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Abstract: After completing a spaceflight, astronauts display a salient upward shift in the position of
the brain within the skull, accompanied by a redistribution of cerebrospinal fluid. Magnetic resonance
imaging studies have also reported local changes in brain volume following a spaceflight, which have
been cautiously interpreted as a neuroplastic response to spaceflight. Here, we provide evidence
that the grey matter volume changes seen in astronauts following spaceflight are contaminated by
preprocessing errors exacerbated by the upwards shift of the brain within the skull. While it is
expected that an astronaut’s brain undergoes some neuroplastic adaptations during spaceflight, our
findings suggest that the brain volume changes detected using standard processing pipelines for
neuroimaging analyses could be contaminated by errors in identifying different tissue types (i.e.,
tissue segmentation). These errors may undermine the interpretation of such analyses as direct
evidence of neuroplastic adaptation, and novel or alternate preprocessing or experimental paradigms
are needed in order to resolve this important issue in space health research.

Keywords: space medicine; brain volumetry; microgravity

1. Introduction

With NASA’s Artemis plan [1] including crewed space missions to the Moon and
prospective missions to Mars, there is a significant interest in understanding the health risks
associated with long-duration spaceflight [2] and, in particular, its effects on the behaviour,
cognitive performance, and neurological functioning of astronauts [3]. Such concerns are
raised due to the unique and hazardous environment that astronauts are exposed to during
spaceflight, with many known factors that can alter or impair their neurological functioning,
such as weightlessness, radiation, isolation, and confinement [4].

One of the earliest, and now commonly-reported, neurological effects of spaceflight
is a salient redistribution of cerebrospinal fluid (CSF) within the astronaut’s skull [5–12];
that is, the brain largely ‘floats upward’ and displaces fluid from the topmost portions
of the intracranial cavity to its bottommost portions and the ventricles. In a clinical set-
ting, such as the study of neurodegenerative conditions such as Alzheimer’s disease, an
increase in ventricular volumes is indicative of increased global CSF and, therefore, a loss
of brain tissue. However, most studies [13] investigating the effects of spaceflight in astro-
nauts find that their total CSF volume does not change, nor does their overall brain tissue
volume [5,11,14,15], indicating that spaceflight is not grossly neurodegenerative. Never-
theless, many studies have identified some local changes in the volume of specific brain
regions in astronauts following a spaceflight. These include decreased grey matter volume
in the frontal, temporal, and occipital lobes [9,11,14], with marginally increased volumes
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in the postcentral [14] and supplementary motor cortex [6]; some opposite findings [7]
reported grey matter volume increases in the temporal and frontal cortex, with no focal
losses. Altogether, these findings seem to indicate that spaceflight is, indeed, producing
local volumetric changes in the brain of astronauts.

The neurological effects of spaceflight are typically construed [16,17] to largely arise
from either (1) a direct physical impact of the typical spaceflight environment on the
brain, or (2) an indirect neuroplastic change in response to the astronauts’ experience with
microgravity and adaptation to the spaceflight environment. The first, ‘direct physical’,
cause is best characterized by the mechanical forces exerted on the brain by the change in
gravitational force, which produces a headward shift of fluid in the body, as well as causes
the brain to shift upwards and creates local changes in CSF distribution; these changes
may accumulate over time while astronauts are in space [12,15], but are ostensibly caused
directly by exposure to microgravity. The second, ‘indirect’, cause attributed to neurolog-
ical changes due to spaceflight are the neuroplastic changes that result from astronauts’
functional adaptation to spaceflight [4,16], i.e., the brain responding to behavioural and
cognitive changes made by astronauts while they adjust to their new environment.

These two categories, as causal mechanisms, are neither exhaustive nor mutually
exclusive. However, the neurological effects generally attributable to direct exposure
to the spaceflight environment currently have little interpretive value from a cognitive
neuroscience perspective. For instance, CSF is not a functional tissue, and microgravity-
induced changes in local CSF volume are not expected to be directly associated with
changes in cognition or behaviour. That is not to say that CSF does not play an important
role in the brain, as CSF is known to provide structural support in the forum of buoyancy,
and functional support in the form of waste removal and nutrient delivery, among other
functions [18,19] and undoubtedly interacts with neighbouring neuronal tissue. However,
changes in local CSF volume are not directly indicative of neuroplastic adaptation or
degradation in the same way that local changes in grey matter volume can be [20,21].
Neurological adaptations to spaceflight, including those linked to changes in grey matter
volume, provide insight into the behavioural and cognitive challenges faced by astronauts,
as well as the mechanisms underlying their adaptations to this new environment [16,22,23].
These neuroplastic changes are particularly interesting as they may not always manifest in
directly observable behaviours; therefore, understanding these neuroplastic effects could
reveal unique insights and avenues for countermeasures or augmentations to improve
astronauts’ performance, safety, and quality of life while on long-duration spaceflights. The
disparity in interpretive value of these effects underscores the importance of dissociating
the direct effects of spaceflight (e.g., fluid redistribution) from the neuroplastic responses to
a spaceflight environment.

Investigating volumetric changes in the human brain through magnetic resonance
imaging (MRI) requires a series of important data processing steps [24]. One critical
preprocessing step before performing many volumetric analyses is to classify each voxel of
a brain image among a handful of tissue types, a procedure called ’tissue segmentation’.
These tissue types, which are typically differentiated on their signal intensities and spatial
locations [25], can be neuronal tissues with functional relevance (e.g., grey and white
matter) or other tissues with far lesser direct functional relevance such as skull and skin.
Unfortunately, in certain parts of the brain, the dura (the connective tissue that encapsulates
the brain) is directly adjacent to cortical grey matter and has a very similar intensity on
typical structural MRI images, making it difficult to distinguish where the grey matter ends
and the dura begins. As such, the automated segmentation of anatomical MRI images has
a well-known tendency to incorrectly classify some non-neuronal tissues, such as dura,
as grey matter [26,27]. The aforementioned CSF shift observed in astronauts between
preflight and postflight timepoints [10] results in the dura being closer to the top of the
brain and more distant from the bottom. This change in separation between the brain
and dura alters the location at which these segmentation errors are most likely to occur.
Therefore, the change in the spatial bias of segmentation errors could then manifest in
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apparent tissue ‘losses’ or ‘gains’—which may be merely ‘losses’ or ‘gains’ in misclassified
tissue [28–30]. This is particularly troublesome, as changes in grey matter volume are
typically indicative of neuroplastic processes, but this common segmentation error could
make this interpretation not valid in studies of spaceflight.

