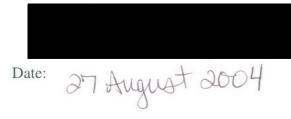
The Influence of Novel Feeding Systems on the Behaviour of Captive Female Common Marmosets, *Callithrix jacchus*

By

Samantha Bjone Bachelors of Science Millersville University, U.S.A.

A thesis submitted for the degree of Master of Arts with Honours of the Faculty of Arts, University of New England.


August 2004

Certificate

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis and all sources used have been acknowledged in this thesis.

Samantha Bjone

Acknowledgements

I will be forever grateful to my supervisors, Dr. Ian Price and Dr. Paul McGreevy. Both supervisors were always available to discuss and answer questions. They created a stable environment in which to learn, and because of their guidance and support, I was able to write this thesis.

This thesis would not have been possible without the upstanding and honourable Professor Bill Noble.

Thank you to Professor Gisela Kaplan, Professor Lesley Rogers, and the School of Biological, Biomedical and Molecular Sciences for the learning experience with the marmosets. Thank you to the Brain and Behaviour group at the University of New England.

I would like to thank Jane Davies and Thea Harris for their moral support, Dr. Stuart Cairns for his statistical assistance, and Craig Lawlor for his swift and endless technical support. Many thanks to Al Rummery and the staff at the Science Workshop at University of New England for constructing the experimental apparatus. Grahame Chaffey, the UNE Animal House Complex Manager, also deserves great praise for his patience and assistance at any time.

My appreciation goes to Jacqueline Thompson and Eugene Frazer who encouraged and supported my writing from the dark days of 9th grade English to the present. Special thanks goes to Mary Ellen Thompson and the Thompson family who supported me through this entire degree.

Finally, I would like to thank Angus McKenzie for his continual support and unfailing encouragement.

Abstract

The influence of novel feeding systems on the behaviour of eight female captive common marmosets, *Callithrix jacchus*, was determined through a series of experiments. Captive environments are often impoverished when compared to the richness of natural habitats and so can usually be found lacking in terms of choice, complexity, and change. Therefore, the welfare of animals kept in captive environments may be compromised. Environmental enrichment is used to improve welfare by emulating natural environments within captive environments so captive animals are provided with the surroundings and stimulation considered likely to promote species-typical behavioural repertoires.

The University of New England marmosets have rotating free access, via a runway system, to another room that is four times larger than their home cages. This room is furnished similarly to the home cage with a proportionally larger number of furnishings, such as perches, platforms, nest boxes, tubes, tunnels, tyres, and hanging objects. The female marmoset subjects do voluntarily enter the room and utilize the different areas, but they choose to spend significantly more time in the home cages. Therefore, the added room space may not be as useable as the home cages.

Since foraging enrichment is relatively inexpensive, easily implemented, and addresses some of the marked differences between captive and wild marmoset foraging strategies, foraging feeders were used in the present study. The current project examines the effects of four food distributions on the welfare of captive common marmosets: food centrally located in a stationary bowl, food in a bowl that changes location each day, hidden food in a clustered food source (cluster feeder), and hidden food in dispersed food sources (dispersed feeders). These four distributions were examined in four conditions with three intermediate conditions during which no additions were made to the typical room contents. These 'empty room' conditions were used to check possible order effects. The current study determined the behavioural effects of the four food distributions on activity, food apparatus use, eating, and self-directed and affiliative behaviours. The current study also determined whether food distribution altered the space use of the subjects in the short- and long-term.

Eight female common marmosets in four cage mate pairs were given free access from their respective home cages to the Exercise Rooms (ERs) in which the four experimental conditions were presented. The ER was divided into vertical and horizontal divisions, resulting in nine room sections. These sections were used to denote the feeder and bowl locations and to determine the subjects' use of space. Subjects had *ad libitum* access to the food bowls and water. The feeders were presented at the beginning of a testing session and withdrawn at the end. The cluster feeder was placed in one room section, while the dispersed feeders were placed throughout the nine ER sections.

The results indicate that both the cluster and dispersed feeders improved the welfare of eight female common marmosets by increasing their space use, activity, and the time spent acquiring and eating food as compared to the bowl only conditions. Both feeder types increased the time spent in the ER and activity within the room as compared to both bowl conditions. The cluster feeder increased the time spent in the ER

more than the dispersed feeders and this effect was sustained throughout the day after the feeders had been removed. However, the dispersed feeders increased activity within the room more than the cluster feeder and bowl conditions. Throughout all four experimental conditions, the study subjects moved within the High room sections the most and the Low room sections the least. However, the use of the Low room sections increased if there were dispersed feeders located within these sections. The cluster feeder also increased room use, as compared to the bowl conditions, but its effect was more localised. In particular, the cluster feeder shifted space use to the particular section in which it was located. As indicated by time spent with feeders and food bowls, the subjects preferred to interact with feeders rather than with food bowls. Of the two feeder types, the marmosets spent more time with the cluster feeder.

