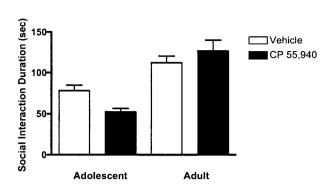
A three-way ANOVA (age × treatment × delay) revealed that the main effect of age was significant [F(1,54) = 5.12, p < 0.05]. The main effect of treatment [F(1,54) = 3.00, p > 0.05] and delay [F(1,54), p < 1.0] were not significant. The age × treatment × delay interaction [F(1,54), p < 1.0], the age × treatment interaction [F(1,54) = 1.74, p > 0.05] and the age × delay interaction [F(1,54), p < 1.0] were not significant.

#### Locomotor activity

**Trial 1** Locomotor activity did not differ across delays or treatments during  $T_1$  in the adolescent rats. At the 2-h delay the mean ± SEM was 350.8 ± 34.9 and 351.4 ± 34.9 for vehicle- and CP 55,940-treated rats, respectively. At the 6-h delay values were 278.2 ± 29.6 and 357.9 ± 29.6. A mixed design (treatment × delay) ANOVA with repeated measures on delay revealed that the main effect of treatment [F(1,38), p = 1.0], the main effect of delay [F(1,38) = 2.25, p > 0.05] and the treatment by delay interaction [F(1,38) = 3.23, p > 0.05] were not significant. Locomotor activity also did not differ across delays or treatments during  $T_1$  in the adult rats. At the 2-h delay the mean ± SEM was 300.1 ± 9.9 and






**Figure 2** Object recognition: percentage of time investigating the novel object during  $T_2$  for adolescent (A) and adult rats. The recognition test occurred either 2 or 6 h following  $T_1$ . Rats in half of each age group received 21 daily injections of either vehicle or CP 55,940 ending 22 days before testing

298.5  $\pm$  9.9 for vehicle- and CP 55,940-treated rats, respectively. At the 6-h delay these values were 273.7  $\pm$  9.5 and 286.6  $\pm$  9.5, respectively. ANOVA revealed that the main effect of treatment [*F*(1,16), *p* < 1.0], the main effect of delay [*F*(1,16) = 3.15, *p* > 0.05] and the treatment by delay interaction [*F*(1,16), *p* < 1.0] were not significant.

A three-way ANOVA (age × treatment × delay) revealed that the main effect of age [F(1,54) = 2.19, p > 0.05], the main effect of treatment [F(1,54), p < 1.0] and the delay main effect [F(1,54) =2.37, p > 0.05] were not significant. The age × treatment × delay interaction [F(1,54), p < 1.0], the age × treatment interaction [F(1,54), p < 1.0] and the age × delay interaction [F(1,54), p < 1.0] were not significant.

#### Trial 2

Locomotor activity did not differ across delays or treatments during  $T_2$  in the adolescent rats. At the 2-h delay, the mean  $\pm$  SEM was  $325.9 \pm 36.9$  and  $315.4 \pm 36.9$  for vehicle- and CP 55,940-treated rats, respectively. At the 6-h delay, values were  $342.4 \pm 38.2$  and



**Figure 3** Social interaction: time (s) spent in social interaction for adolescent (n = 40) and adult (n = 18) rats. Rats in half of each age group received 21 daily injections of either vehicle or CP 55,940 ending 23 days before testing

 $347.6 \pm 38.2$ . A mixed design (treatment × delay) ANOVA with repeated measures on delay revealed that the main effect of treatment [F(1,38), p < 1.0], the main effect of delay [F(2,38) = 1.17, p > 0.05] and the treatment by delay interaction [F(1,38), p < 1.0] were not significant. Similarly, locomotor activity did not differ across delays or treatments during  $T_2$  in the adult rats. At the 2-h delay, the mean  $\pm$  SEM was 280.4  $\pm$  18.3 and 255.9  $\pm$  18.3 for vehicle- and CP 55,940-treated rats. At the 6-h delay, these values were 293.4  $\pm$  11.7 and 291.6  $\pm$  11.7, respectively. ANOVA showed that the main effect of treatment [F(1,16), p < 1.0], main effect of delay [F(2,16) = 2.16, p > 0.05] and treatment by delay interaction [F(2,16), p < 1.0] were not significant.

A three-way ANOVA (age × treatment × delay) revealed that the main effect of age [F(1,54), 2.07, p > 0.05], main effect of treatment [F(1,54), p < 1.0] and delay main effect, [F(1,54) = 1.87, p > 0.05] were not significant. The age × treatment × delay interaction [F(1,54), p < 1.0], age × treatment interaction [F(1,54), p < 1.0] and age × delay interaction [F(1,54), p < 1.0] were not significant.