In this study, we analyzed pre- and post-spaceflight MRI data from 43 astronauts to
test the hypothesis that the grey matter segmentation errors produced during preprocessing
of MRI data are exacerbated by the upward astronauts’ brain shift (and downward CSF
redistribution) resulting from the extended exposure to microgravity during spaceflight.
Our findings provide the very first evidence that observable grey matter volume changes—
which would typically be interpreted as neuroplastic adaptations to spaceflight [4,16]—
appear to be driven by segmentation errors resulting from the microgravity-related CSF
redistribution and tissue displacement. First, we demonstrate that the spaceflight-related
fluid redistributions produce a common pattern of errors in classifying different types
of tissue in the brain; then, we show that these errors manifest as artifactual grey matter
gains and losses and are not indicative of actual neuroplastic responses to spaceflight. We
further illustrate that ‘multimodal segmentation’—a procedure known to be more robust
to these types of segmentation errors [26,31,32]—is unable to satisfactorily resolve these
misclassifications. The ubiquity of these errors suggests that novel data acquisition or pre-
processing pipelines will need to be identified and developed to permit valid neuroplastic
interpretations of any spaceflight-related changes in local brain volume.

2. Materials and Methods
2.1. Participants

We analyzed MRI data from 32 astronauts from the NASA Lifetime Surveillance of
Astronaut Health Program, as well as 11 astronauts who participated in the Canadian Space
Agency (CSA) project ‘Wayfinding’. This study was approved by the institutional review
boards of NASA’s Johnson Space Center and the University of Calgary. All participants
provided written informed consent, and NASA has reviewed this manuscript and ensured
it is compliant with the privacy standards of the NASA Astronaut Office. Our sample
was composed of 10 female and 33 male participants (Mean age = 47.79, SD = 5.06 years
at launch). Seven participants underwent short ~14-day spaceflights and the remainder
were on multi-month spaceflights (Mean mission duration = 158.27, SD = 79.08 days). All
participants underwent MRI scans pre- (Mean days before launch = 381.69, SD = 213.66)
and post- flight (Mean days after return = 6.68, SD = 5.79).

2.2. MRI Data Acquisition

MRI data for all participants were acquired on a 3T Siemens Verio at the League
City University of Texas Medical Branch Campus using a 32-channel head coil. Analyzed
retrospective data from the NASA Lifetime Surveillance of Astronaut Health Program
included a T1-weighted MPRAGE sequence (TR = 1.9 s, TE = 2.32 ms, TI = 0.9 s, FA = 9◦,
sagittal acquisition with in-plane resolution of 0.4883 by 0.4883 mm, and a slice thickness
of 0.9 mm), and a T2-weighted sequence (TR = 3.2 s, TE = 409 ms, FA = 120◦, sagittal
acquisition with in-plane resolution of 0.4883 by 0.4883 mm, and a slice thickness of 1 mm),
collected on Syngo versions B17 and B19. Analyzed data from the CSA ‘Wayfinding’ project
included a T1-weighted MPRAGE sequence (TR = 2.3 s, TE = 2.34 ms, TI = 0.9 s, FA = 8◦,
sagittal acquisition with in-plane resolution of 0.9766 by 0.9766 mm, and a slice thickness
of 1 mm) and a FLAIR sequence (TR = 5 s, TE = 354 ms, TI = 1.8 s, FA = 120◦, sagittal
acquisition with in-plane resolution of 0.9766 by 0.9766 mm, and a slice thickness of 1 mm),
collected on Syngo version B19.

2.3. MRI Data Preprocessing

We first reoriented the T2-weighted images (i.e., T2 and FLAIR) to a standard orien-
tation using fslreorient2std, included in FSL 6.0.4 [33]. Then, we used SPM12 v7771 [34]
to perform a rigid-body, normalized mutual information coregistration of each subject-
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timepoint’s T2-weighted image to the corresponding T1-weighted image, and resampled
the T2-weighted image to match the T1-weighted image’s voxel dimensions. For the ‘uni-
modal’ segmentation protocol, the T1-weighted images were segmented using SPM12′s
default unified segmentation procedure, except using 2 Gaussians each for grey and white
matter tissue classes [35], and a 1 mm separation distance. For the ‘multimodal’ segmen-
tation protocol, we included the resampled T2-weighted image as an additional channel,
with all other parameters held constant from the ‘unimodal’ segmentation protocol. SPM’s
default segmentation procedure includes intensity normalization preceding the segmen-
tation steps. For all subsequent preprocessing steps, we processed the unimodal and
multimodal streams independently. To warp the subjects’ data to MNI space, we then
created DARTEL [36] templates from the dartel-imported grey matter, white matter, and
CSF tissue classes and, subsequently, DARTEL-normalized these images to MNI space
at 1.5 mm isotropic resolution, preserving tissue amounts (i.e., ‘modulated’) and, subse-
quently, smoothed these modulated tissue maps with an 8 mm FWHM Gaussian kernel.
Then we subtracted each smoothed, modulated, normalized preflight tissue map from their
corresponding postflight tissue map to produce tissue volume change maps for analysis.