In addition, both feeder types were effective in reducing self-directed behaviours, and the marmosets manipulated the feeders rather than huddle or allogroom. Self-directed behaviours, such as scratching and grooming, have been linked to stress and stereotypical behaviour. Huddling and allogrooming may be incompatible with optimal use of objects or devices that are intended improve an animal's welfare. Therefore, a decrease in these behaviours would indicate improved welfare. Sitting also decreased from bowl to feeder conditions and the type of sitting shifted from passive, unengaged sitting next to a light during the bowl conditions to active, engaged sitting while eating during the feeder conditions.

The implementation of species-appropriate foraging devices during the feeder conditions resulted in an overall increase in activity, space use, and foraging as compared to the bowl conditions. Thus, these species-appropriate behaviours encompassed more of the marmosets' time budgets. Therefore, since the feeders induced species-typical behaviours and activities, the welfare of the marmosets improved in that regard as well as through the secondary effect of limiting the amount of spare time that could potentially be filled with abnormal behaviours. For all these reasons, both feeder types, cluster and dispersed, positively affected the study subjects and were therefore, enriching.

The present study's foraging feeders made a quantitatively large space qualitatively viable for the study subjects. This same experimental concept could be implemented in zoos and research facilities to improve the useability of a larger space and thus encourage animals to take advantage of the space available to them. Similarly, conservation reintroduction programmes could utilize the feeders to increase time spent acquiring and eating food, a necessary step to survival after reintroduction.

Table of Contents

Fitle page	i
Certificate	ii
Acknowledgements	iii
Abstract	iv
Fable of contents	vi
List of abbreviations	ix
List of figures	xi
List of tables	xiii

Chapter 1: Introduction

1.1 Animal welfare issues	2
1.2 Measuring animal welfare	7
1.3 Legislation	10
1.4 Environmental enrichment	13
1.5 Behavioural needs of common marmosets	20

Chapter 2: Methods

2.1 Introdu	uction	29
2.2 Subjec	cts	29
2.3 Housir	ng and husbandry	32
2.3.1	Housing	32
2.3.2	Husbandry	36
2.3.3	Diet	36

2.4 Appara	atus	9
2.4.1	Motion sensor camera	9
2.4.2	Food bowls	9
2.4.3	Cluster feeder)
2.4.4	Dispersed feeders	1
2.5 Genera	al methodology	2
2.5.1	Outline of experimental conditions	2
2	.5.1.1 Food bowl introduction	3
2	.5.1.2 Changing bowl position	9
2	.5.1.3 Cluster feeder introduction	0
2	.5.1.4 Dispersed feeders introduction	2
2.5.2	Behavioural scoring	2
2.5.3	Motion sensor photographs	7
2.6 Statisti	ical analysis	8

Chapter 3: Results

3.1	Introdu	ction	61
3.2	Behavi	ours likely to increase	61
	3.2.1	Room use	61
	3.2.2	Bowl and feeder interactions	67
	3.2.3	Food-related behaviours	72
3.3	Behavi	ours likely to decrease	73
	3.3.1	Sitting and other inactivity measures	73
	3.3.2	Self-directed and affiliative behaviours	77
	3.3.3	Vocalisations	80

Chapter 4: Discussion

4.1 Introd	luction	82
4.2 Behav	viours likely to increase	83
4.2.1	Room use	83
4.2.2	Bowl and feeder interactions	86
4.2.3	Food-related behaviours	88
4.3 Behav	viours likely to decrease	89
4.3.1	Sitting and other inactivity measures	
4.3.2	Self-directed and affiliative behaviours	
4.3.3	Vocalisations	
4.4 Impac	cts	
4.4.1	Zoological parks	
4.4.2	Conservation, breeding, and reintroduction programmes	
4.4.3	Research facilities	
4.5 Sugge	estions for policy and practice	
4.5.1	Systematic studies	
4.5.2	Re-evaluating general husbandry practices	
4.5.3	Legislation	
4.6 Limita	ations	100
4.7 Suggestions for further research		101
4.8 Conclusions		103