#### Social interaction

An independent samples *t*-test used to compare the social interaction of the adolescent rats alone revealed that the CP 55,940treated rats showed significantly less social interaction than the vehicle-treated group [t(38) = 3.36, p < 0.05] (Fig. 3). In adult rats, no significant difference in social interaction between vehicle and drug-treated groups was found [t(16) < 1.0] (Fig. 3).

A two-way ANOVA (age × treatment) comparing the social interaction between adolescent and adult groups revealed a significant main effect of age [F(1,54) = 50.37, p < 0.001]. The age × treatment interaction was also significant [F(1,54)] = 6.74, p < 0.05], suggesting that the adolescent rats exposed to CP 55,940 showed decreased social interaction compared to the adult groups. The treatment main effect was not significant [F(1,54)], p < 1.0].

#### Discussion

The results suggest that adolescent, but not adult rats treated with CP 55,940 showed reduced preference for a novel object over a familiar object relative to control animals at both delay intervals, suggesting that working memory was impaired. Locomotor activity during the object recognition task was not affected by CP 55,940 pre-treatment, suggesting that the results of the object recognition task cannot be attributed to a locomotor impairment or an overall lack of exploration.

The results of the social interaction test revealed that repeated pre-exposure to CP 55,940 significantly reduced social interaction compared to vehicle-treated rats in the adolescent rats, but not in the adult rats. Similar to the object recognition experiment, the results indicate that immature rats may incur lasting behavioural deficits from cannabinoid exposure, reflecting a residual effect of such exposure long after the drug has left the CNS.

The results of the object recognition experiment are in agreement with previous reports that cannabinoid exposure in immature (30-40 days old) but not mature rats (70 days old) impairs radial arm maze performance (Fehr et al., 1976; Stiglick and Kalant, 1982, 1983). The present results also agree with findings of a human study on age-related cannabis exposure (Ehrenreich et al., 1999), which assessed visual scanning along with other attentional functions in adult cannabis users whom had either been early (between ages 12-15 years) or late onset users (> 15 years). The results showed that early onset cannabis users had attention deficits specific to visual scanning, whereas late onset users did not. Another human study (Schwartz et al., 1989) found that cannabisusing adolescents maintained working memory deficits when assessed up to 6 weeks after the last drug administration. A previous review (Scallet, 1991) also supported the existence of agerelated residual effects by suggesting that lasting neurotoxic effects of THC appeared specific to young rats (40 days old or less), when exposure was chronic (> 90 days; 8-10% of the life span of a rat). At the time of the review, no other studies had demonstrated residual effects with shorter periods of exposure. However, in the current study, it was found that exposure for a mere 21 days (approximately 2% of a rat's life span) was sufficient to produce significant and lasting working memory deficits and increased anxiety.

To our knowledge, the present study is the first experiment to demonstrate residual anxiogenesis in younger rats resulting from prior exposure to CP 55,940. Recent studies have found evidence of a residual increase in anxiety in young adult rats chronically exposed to the cannabinoid receptor agonist HU-210 (Ferrari *et al.*, 1999; Giuliani *et al.*, 2000). In these studies, an increase in vocalizations and a heightened emotional response to novel environments were observed up to 7 days following exposure to the highest dose (100  $\mu$ g/kg) of HU-210. It is not clear why CP 55,940 exposure did not produce a residual increase in anxiety in adult rats in the present study; however, methodological differences may account for these discrepant findings. For example, a different cannabinoid receptor agonist was used, and the drug-free period was considerably longer in our study.

Despite the interesting and novel results in the present study, there were also a few unexpected findings. First, baseline social interaction was lower in adolescent treatment groups compared to adults. This finding may be related to an age-related difference in the response to mild chronic injection stress. Thus, chronic intraperitoneal injections (even saline) can induce mild stress (Jaskiw *et al.*, 1990). Although both adolescent and adult control rats experienced similar vehicle injections, saline-treated adolescent rats exposed to mild stress are more anxious in a similar social test situation compared to adults rats (Spear, 2000; Varlinskaya and Spear, 2004). Furthermore, previous studies on early life cannabinoid exposure (Navarro *et al.*, 1994, 1996) indicate sexually dimorphic differences between male and female rats, perhaps explaining the lower rates of social interaction in females.

Another unusual finding was the significant effect of delay on investigation time during  $T_1$  in the object recognition task. This result is difficult to interpret because delays were counterbalanced across testing days, and object investigation during  $T_1$  was measured before the occurrence of any delays. We have not found a significant effect of delay during  $T_1$  in any of our other work using this task and believe this finding can simply be attributed to Type 1 error. It is also not clear why the delay interval used had no significant effect on  $T_2$  performance; however, it is possible that the 2 h and 6 h delays used were too similar in duration. The inclusions of a much longer delay interval would most likely have resulted in a significant effect of delay.