2.4. Voxel-Based Morphometry Analysis

Independently for the unimodal and multimodal segmentation preprocessing streams,
we entered each subject’s grey matter tissue change maps into one-sample t-test analyses
in SPM12, with the participants’ sex, age at launch, spaceflight duration, post-landing
MRI delay, and study group (NASA retrospective and ‘Wayfinding’ studies) modelled as
mean-centered covariates. We expect that the ‘study group’ covariate would account for
systematic effects of the different MRI acquisitions utilized in each group. We restricted the
analyses using implicit masking—ignoring voxels with no data—as well as an explicit mask
which constrained the analysis to voxels with values exceeding 0.1 in SPM12s default grey
matter tissue probability map, and excluded the brainstem, as defined in the ‘MNI structural
atlas’ included in FSL. The brainstem was excluded from our analyses because it has poor
contrast between grey and white matter, varying iron content, and is particularly sensitive
to physiological noise [37,38]. No global normalization was applied. We thresholded the
analyses using a two-tailed voxel height threshold of pFWE < 0.05, and only reported clusters
with extents equal to or exceeding 40 voxels (i.e., 135 mm3). All coordinates are reported in
MNI space.

2.5. Manual Segmentation

To provide a ‘ground truth’ state for comparison, we segmented the grey matter
within two regions of interest from ten subjects each. Regions of interest were selected to
encompass the largest grey matter ‘gain’ and ‘loss’ detected in the unimodal voxel-based
morphometry analysis, i.e., clusters 1 and 2 identified in Table A1. The first ROI ‘tentorium’
encompassed the medial occipital cortex and cerebellar tentorium, spanning a rectangular
prism from MNI −25, −99, −22 to MNI 25, −44, 18. The second ROI ‘falx’ encompassed
the medial precentral gyrus and cerebral falx, spanning a rectangular prism from MNI
−20, −51, 37 to MNI 20, −1, 87. For each ROI independently, we selected subjects for
tracing by first rank-ordering subjects based on the effect size at the peak voxel identified
in Table A1; i.e., MNI −2, −74, −6 for the ‘tentorium’ ROI, and MNI 6, −16, 63 for the ‘falx’
ROI. Then, from our 43 subjects, we selected the subjects with the 4th, 8th, . . . , 36th and
40th largest effects at each ROI to ensure a uniform sampling of effects across the study.
Files for tracing were prepared by taking MNI-normalized T1 images restricted to the
aforementioned coordinates, at a 0.8 mm isotropic resolution to improve the fidelity of the
manual segmentations. The two raters, F.B. and L.B., first traced the grey matter from a pair
of test ROIs, and a sufficiently high inter-rater agreement was met (mean Dice similarity of
0.80). Then, L.B. traced all ‘tentorium’ ROIs and F.B. traced all ‘falx’ ROIs. Raters were blind
to the automated segmentation delineations and effect sizes while tracing. Utilizing the
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deformation fields calculated in the voxel-based morphometry analysis, manual tracings
were warped to 1mm isotropic native space for quantification.

2.6. Comparison to Other Segmentation Algorithms

All subjects selected for manual segmentation were additionally processed by utilizing
segmentation implementations from Advanced Normalization Tools (ANTs) ‘ATROPOS’
(v2.3.5) [39], CAT12 (r1860) [40], FSL ‘FAST’ (v6.0.4; fsl.fmrib.ox.ac.uk, accessed on 4 Febru-
ary 2023) and Freesurfer (v7.1.1; surfer.nmr.mgh.harvard.edu, accessed on 4 February 2023).
Generally, default settings were selected for each algorithm, except where noted. These
settings are intended to be representative of typical, as opposed to ideal, performance
from these pipelines. Many software packages do not provide clear documentation on best
practices for multimodal segmentation, so poor performance from multimodal segmenta-
tion should be interpreted with caution and is not indicative of any shortcomings of that
particular software’s general capacity to perform accurate segmentation.

2.6.1. Advanced Normalization Tools Pipeline

Subjects’ T1 and T2-weighted images were first bias-field corrected using
‘N4BiasFieldCorrection’. For the unimodal pipeline, the ‘antsBrainExtraction.sh’ script was
used to extract the brain from the bias-field corrected T1 image, and the brain-extracted
image was segmented using ‘Atropos’ with a k-means initialization with k = 3. The mul-
timodal pipeline differed from the unimodal pipeline in that the bias-field removed T2
images were included as an additional anatomical image in the ‘antsBrainExtraction.sh’
script, and subsequently as an additional intensity image in ‘Atropos’. Multimodal seg-
mentation failed (i.e., segmentations were extremely poor quality) in 3 subjects’ preflight
images, and these were excluded from subsequent analysis. Segmentations produced by
‘Atropos’ were resampled to match the native-space manual segmentation space using
SPM.

2.6.2. CAT12 Pipeline

Subjects’ T1 images were entered into CAT12′s ‘Segment’ pipeline utilizing default pa-
rameters, and native-space grey matter segmentations selected as an output. The resultant
grey-matter maps were then resampled to match the native-space manual segmentation
space using SPM. Independently, the T1 images were processed in CAT12′s ‘Longitudinal
Segment’ pipeline, utilizing default parameters. Grey matter segmentations from the lon-
gitudinal pipeline were resampled to match the native-space manual segmentation space
using SPM. CAT12 does not support multimodal segmentation.

2.6.3. Freesurfer Pipeline

Subjects’ T1 images were processed through Freesurfer’s recon-all command, includ-
ing autorecon1, 2, and 3. Multimodal segmentation was performed by including the
additional channel as an input in the recon-all command, as well as including flags to
adjust the pial surface (e.g., -T2pial). For both unimodal and multimodal pipelines, the left
hemisphere and right hemisphere grey matter mask (i.e., the volumetric cortical ribbon file)
were merged and resampled to match the native-space manual segmentation space using
SPM.