References104	
---------------	--

List of Abbreviations

AEC	Animal Ethics Committee
APHIS	Animal and Plant Health Inspection Service
Bowl	Bowl condition
CBP	Changing Bowl Position condition
CCAC	Canadian Council on Animal Care
CF	Cluster Feeder condition
DF	Dispersed Feeders condition
ER	Exercise Room
FAWC	Farm Animal Welfare Council
G-G	Greenhouse-Geisser adjustment
GL	Grooming next to a Light
GLT	Golden Lion Tamarin
GLTCP	Golden Lion Tamarin Conservation Program
GO	Grooming Overall
HI	Room section in the High and 1 st divisions
H2	Room section in the High and 2 nd divisions
H3	Room section in the High and 3 rd divisions
HC	Home Cage
HR	Home Room
HSC	Tukey's Honestly Significant Difference
IPS	International Primatology Society
Ll	Room section in the Low and 1 st divisions
L2	Room section in the Low and 2 nd divisions
L3	Room section in the Low and 3 rd divisions
M1	Room section in the Middle and 1 st divisions
M2	Room section in the Middle and 2 nd divisions
M3	Room section in the Middle and 3 rd divisions
MANOVA	Multivariate ANOVA
MSP	Motion Sensor Photographs

NHMRC	National Health and Medical Research Council
RMA	Repeated Measures ANOVA
SE	Sitting and Eating
SEM	Standard Error of the Mean
SL	Sitting next to a Light
SLE	Sitting next to a Light and Eating
SO	Sitting Overall
TG	Testing Group
UK	United Kingdom
UNE	University of New England
US	United States
USDA	United States Department of Agriculture

List of Figures

Page

Chapter 2: Methods

Figure 2.1:	Family groupings in each Home Room of the UNE marmoset colony during the current study, June-December 200331
Figure 2.2:	Room and cage arrangement for the UNE marmoset colony
Figure 2.3:	Figure 2.3: Typical layout of Exercise Rooms as depicted by a photograph of ER 1
Figure 2.4:	Photograph of Toshiba laptop and Logitech [®] QuickCam [®] Pro 4000 internet camera
Figure 2.5:	Two cage mates using the cluster feeder40
Figure 2.6:	Photograph of marmoset subject using a dispersed feeder41
Figure 2.7:	Three-dimensional diagram of ER with vertical and horizontal divisions47
Figure 2.8:	Aerial view of ER's Middle division and bowl positions during the CBP condition

Chapter 3: Results

Figure 3.1:	Time spent in the ER and number of entries into the ER62
Figure 3.2:	Time spent in the ER and number of entries into the ER during the 12-hour light cycle
Figure 3.3:	Total number of movements within the ER64
Figure 3.4:	Number of movements into the High, Middle, and Low room sections of the ER per testing session65
Figure 3.5:	Percentages of movements into each room section
Figure 3.6:	Time spent with the food bowl and the number of bowl interactions67
Figure 3.7:	Mean amount of food eaten from the HC and ER food bowls per day68

	Page
Figure 3.8:	Time spent eating and number of eating events
Figure 3.9:	Time spent with a feeder and number of feeder interactions70
Figure 3.10:	Time spent with a feeder or bowl for the Feeder conditions71
Figure 3.11:	Scent marking and gouging events72
Figure 3.12:	Time spent performing the four sitting behaviours: SO, SL, SE, and SLE74
Figure 3.13:	Number of events for the four sitting behaviours: SO, SL, SE, and SLE74
Figure 3.14:	Time spent performing the four sitting behaviours as percentages of total time spent in the ER
Figure 3.15:	Stretching events and light interactions76
Figure 3.16:	Number of scratching events77
Figure 3.17:	Number of GO and GL events for the Empty Room conditions78
Figure 3.18:	GO and GL times and events
Figure 3.19:	Huddling and allogrooming times and events
Figure 3.20:	Tsik and phee events

Page

Chapter 1: Introduction

Table 1.1:	Hierarchies of animals' needs as described by five reviews in the
	authors' terms

Chapter 2: Methods

Table 2.1:	Study subject and testing pair classification by enclosure	.34
Table 2.2:	Marmoset weights for the length of the study	37
Table 2.3:	Marmoset diet for the UNE colony	38
Table 2.4:	Experimental conditions presentation order	.44
Table 2.5:	Room divisions and resulting sections	.47
Table 2.6:	Apparatus food contents and locations	.49
Table 2.7:	Latin square of bowl positions	50
Table 2.8:	The number of feeders located in each room section, H1, H2, H3, M1, M2, M3, L1, L2, and L3, during the DF condition	.52
Table 2.9:	Definitions for behaviours recorded during testing sessions	.54
Table 2.10:	Summary table for the statistical analyses of all behaviours during the Empty Room conditions	60

Chapter 3: Results

Table 3.1:	Sum of vocalisation events and times exhibited by all eight	
	marmosets during each experimental condition	.80