Sex differences in cognition and affect in general have been observed in humans (Halpern, 2000), as well as animals (Beatty, 1979), and structural and biochemical sex differences have also been demonstrated (Arnold and Gorski, 1984). Furthermore, a study on residual cannabinoid effects in humans showed that males exhibited poorer performance on tests of cognition relative to females (Pope and Yurgelun-Todd, 1996), whereas a more recent human study found that daily cannabis use was associated with a five-fold increase in anxiety and depression in young females (Patton *et al.*, 2002). Some animal studies have shown that male rats are more sensitive to many of the behavioural effects of cannabinoids (Fernández-Ruiz *et al.*, 1992; Navarro *et al.*, 1996). Further studies should compare the results obtained in the present study using female rats with those found with male rats.

The research available to date on early versus late cannabis exposure is far from conclusive. Most studies have largely focused on the acute, and chronic effects of cannabinoids, rather than residual changes. Of increasing concern is the putative link between the time at first initiation of cannabis and lasting neurobehavioural alterations. With the onset of cannabis use occurring earlier amongst humans, there is an important need to confirm whether early life cannabis initiation has deleterious effects on psychological and social development.

#### Acknowledgements

This study was supported by the University of New England and a grant from the Australian Research Council to I.S.M. and P.E.M. The PhD studies of M.O. are supported by a University of New England Research Assistantship. The PhD studies of M.E.S. are supported by an Australian Postgraduate Award.

#### References

- Arevalo C, de Miguel R, Hernandez-Tristan R (2001) Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters. Pharmacol Biochem Behav 70: 123–131
- Arnold A P, Gorski R A (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci 7: 413–442
- Barnes C, Fried P A (1974) Tolerance to Δ9-THC in adult rats with differential Δ9-THC exposure when immature or during early adulthood. Psychopharmacology 34: 181–190
- Beatty W W (1979) Gonadal hormones and sex differences in nonreproductive behavior in rodents: organizational and activational effects. Horm Behav 12: 112–163
- Compton D R, Harris L S, Lichtman A H, Martin B R (1996) Marijuana. In Schuster C R, Kuhar M J (eds), Handbook of experimental pharmacology: pharmacological aspects of drug dependence. Springer, Berlin
- Ehrenreich H, Rinn T, Kunert H J, Moeller M R, Poser W, Schilling L, Gigerenzer G, Hoehe M R (1999) Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology 142: 295–301
- Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. I: Behavioral data. Behav Brain Res 31: 47-59
- Ennaceur A, Cavoy A, Costa J C, Delacour J (1989) A new one-trial test for neurobiological studies of memory in rats. II: Effects of piracetam and pramiracetam. Behav Brain Res 33: 197–207
- Ennaceur A, Neave N, Aggleton J P (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113: 509–519
- Fallon M T (1995) Rats and mice. In Laber-Laird K, Swindle M, Flecknell P (eds), Handbook of rodent and rabbit medicine. Pergamon, Tarrytown, NY
- Fehr K A, Kalant H, LeBlanc A E (1976) Residual learning deficit after heavy exposure to cannabis or alcohol in rats. Science 192: 1249–1251
- Fernández-Ruiz J J, Rodríguez de Fonseca F, Navarro M, Ramos J A (1992) Maternal cannabinoid exposure and brain development: changes in the ontogeny of dopaminergic neurons. In Murphy L, Bartke A (eds), Marijuana/cannabinoids: neurobiology and neurophysiology. CRC Press, Boca Raton, FL
- Ferrari F, Ottani A, Vivoli R, Giuliani D (1999) Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task. Pharmacol Biochem Behav 64: 555–561
- File S E (1980) The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Meth 2: 219–238
- File S E, Cheeta S, Akanezi C (2001) Diazepam and nicotine increase social interaction in gerbils: a test for anxiolytic action. Brain Res 888: 311–313
- Giuliani D, Ferrari F, Ottani A (2000) The cannabinoid agonist HU 210 modifies rat behavioural responses to novelty and stress. Pharmacol Res 41: 47–53
- Halpern D F (2000) Sex differences in cognitive abilities. Lawrence Erlbaum, Mahwah, NJ
- Honig W K (1978) Studies of working memory in the pigeon. In Hulse S E, Fowler H, Honig W K (eds), Cognitive processes in animal behavior. Erlbaum, Hillsdale, NJ
- Irvine E E, Cheeta S, Marshall M, File S E (2001) Different treatment regimens and the development of tolerance to nicotine's anxiogenic effects. Pharmacol Biochem Behav 68: 769–776
- Jaskiw G E, Karoum F K, Weinberger D R (1990) Persistent elevations in

dopamine and its metabolites in the nucleus accumbens after mild subchronic stress in rats with ibotenic acid lesions of the medial prefrontal cortex. Brain Res 534: 321–323