2.6.4. FSL Pipeline

Subjects’ T1 images were denoised using FSL’s SUSAN with a 3 × 3 × 3 voxel SD
mask. These images were subsequently brain-extracted using BET with the -B flag to
reduce input image bias and remove residual neck voxels. The brain-extracted images were
then entered info FAST, and the grey matter partial volume outputs were resampled to
match the native-space manual segmentation space using SPM. Visual inspection revealed
multimodal BET and FAST segmentation performance utilizing default parameters was
poor, so these data were not included.

fsl.fmrib.ox.ac.uk
surfer.nmr.mgh.harvard.edu
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2.6.5. Manual-to-Automated Comparisons

For each ROI, we computed the spaceflight-related percent change in grey matter
volume using the following formula:

Post f lightGMVolume− Pre f lightGMVolume
Pre f lightGMVolume

We utilized one-tailed paired-samples t-tests (α < 0.05) to compare the percent change
computed by each automated algorithm with that computed from manual segmentation.
Additionally, we performed one-sample t-tests (α < 0.05) to identify if any given segmenta-
tion method detected non-zero grey matter changes.

3. Results
3.1. Voxel-Based Morphometry Analysis: Unimodal Segmentation

The voxel-based morphometry analysis following unimodal segmentation detected
widespread volumetric changes associated with spaceflight (Figure 1 and Table A1), with a
total of 10,056 voxels reaching statistical significance (two-tailed pFWE < 0.05). The detected
grey matter losses (totalling 6758 significant voxels) included clusters in the ventromedial
occipital lobe (including the lingual gyrus), the lateral temporal cortex, the ventral temporal
cortex, the medial temporal cortex (including the posterior parahippocampal cortex), the
ventromedial frontal cortex, and the ventral cerebellum. The unimodal analysis detected
less extensive grey matter gains (totalling 3298 significant voxels) including clusters in the
paracentral lobule and the postcentral sulcus, the precuneus, and the cerebellum.

3.2. Voxel-Based Morphometry Analysis: Multimodal Segmentation

Of the statistically significant voxels detected in the unimodally-segmented analysis,
only 2213 (~22%) were also flagged as significant in the multimodally-segmented analysis,
which detected a total of 5559 voxels with statistically significant grey matter volume
changes (Figure 1 and Table A2). These changes were all grey matter gains; no significant
grey matter losses were detected in the analysis following multimodal segmentation. The
detected grey matter gains were largely extensions and combinations of the grey matter
gains detected following unimodal segmentation. This analysis detected a large cluster
spanning the precuneus, the paracentral lobule, and the supplementary motor area as well
as smaller clusters in the central sulcus and the supplementary motor area.

3.3. Artifacts Unique to Unimodal Segmentation

The failure of the multimodal segmentation paradigm to detect the grey matter losses
identified in the unimodal segmentation paradigm suggests that these grey matter losses
may be artifactual. Figure 2 depicts examples of the types of unimodal segmentation
errors we believe are driving these artifactual findings. Most saliently, these errors involve
misclassification of the cerebellar tentorium, the dural structure separating the cerebellum
from the ventral portion of the occipital and temporal lobes. The tentorium provides
structural support to the cerebrum, preventing it from sagging under the effects of gravity
and protecting the cerebellum underneath [41]. At preflight timepoints, the ventral cerebral
grey matter is pressed against the tentorium, and in unimodal segmentation paradigms the
tentorium is quite regularly incorrectly classified as grey matter. However, at postflight
timepoints, there is slightly more CSF separating the tentorium from the nearby cortex,
causing a smaller amount of the tentorium to be incorrectly classified as grey matter,
and producing an erroneous ‘loss’ of grey matter volume. The multimodal segmentation
paradigm is not as susceptible to this error, as it is less likely to erroneously classify the
tentorium as grey matter at preflight or postflight timepoints.
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Figure 1. Statistically significant (two-tailed pFWE < 0.05) grey matter volume changes detected in a 
voxel-based morphometry analysis following unimodal (blue) and multimodal (orange) segmenta-
tion. Both analyses identified grey matter gains (solid outlines) in dorsomedial frontal and parietal 
cortex, and the unimodal analysis detected numerous clusters of significant grey matter losses 
(dashed outlines) in multiple locations across the occipital, temporal, and frontal lobes. The MNI 
ICBM 2009b Nonlinear Asymmetric template brain was used as a background. K#s reference the 
cluster numbers in the tabled results in Tables A1 and A2 for unimodal and multimodal clusters, 
respectively. 
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Figure 1. Statistically significant (two-tailed pFWE < 0.05) grey matter volume changes detected in a
voxel-based morphometry analysis following unimodal (blue) and multimodal (orange) segmentation.
Both analyses identified grey matter gains (solid outlines) in dorsomedial frontal and parietal cortex,
and the unimodal analysis detected numerous clusters of significant grey matter losses (dashed
outlines) in multiple locations across the occipital, temporal, and frontal lobes. The MNI ICBM 2009b
Nonlinear Asymmetric template brain was used as a background. K#s reference the cluster numbers
in the tabled results in Tables A1 and A2 for unimodal and multimodal clusters, respectively.

3.4. Artifacts Present in Unimodal and Multimodal Segmentation

Whereas all grey matter losses detected in the unimodal segmentation paradigm were
absent in the more reliable multimodal segmentation paradigm, many of the grey matter
volume gains were conserved between the two analyses. However, this mere fact alone
is not evidence of a lack of artifactual influence. From visual inspection, the multimodal
segmentation generally appears to have fewer and less severe segmentation errors, but
there remain clear artifacts contributing to the grey matter volume increases seen in both
analyses. Examples of these artifacts are shown in Figure 3. Very similarly to the artifactual
losses involving the cerebellar tentorium, the unimodal and multimodal segmentation
paradigms were both susceptible to misclassification of the cerebral falx. The cerebral falx
is a dural structure running in and along the longitudinal fissure separating the left and
right hemispheres of the brain. At postflight timepoints, where the cortex is distanced
from the tentorium at the ventral portions of the cerebrum, it crowds the cerebral falx at
dorsal and midline portions of the cerebrum. Both segmentation paradigms had a tendency
to incorrectly flag grey matter volume gains near the dorsomedial portions of the brain
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that were actually driven by greater portions of the cerebral falx being misclassified as
grey matter. The grey matter gains detected along the cingulate and central sulci are
contaminated with a different error; the smaller CSF spaces at postflight are more likely to
be misclassified as grey matter.
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sensitive to this artifact. Panel (B) depicts a similar artifactual pattern in a different subject (this type 
of error likely driving unimodal cluster K4) in the temporal lobe, near the posterior hippocampus. 

