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Abstract
Purpose: External physiological monitoring is the primary approach to mea-
sure and remove effects of low-frequency respiratory variation from BOLD-fMRI
signals. However, the acquisition of clean external respiratory data during fMRI
is not always possible, so recent research has proposed using machine learning
to directly estimate respiratory variation (RV), potentially obviating the need for
external monitoring. In this study, we propose an extended method for recon-
structing RV waveforms directly from resting state BOLD-fMRI data in healthy
adult participants with the inclusion of both BOLD signals and derived head
motion parameters.
Methods: In the proposed method, 1D convolutional neural networks
(1D-CNNs) used BOLD signals and head motion parameters to reconstruct the
RV waveform for the whole fMRI scan time. Resting-state fMRI data and associ-
ated respiratory records from the Human Connectome Project in Young Adults
(HCP-YA) dataset are used to train and test the proposed method.
Results: Compared to using only BOLD-fMRI data for a CNN input, this
approach yielded improvements of 14% in mean absolute error, 24% in mean
square error, 14% in correlation, and 12% in dynamic time warping. When tested
on independent datasets, the method demonstrated generalizability, even in data
with different TRs and physiological conditions.
Conclusion: This study shows that the respiratory variations could be recon-
structed from BOLD-fMRI data in the young adult population, and its accuracy
could be improved using supportive data such as head motion parameters. The
method also performed well on independent datasets with different experimen-
tal conditions.
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BOLD fMRI, convolutional neural network, HCP-YA, head pseudomotion, physiological
correction, respiratory variation

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Magn Reson Med. 2025;93:1365–1379. wileyonlinelibrary.com/journal/mrm 1365

https://orcid.org/0000-0001-5421-3536
http://twitter.com/MEthanMacDonald
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/MRM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmrm.30330&domain=pdf&date_stamp=2024-10-31


1366 ADDEH et al.

1 INTRODUCTION

fMRI is a powerful neuroimaging technique that has rev-
olutionized the way the brain is studied. However, the
BOLD signal measured by fMRI is influenced not only
by neuronal activity and its associated cerebral blood
flow (CBF) and oxygen metabolism (CMRO2) effects,
but also by the effects of non-neural contributors such
as low-frequency respiratory variation.1–5 Low-frequency
respiratory confounds can reduce the SNR of fMRI data,
making it more difficult to detect small changes in brain
activity, resulting in reduced sensitivity and statistical
power in fMRI studies.6

Recently, several model-based approaches have been
developed to remove the effect of low-frequency physio-
logical variations from fMRI signals.1,7–9 In model-based
methods, the related BOLD components are modeled as
the convolution of a respiratory measure (extracted from a
respiratory signal recorded during the fMRI scan) and the
hemodynamic response function.10,11 Respiratory data are
not routinely recorded in many fMRI experiments due to
the lack of measurement equipment in the imaging suite,
insufficient time to set them up, subject compliance, or
financial issues. Even in the fMRI studies where respira-
tory data are collected, a significant proportion of the data
is corrupted and unusable. As an example, up to 87% of the
respiratory signals in the Human Connectome Project in
Development (HCP-D) are not usable.12 Similarly, in the
HCP in Young Adults (HCP-YA) dataset, around 51% of
respiratory data is deemed unusable.13 This limitation hin-
ders the effective removal of confounding signals caused
by respiratory variations.

Several machine learning-based approaches have been
developed recently that utilize the information contained
within BOLD signals to estimate respiratory variation
(RV) waveforms.14–16 These methodologies were rigor-
ously evaluated on the HCP-YA dataset, with promising
results. However, the following specific constraints were
identified during their deployment. First, the BOLD sig-
nals were subjected to band-pass filtering within a nar-
row frequency range of 0.01–0.15 Hz and were temporally
downsampled by a factor of 2. The band-pass filtering
could potentially disregard vital physiological information
existing at frequencies beyond the filtering range, espe-
cially since respiratory-induced BOLD fluctuations are
known to be contained in higher frequencies.10,17 Further-
more, the downsampling process reduces the temporal
resolution, risking the loss of critical transient respiratory
events, which are essential for precise RV waveform esti-
mation. Additionally, the consideration that the optimal
frequency threshold for filtering may vary among indi-
viduals poses a further challenge to the standardization
of this approach across diverse populations. Second, the

RV signals underwent the same filtering and downsam-
pling protocol. Yet, the RV signals in the HCP-YA dataset
have a substantial component within the (0.2–0.4) Hz fre-
quency band.