- Lichtman A H, Dimen K R, Martin B R (1995) Systemic or intrahippocampal cannabinoid administration impairs spatial memoy in rats. Psychopharmacology 119: 282–290
- Little P J, Compton D R, Johnson M R, Melvin L S, Marin B R (1988) Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther 247: 1046–1051
- Mallet P E, Beninger R J (1996) The endogenous cannabinoid receptor agonist anandamide impairs memory in rats. Behav Pharmacol 7: 276–284
- Marin S, Marco E, Biscaia M, Fernandez B, Rubio M, Guaza C, Schmidhammer H, Viveros M P (2002) Involvement of the k-opioid receptor in the anxiogenic-like effect of CP 55 940 in male rats. Pharmacol Biochem Behav 6808: 1–8
- McCreary Centre Society (1999) Healthy connections: listening to BC youth. The McCreary Centre Society, Burnaby, BC
- Miller L L (1984) Marijuana: acute effects on human memory. In Agurell S, Dewey W L, Willette R E (eds), The cannabinoids: chemical, pharmacologic, and therapeutic aspects. Academic Press, Orlando, FL
- Morley K C, Gallate J E, Hunt G E, Mallet P E, McGregor I S (2001) Increased anxiety and impaired memory in rats 3 months after administration of 3,4-methylenedioxymethamphetamine ('Ecstasy') but not damptetamine. Eur J Pharmacol 433: 91–99
- Navarro M, Rubio P, Rodriguez de Fonseca F (1994) Sex-dimorphic psychomotor activation after perinatal exposure to (-)-Δ9-tetrahydrocannabinol. An ontogenic study in Wistar rats. Psychopharmacology *116*: 414-422
- Navarro M, de Miguel R, Rodríguez de Fonseca F, Ramos J A, Fernández-Ruiz J J (1996) Perinatal cannabinoid exposure modifies the sociosexual approach behavior and the mesolimbic dopaminergic activity of adult male rats. Behav Brain Res 75: 91–98
- Patton G C, Coffey C, Carlin J B, Degenhardt L, Lynskey M, Hall W (2002) Cannabis use and mental health in young people: cohort study. BMJ 325: 1195–1198

- Pope H G Jr, Yurgelun-Todd D (1996) The residual cognitive effects of heavy marijuana use in college students. JAMA 275: 521–527
- Pope H G Jr, Gruber A J, Yurgelun-Todd D (1995) The residual neuropsychological effects of cannabis: the current status of research. Drug Alcohol Depend 38: 25–34
- Rodríguez de Fonseca F, Cebeira M, Fernández-Ruiz J J, Navarro M, Ramos J A (1991) Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons. Neuroscience 43: 713–723
- Scallet A C (1991) Neurotoxicology of cannabis and THC: a review of chronic exposure studies in animals. Pharmacol Biochem Behav 40: 671–676
- Schwartz R H, Gruenewald P J, Klitzner M, Fedio P (1989) Short-term memory impairment in cannabis-dependent adolescents. Am J Dis Child 143: 1214–1219
- Solowij N, Grenyer B F (2002) Are the adverse consequences of cannabis use age-dependent? Addiction 97: 1083–1086
- Spear L P (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24: 417–463
- Stiglick A, Kalant H (1982) Learning impairment in the radial-arm maze following prolonged cannabis treatment in rats. Psychopharmacology 77: 117–123
- Stiglick A, Kalant H (1983) Behavioral effects of prolonged administration of  $\Delta 9$ -tetrahydrocannabinol in the rat. Psychopharmacology 80: 325–330
- Stiglick A, Kalant H (1985) Residual effects of chronic cannabis treatment in behavior in mature rats. Psychopharmacology 85: 436–439
- Thomas H (1996) A community survey of adverse effects of cannabis use. Drug Alcohol Depend 42: 201–207
- van Ree J M, Niesink R J, Nir I (1984) delta 1-Tetrahydrocannabinol but not cannabidiol reduces contact and aggressive behavior of rats tested in dyadic encounters. Psychopharmacology 84: 561–565
- Varlinskaya E I, Spear L P (2004) Acute ethanol withdrawal (hangover) and social behaviour in adolescent and adult male and female spraguedawley rats. Alcohol Clin Exp Res 28: 40–50