Figure 2. Spatially normalized grey matter segmentation exemplars illustrating the errors in uni-
modal segmentation that multimodal segmentation appears to attenuate. Highlighted regions were
classified as grey matter in SPM12’s unified segmentation in unimodal (blue) and multimodal (orange)
paradigms. Arrows indicate locations of interest in which differences in segmentation errors between
preflight and postflight are visible. Panel (A) depicts a typical error (likely driving unimodal cluster
K1) in which the cerebellar tentorium is classified as grey matter in the unimodal segmentation. In
the preflight timepoint, because the grey matter of the ventral occipital and temporal cortex is resting
upon the tentorium, this is often classified as grey matter. At the postflight timepoint there is a larger
gap between the tentorium and the cerebral grey matter, decreasing the likelihood it is classified as
grey matter, and producing an artifactual ‘loss’ of grey matter. The multimodal segmentation is less
likely to classify the tentorium as grey matter, therefore making it less sensitive to this artifact. Panel
(B) depicts a similar artifactual pattern in a different subject (this type of error likely driving unimodal
cluster K4) in the temporal lobe, near the posterior hippocampus. Again, the unimodal segmentation
has a tendency to classify a significant portion of the tentorium as grey matter at preflight timepoints,
and then ‘loses’ some of this ‘grey matter’ at postflight when there is slightly more CSF separating
the cortex from the tentorium.
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Figure 3. Spatially normalized grey matter segmentation exemplars illustrating errors conserved
across unimodal and multimodal segmentation. Highlighted regions were classified as grey matter
in SPM12’s unified segmentation in unimodal (blue) and multimodal (orange) paradigms. Arrows
indicate locations of interest in which differences in segmentation errors between preflight and
postflight are visible. Panel (A) depicts a classification error of the cerebral falx from a single subject.
Both unimodal and multimodal segmentations appear to classify a greater portion of this dural
structure as grey matter at postflight timepoints, likely because the CSF space that separates the
cortex from the cerebral falx is much smaller at postflight. Similarly, Panel (B) depicts segmentations
from a different subject, illustrating the tendency for the narrowed CSF spaces at postflight to be
misclassified as grey matter, possibly producing artifactual tissue gains that are not indicative of
neuroplastic effects. In addition, note the difficulty for automated segmentation procedures to
correctly classify the highly-myelinated grey matter of the primary sensory and motor areas [42] as
seen in Panel (B).

3.5. Comparison with Manual Segmentation

To quantify the magnitude of these potentially artifactual findings, two experts manu-
ally segmented cerebral grey matter partitions from two regions of interest, in ten subjects
each, from both preflight and postflight timepoints. We selected these ROIs to capture the
two most significant clusters detected in our unimodal voxel-based morphometry analysis,
which we depicted in Figures 2 and 3 and believe to be particularly error-prone. The
first region, ‘Falx’. is centered about the medial precentral gyrus and cerebral falx, and
the second region, ‘Tentorium’, is centered about the ventromedial occipital cortex and
cerebellar tentorium. We compared the change in grey matter volume from preflight to
postflight as quantified by a handful of commonly used neuroimaging software packages
(i.e., SPM, Freesurfer, FSL, ANTs, and CAT12) to those from manual segmentation in both
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these ROIs in the same set of subjects (Figure 4). In both cases, manual segmentation de-
tected negligible to minimal changes in grey matter volume, where automated procedures
overestimated the grey matter increases in the ‘Falx’ ROI and overestimated the losses in
the ‘Tentorium’ ROI (with the exception of the ‘Tentorium’ estimations from multimodal
implementations in SPM and ANTs).
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Figure 4. Comparisons of the change in grey matter volume from preflight to postflight between
manual segmentation and a handful of commonly employed automated segmentation protocols in
the “Falx” ROI (top panel) and the “Tentorium” ROI (bottom panel). The leftmost panels depict the
volume used to quantify grey matter within. Middle panels depict the percent change in grey matter
volume detected for each method. Error bars indicate ±1 standard deviation about the group mean.
Green asterisks indicate the given method detected significantly (p1-tailed < 0.05) different grey matter
change than that detected from the manual segmentation. Asterisks along the x axis indicate the
given method detected a change in grey matter volume that significantly (p1-tailed < 0.05) deviated
from 0. For each ROI, the rightmost panels depict a single subject’s exemplar segmentation from
manual segmentation and the best-performing automated segmentations, in that subject’s native
space. Note that manual and Freesurfer segmentations do not include the cerebellar grey matter,
whereas other packages do. CAT12long refers to the longitudinal segmentation procedure available
in CAT12, whereas CAT12 refers to the standard segmentation procedure. n = 10.
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In the ‘Falx’ ROI (Table A3), manual segmentation identified the most conservative
change in grey matter volume with a M (SD) increase of 1.84 (3.12)%. From all assessed
automated procedures, the change in grey matter volume computed from Freesurfer’s mul-
timodal segmentation was the most similar to that computed from manual segmentation, at
a change of 3.09 (3.07)%; nevertheless, overestimating the change computed from manual
segmentation by ~68% (t9 = 1.032, p = 0.329, d = 0.326). The remaining packages produced
mean estimated grey matter volume changes ranging from 3.22 to 8.16%; overestimating
the effects estimated from manual segmentation by ~75 to 343%. Similarly, manual segmen-
tation of the ‘Tentorium’ ROI (Table A4) identified an insignificant increase in grey matter
volume, at 0.42 (5.69)%. SPM’s multimodal segmentation identified a similar increase, at
0.31 (4.43)%, whereas all other tested automated packages identified modest [i.e., ANTs’
multimodal pipeline −0.87 (4.15)%] to moderate (all other packages: −2.26 > ∆ > −3.52 %)
decreases in grey matter volume.