Head motion represents another technical obstacle
in fMRI, but it has been shown that the estimated head
motion parameters derived from retrospective image
realignment algorithms work well for correcting bulk
motion.18,19 However, head motion parameters can also
give informative information about the subject’s respira-
tory activity. It has long been recognized that respiration
perturbs the magnetic field (B0),20 and multiband imaging
(simultaneous multi-slice sequences [SMS]) might have
intensified perturbations.18 Recent studies have shown
that respiration generates real head motion,13,21,22 and
pseudomotion of the head,13,18,19 at the respiratory rate
(∼0.3 Hz for healthy adults), and a very low-frequency
real and pseudomotion during and after deep breaths
(∼0.12 Hz).13 Understanding the complex relationship
between head motion and respiration within the mag-
netic resonance environment is challenging due to
numerous influencing factors. These dynamics are not
easily captured by conventional analytical approaches
or straightforward predictive algorithms. Consequently,
there is a need for advanced deep learning architectures
that have the potential to uncover the subtle, non-linear
correlations that traditional methods may overlook. Head
motion parameters during an fMRI scan thus contain
valuable information regarding the different respiratory
events and main breathing rate, which can help the
machine learning algorithm estimate the RV waveform.
As an example, the work of Fair et al.18 and Kaplan et al.19

illustrates that estimated head motion parameters may
reflect the breathing rate. To accommodate individual dif-
ferences in breathing patterns, the investigators tailored
the cutoff frequency of the notch filter, aiming to elim-
inate respiratory-induced head motion in their studies.
Consequently, leveraging head motion parameters with
machine learning methodologies might offer a promising
avenue for improving RV estimation.

To address previously identified gaps, we previously
introduced a strategy by harnessing the capabilities of
three convolutional neural networks (CNNs) for the recon-
struction of the RV signal throughout the entirety of fMRI
scan durations.12 This approach deliberately eschews
band-pass filtering of BOLD and RV signals, ensuring the
complete spectrum of physiological data is retained and
utilized by our machine learning framework. This method-
ology represents a significant advancement in the utiliza-
tion of machine learning techniques, aiming to both refine
the precision of RV signal predictions derived from BOLD
signals and broaden the temporal scope of the recon-
structed RV signal. However, the incorporation of head
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motion parameters may further improve the performance
of RV reconstruction.

The current work asks the question if the inclusion
of head motion parameters can improve machine learn-
ing models for estimating RV from resting state BOLD
signals. We expect that the inclusion of head motion
parameters will result in at least a 5% improvement in
our measurement criteria, which include mean absolute
error (MAE), mean square error (MSE), correlation, and
dynamic time warping (DTW). In this study, we pro-
pose a 1D-CNN that uses both BOLD signals and head
motion parameters extracted from the fMRI images to
reconstruct the RV waveform. The Supporting Informa-
tion provide additional detail regarding the impact of
respiration on BOLD signals and estimated head motion
parameters.

2 METHODS

2.1 Dataset and preprocessing

In our study, the primary data utilized for training and test-
ing were derived from the HCP-YA dataset.23 Validation
was subsequently performed on two additional indepen-
dent datasets, referred to herein as Dataset 1 and Dataset
2.24,25 Detailed information regarding the datasets, quality
control of respiration traces, and the fMRI data preprocess-
ing pipeline can be found in Supporting Information File,
Section 1.

2.2 Proposed method

In this paper, we introduce a novel technique for the recon-
struction of RV waveforms using BOLD signals combined
with head motion parameters. The foundation for this
approach is based on five pivotal assumptions:

Assumption 1. Fluctuations in breathing
depth and rate at low frequencies influence
the BOLD signal. For instance, a deep inhala-
tion results in a decline in the BOLD signal,
while breath-holding elevates it, as depicted in
Figure S.1. Consequently, BOLD signals offer
significant insights into respiratory patterns.

Assumption 2. Fluctuations in CO2 levels
due to respiratory changes instigate chemore-
flexes that modify the subsequent breathing
depth and rate.26,27 This results in a feed-
back loop with a chemoreflex-mediated
cycle observed to last approximately 25 s or
longer. Current BOLD signals influenced by

respiratory changes are therefore not just a
consequence of present breaths but also carry
information about prior respiratory events.
Machine learning models are capable of cap-
turing and utilizing historical BOLD signal
data to reconstruct the current RV timeseries.

Assumption 3. Involuntary head motions,
triggered by actions like nodding during
respiratory cycles, yawning, sneezing, and
other factors, manifest in the calculated head
motion parameters at respiration frequency.
This implies that these head motion parame-
ters can be a valuable source of information
regarding various respiratory events and their
associated frequencies.

Assumptions 4. Respirations contaminate
estimated head motion parameters by gener-
ating apparent pseudomotion at the frequency
of the breathing rate. Hence, the derived head
motion parameters can be an instrumental
source in determining both breathing rate and
depth.

Assumptions 5. Actual head motion and
pseudomotion may appear in any motion
parameters. So, estimated head motion param-
eters in all directions contain information
about breathing.