4. Discussion

The voxel-based morphometry analyses following unimodal and multimodal seg-
mentation in SPM revealed a strikingly different pattern of spaceflight-related effects. The
commonly employed unimodally-segmented analysis (i.e., using T1-weighted MRI images
only), identified effects that have considerable overlap with effects previously reported in
the literature [6,9,11]. As an example, Koppelmans and colleagues [14] reported widespread
grey matter volume decreases in the ventral frontal and temporal lobes, and grey matter
volume gains overlapping the precentral gyrus, postcentral gyrus, precuneus, and posterior
cingulate; these findings were generally replicated in the present analysis following uni-
modal segmentation (Figure 1). Koppelmans and colleagues [14]—and others with similar
findings [6,9]—cautiously interpreted some of these grey matter changes as indicative of
neuroplastic responses to spaceflight, with a specific caveat that findings could be driven
by non-neuroplastic processes. Here, we demonstrated that the spaceflight-related effects
that we detected using voxel-based morphometry following unimodal segmentation are
largely driven by artifacts and are not interpretable as evidence of a neuroplastic response.
In fact, the typical tissue losses detected after unimodal segmentation did not appear after
the slightly more reliable multimodal segmentation (Figure 2), and the tissue gains that
persisted in both analyses were visibly contaminated with large segmentation artifacts
(Figure 3). Comparing manual segmentation against automated segmentation procedures
in a handful of commonly used software packages revealed that typical usage of automated
procedures can produce biased estimates of grey matter volume change (see Figure 4).
These findings provide the very first evidence that (a) the typically employed analysis
pipelines for detecting volumetric changes are not suitable for investigating astronauts’
neuroplastic changes due to spaceflight, and (b) the use of multimodal segmentation alone
does not appear to attenuate these issues sufficiently across the brain such that one can
draw valid neuroplastic inferences from these type of analyses.

Collecting large quantities of MRI data from astronauts before and after spaceflight is
challenging due to the small number of astronauts flying to space at any given time. Simi-
larly, spaceflight analog studies are often slow and demanding procedures that typically
have small sample sizes. As such, it would be ideal if the segmentation errors identified
herein could be addressed in previously collected datasets for subsequent re-analysis. Al-
ternate [7] or parameter-optimized tissue classification algorithms may outperform the
‘out of the box’ unimodal and multimodal classification performed by the commonly used
software packages (i.e., SPM12, ANTs, CAT12, Freesurfer, and FSL), but any custom al-
gorithm or procedure may need to be specifically tailored to the present problem and
population. The simple fact that there is next to no tissue contrast between dura and grey
matter on typical T1-weighted images [27] may make accurate distinction between these
tissues too challenging for purely automated procedures on T1-weighted images alone.
The segmentation errors we presented in Figures 2 and 3 are apparent to the naked eye;
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therefore, careful manual intervention to an automated segmentation procedure could
remove the gross artifactual effects that we have identified.

Manual and semiautomated segmentation procedures are more commonly used in
smaller studies of clinical cases, such as those identifying tumors [43–45]. Complete manual
segmentation of the brain is excessively tedious, but given the relative scarcity of MRI data
from astronauts, some degree of manual intervention is justifiable. However, manually
removing segmentation errors such that no clearly visible errors remain does not mean
that those segmentations are truly error-free. In many regions in the brain, the dura and
cortex are touching and have the same intensity on a T1-weighted image, making accurate
discrimination between these tissue types extremely difficult, if not impossible, even for
experts. Similarly, partial volume estimations [7,46,47] are not typically performed in
manual segmentations, leaving the possibility that spaceflight-related fluid shifts will
produce consistent errors (i.e., partial voluming) in different parts of the brain that preclude
valid neuroplastic interpretations of any prospective results, even after expert intervention
following automated segmentation. Irrespective of these challenges, our findings highlight
the importance of careful manual quality control in preprocessing and critical evaluation
of any given analysis; while the lack of visually apparent errors does not guarantee that
a segmentation is accurate, an accurate segmentation will necessarily be free of visually
apparent errors. The extraterrestrial environment experienced by astronauts renders invalid
many of the implied assumptions present in most default analysis pipelines and procedures
that were originally created with different populations and effects in mind. Although we
have not provided evidence that the segmentation errors we have identified are also present
in spaceflight analog studies utilizing head-down bed rest paradigms, these paradigms
are also known to produce salient CSF redistribution within the brain [48–51] and may
be at risk of segmentation errors similar to those identified here. We feel that astronauts,
and potentially spaceflight-analog participants, need to be treated as special cases for
brain morphometry analysis. Much like other populations where typical procedures are
insufficient, this unique population requires unique analyses to meet the validity challenges
we have identified.

For future studies of spaceflight, there are a handful of possible solutions that may
attenuate the segmentation issues we identified. First, simply delaying the postflight MRI
timepoint may allow some fluid shifts and other more direct effects of the spaceflight
environment to resolve, leaving neuroplastic effects to be detected. However, this paradigm
assumes that the direct effects of spaceflight on the brain are the primary cause of the
segmentation errors, which they appear to be, but also assumes that the direct effects
return to baseline levels more rapidly than neuroplastic effects of spaceflight, which does
not appear to be the case [6,7,12,13]. This also moves against conventional wisdom that
one would want to take postflight measurements as soon as possible after astronauts
return to earth [52], and may simply not be practical, as differences in fluid distribution
are still apparent at postflight delays that approach total mission duration [6,7,13] (also
see Figure A1). Delaying postflight data collection also mixes any effects of terrestrial re-
adaptation with the effects of spaceflight, which may not simply attenuate the magnitude
of spaceflight-related effects, but instead move in a somewhat unique direction of a third,
‘terrestrially-readapted’ neurological state as opposed to simply returning to the ‘spaceflight-
naive’ preflight neurological state. Future studies collecting more frequent post-flight
neuroimaging data may provide a clearer quantification of the neurological changes during
postflight re-adaptation. Such research could reveal an ideal time or times for postflight
data collection that would optimize sensitivity to effects of interest and release from bias-
inducing effects of no interest.

Secondly, collecting structural MRI data with different protocols that offer better con-
trast between grey matter and non-neuronal tissue would likely be the best solution to
avoid the large segmentation errors confounding our findings. For instance, Diffusion-
Weighted Imaging (DWI) utilized by Jillings and colleagues [7], in their investigation of
spaceflight-related brain volume changes, may be more robust to some sources of seg-



Life 2023, 13, 500 13 of 19

mentation error typically when segmentation T1-weighted images. The authors utilized a
multi-shell DWI sequence and processing pipeline that is far better able to estimate partial
volume effects as compared to more typical volumetric procedures, and DWI sequences
generally afford a wide variety of other analyses of brain structure (e.g., structural connec-
tivity estimates). However, the authors noted that in their data, some dural structures (i.e.,
portions of the cerebral falx) have similar diffusional properties as grey matter, allowing
for the possibility of mischaracterization of these two tissue types. Additionally, DWI
sequences typically offer far lower spatial resolution per unit acquisition time as compared
to T1-weighted imaging, a property that offsets some of the benefit of more precise par-
tial volume estimations. On the other hand, some modern structural sequences, such as
Multi-echo MPRAGE (MEMPRAGE) and MP2RAGE sequences can produce data that more
clearly differentiates grey matter from dura and vasculature [27,53], and appear to produce
more reliable (i.e., exhibiting lower test–retest variability) brain volume estimates than the
typical MPRAGE sequence used for collecting T1-weighted data [54]. These sequences take
slightly longer to acquire than an MPRAGE sequence of equivalent resolution and may
not simply be dropped-in as replacements for more traditional MPRAGE images in typical
preprocessing pipelines [55]. Utilizing alternate structural imaging modalities [7], selecting
the highest-performing extant segmentation approaches or developing novel approaches
that perform best with a given imaging modality, and perhaps utilizing higher-resolution
acquisitions [56], may additionally resolve artifacts associated with partial voluming errors,
such as the small CSF spaces being misclassified as grey matter [55,57] (see Figure 3B).
Additional research is needed to identify if segmentations performed on data from alternate
structural sequences, such as MP2RAGE, and parameter-optimized or alternate segmenta-
tion algorithms are not as prone to the particular errors seen when segmenting traditional
MRI images collected in spaceflight or spaceflight analog studies [58,59].

We are not aware of clear evidence that similar validity threats due to segmentation
errors are present in other, non-spaceflight research paradigms. However, it is possible that
similar errors of varying magnitude are present in other studies in which changes in the
rates and location of tissue misclassification can produce artifactual findings. Identifying
more reliable data acquisition and processing methods that improve or better leverage
tissue contrast, and therefore reduce the reliance on spatial tissue probability priors, may
also improve segmentation performance in volumetric analyses of the brain in the presence
of atrophy [31], unique morphology [60,61], or normal development [62], in which salient
changes in brain and/or CSF volumes may interact with the positioning of the cortex
with respect to other tissues and produce a spatial bias in segmentation errors between
conditions of interest.

5. Conclusions

Spaceflight studies using standard voxel-based morphometry analyses can be con-
taminated with large segmentation artifacts. These artifacts, likely exacerbated by the
direct effects of spaceflight, such as CSF redistribution in the brain, are salient enough
that they preclude valid neuroplastic (and therefore cognitive or behavioural) interpreta-
tions from grey matter volume change in astronauts. There are a handful of prospective
countermeasures that may return validity to these findings, but it is unlikely that a single
solution will sufficiently resolve the artifactual findings presented herein. To evaluate any
prospective prophylactic measure, the research community will need to identify a reliable
paradigm to explicitly quantify the magnitude of the segmentation errors present in differ-
ent approaches. This could be done by utilizing retrospective data to extensively compare
different preprocessing procedures to identify an optimal set of software and parameters
that best mimics manual segmentation. Alternatively, prospective research could leverage
a hypothetical paradigm in which no neuroplastic changes would be expected, but fluid
displacement (and, therefore, brain displacement) would be present. Such a paradigm
would allow different analysis pipelines to be tested and optimized to ensure they correctly
identify no local brain volume changes without necessitating extensive manual intervention.
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Once a suitably robust pipeline is identified, it could be employed in spaceflight studies to
produce more interpretable findings.
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Appendix A

Table A1. Statistically significant (voxel-height two-tailed pFWE < 0.05) local grey matter volume
changes detected using voxel-based morphometry following unimodal segmentation. Clusters sorted
in descending order based on peak F statistic. K# indicates the cluster number, KE indicates cluster
extent in voxels (1.5 × 1.5 × 1.5 mm), ±indicates the direction of the effect, with positive sign
indicating an increase in grey matter volume from preflight to postflight. X, Y, and Z coordinates are
reported in MNI space. Labels primarily generated from the Neuromorphometrics atlas provided
with SPM12, and the cerebellum atlas provided with FSL.

K# KE ± X Y Z Cluster Labels

1 2554 − −2 −74 −6 Lingual cortex, tentorium, peri-occipital CSF
3 −66 2 Lingual cortex
−14 −69 −4 Lingual cortex, adjacent white matter

2 2331 + 6 −16 63 Medial precentral gyrus
−2 −14 58 Supplementary motor area
−12 −10 62 Supplementary motor area, adjacent white matter

3 969 − −54 −2 −18 Middle temporal cortex
−58 −20 −15 Middle temporal cortex

4 247 − −15 −36 −10 Parahippocampal cortex
5 1390 − 56 −6 −18 Middle temporal cortex

46 4 −30 Temporal pole, adjacent white matter
51 4 −22 Superior temporal gyrus

6 184 + 14 −56 54 Precuneus, adjacent white matter
6 −62 50 Precuneus

7 104 + −12 −50 −14 Cerebellar lobule V
8 75 − −33 −3 −38 Inf. temporal & fusiform cortex, adj. white matter
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Table A1. Cont.

K# KE ± X Y Z Cluster Labels

9 451 + 26 −42 50 Superior parietal lobule, adjacent white matter
24 −34 56 Postcentral gyrus

10 569 − 52 −20 9 Transverse temporal gyrus, planum temporale
54 3 2 Central operculum, planum polare

11 419 − −58 −9 6 Planum polare
12 108 − 2 −57 −52 Cerebellar lobule IX
13 204 + −26 −39 52 Postcentral Gyrus, adjacent white matter
14 155 − 2 36 −20 Medial frontal cortex
15 155 − −50 −27 12 Planum temporale, parietal operculum

Table A2. Statistically significant (voxel-height two-tailed pFWE < 0.05) local grey matter volume
changes detected using voxel-based morphometry following multimodal segmentation. Clusters
sorted in descending order based on peak F statistic. K# indicates the cluster number, KE indicates
cluster extent in voxels (1.5 × 1.5 × 1.5 mm), ±indicates the direction of the effect, with positive sign
indicating an increase in grey matter volume from preflight to postflight. X, Y, and Z coordinates are
reported in MNI space. Labels primarily generated from the Neuromorphometrics atlas provided
with SPM12, and the cerebellum atlas provided with FSL.

K# KE ± X Y Z Cluster Labels

1 5254 + 0 −16 56 Supplementary motor area, medial precentral
gyrus

12 −56 56 Precuneus, adjacent white matter
12 −14 60 Supplementary motor area, adjacent white matter

2 98 + 12 15 54 Supplementary motor area, adjacent white matter

3 79 + 40 −27 50 Postcentral gyrus, adjacent white matter

4 85 + 2 4 46 Supplementary motor area
9 4 50 Supplementary motor area

Table A3. Statistical comparisons between changes in grey matter volume due to spaceflight de-
tected in the ‘Falx’ ROI between segmentation algorithms. UM indicates unimodal, MM indicates
multimodal. Statistically significant effects (α < 0.05) are emboldened.

Grey Matter
Volume ∆, %

1-Sample t-Test
against ∆ = 0

Paired-Samples t-Test
against Manual

Method M SD n t p d t p1-tailed d

Manual 1.84 3.12 10 1.864 0.095 0.589 - - -
SPM UM 3.83 2.56 10 4.730 0.001 1.496 1.722 0.060 0.544
SPM MM 4.51 3.95 10 3.614 0.006 1.143 1.737 0.068 0.549
CAT12 UM 4.42 2.57 10 5.445 <0.001 1.722 1.990 0.039 0.629
CAT12
long UM 3.22 2.54 10 4.000 0.003 1.265 1.162 0.138 0.367

ANTs UM 8.16 6.66 10 3.874 0.004 1.225 2.830 0.010 0.895
ANTs MM 5.45 2.83 7 5.111 0.002 1.932 2.597 0.020 0.982
Freesurfer UM 3.66 3.48 10 3.327 0.009 1.052 1.516 0.082 0.479
Freesurfer MM 3.09 3.07 10 3.182 0.011 1.006 1.032 0.165 0.326
FSL UM 5.69 3.03 10 5.950 <0.001 1.881 2.846 0.010 0.900
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Table A4. Statistical comparisons between changes in grey matter volume due to spaceflight detected
in the ‘Tentorium’ ROI between segmentation algorithms. UM indicates unimodal, MM indicates
multimodal. Statistically significant effects (α < 0.05) are emboldened.

Grey Matter
Volume ∆, %

1-Sample t-Test
against ∆ = 0

Paired-Samples t-Test
against Manual

Method M SD n t p d t p1-tailed d

Manual 0.42 5.69 10 0.232 0.822 0.073 - - -
SPM UM −2.39 2.79 10 −2.704 0.024 −0.855 2.267 0.025 0.717
SPM MM 0.31 4.43 10 0.222 0.830 0.070 0.052 0.480 0.016
CAT12 UM −2.73 3.29 10 −2.624 0.028 −0.830 2.519 0.016 0.797
CAT12 long UM −2.39 4.53 10 −1.663 0.131 −0.526 3.010 0.007 0.952
ANTs UM −2.28 3.70 10 −1.954 0.082 −0.618 1.485 0.086 0.470
ANTs MM −0.87 4.15 9 −0.630 0.546 −0.210 0.606 0.281 0.202
Freesurfer UM −2.50 4.05 10 −1.951 0.083 −0.617 1.906 0.045 0.603
Freesurfer MM −3.52 4.66 10 −2.389 0.041 −0.755 2.288 0.024 0.723
FSL UM −2.26 4.08 10 −1.750 0.114 −0.553 1.803 0.052 0.570
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Figure A1. Samples of native-space (i.e., non-normalized) brain positions before and after space-
flight with examples from flights lasting approximately 2 weeks (A,B) and from flights lasting ap-
proximately 6 months (C,D), with postflight data collection occurring about 2 weeks after landing 
(B,D), and significantly closer to landing (A,C). In all examples, the brain is positioned visibly higher 
within the skull at postflight time points relative to preflight timepoints. 

  

Figure A1. Samples of native-space (i.e., non-normalized) brain positions before and after spaceflight
with examples from flights lasting approximately 2 weeks (A,B) and from flights lasting approxi-
mately 6 months (C,D), with postflight data collection occurring about 2 weeks after landing (B,D),
and significantly closer to landing (A,C). In all examples, the brain is positioned visibly higher within
the skull at postflight time points relative to preflight timepoints.
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