The proposed technique integrates three 1D-CNNs
functioning in the temporal domain of both the BOLD
time series and head motion parameters. This utilization
of CNNs stems from their innate capability to discern pat-
terns that remain invariant regardless of their position or
translation. A schematic of the input–output relationship
in the methodology is presented in Figure 1. For com-
putational efficiency and to boost the SNR of the input
signals, the mean BOLD signal time series from 90 func-
tional regions of interest (ROIs)28 is utilized as the primary
model input.

The model input is formulated using a sliding
time-window approach. Specifically, fMRI-ROI signals are
fragmented into brief, overlapping time-windows of 65
TRs, as delineated in Figure 1. For each time window, the
model outputs a single time-point estimate of the RV sig-
nal at the first point of the window (Method 1 in Figure 1),
middle point of the window (Method 2 in Figure 1), and
end point of the window (Method 3 in Figure 1). The RV is
defined as the SD of the respiratory waveform within a 6-s
sliding window centered at each time point.4 In Method
2, the CNN can use both past and future information, but
in Method 1 and 3 it can only use the future and past
information, respectively.
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1368 ADDEH et al.

F I G U R E 1 Schematic representation of the proposed method for reconstructing RV waveforms from BOLD signals and head motion
parameters. The input consists of the average BOLD signals from 90 ROIs and six head motion parameters. The model employs three
different CNN-based approaches: Method 1 uses only future BOLD signals and estimates RV for the initial volumes (from TR 5 to TR 36),
Method 2 integrates both past and future BOLD signals and estimates RV for the central volumes (from TR 37 to TR 1163), and Method 3
relies exclusively on past BOLD signals and estimates RV for the final volumes (from TR 1164 to TR 1196). The RV estimation begins at TR 5
and ends at TR 1196 to ensure sufficient data within the 6-s window required for accurate computation. The window size, set to 65 TRs,
determines the segment of data processed by the CNN. The outputs of these methods are combined to reconstruct the complete RV
waveform, with performance improvements observed when head motion parameters are included alongside BOLD signals.

The size of the moving window is selected as 65 in
the proposed method. For Method 2 as an example, BOLD
signals and head motion parameters centered at each RV
point covering 32 TRs before and after were used as the
input. Therefore, each input had a size of [65 × 96], where
65 is the window size, and 96 is the number of ROIs and
six head motion parameters. Due to this windowing pro-
cedure, the reconstructed RV signal in Method 2 yields
only 1136 timepoints out of an original 1200. To circum-
vent this limitation and retain the crucial initial and final
32 timepoints, Methods 1 and 3 are employed. Collectively,
these methods enable a complete RV reconstruction for the
entire scan duration. Further details concerning the archi-
tecture of the proposed 1D-CNN model are provided in the
Supporting Information, under Section 2.

2.3 MODEL TRAINING

From 3946 resting-state fMRI scans across 1040 subjects
in HCP-YA dataset, 945 scans from 468 were selected for
the training and testing phases of the proposed method-
ology due to the viability of their respiratory data post
spike-elimination and motion threshold (see Supporting

Information, Section 3). The MSE was employed as the loss
function during the model training, due to its effectiveness
in penalizing larger prediction errors, which is crucial for
high-precision reconstruction of respiratory variation from
fMRI data.

To evaluate our model, we employed a 10-fold
cross-validation methodology, consistent with standard
practices.29,30 The input–output dataset was divided into
10 subsets. For each cross-validation fold, nine subsets
were used for training the model, while the remaining sub-
set was designated for testing. This process was repeated
10 times, each time with a different subset as the test set,
ensuring that each subset was utilized exactly once for
testing. Additionally, 20% of the data within the training
segment was allocated to validation in each fold. Each
model was trained for 300 epochs per fold. This systematic
rotation of subsets across folds ensures robust model eval-
uation by maintaining independent training and testing
subsets across all iterations, minimizing potential biases.

Performance metrics from all iterations were compiled,
and results were reported as the “average ± standard error
(SE)” to provide a clear indication of the model’s overall
efficacy.30 To effectively demonstrate the method’s per-
formance, violin plots were used illustrating the model’s
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ADDEH et al. 1369

performance over the unseen test data throughout the
10-fold cross-validation process. Additional technical
details are provided in Supporting Information, Section 4,
and model performance evaluation in Section 5.

3 RESULTS

3.1 Relationship of respiration, head
motion, and BOLD signal

The analysis revealed contributions of respiratory-induced
true motion, respiratory-induced head pseudomotion, and
random head motion to the observed variability in the
BOLD signal,13,18,19 with each type of motion distinctly
influencing the signal in different ways. Figure 2 shows the
frequency content of the head motion parameters calcu-
lated using power spectral density estimation (MATLAB
pmtm function). The respiration creates real- and pseu-
domotion of the head, especially in the phase-encoding
direction, at a frequency of∼0.29 Hz (shown by red arrow),
which is consistent with the normal breathing rate of
young adults (∼17 breaths per minute). It is typical for sub-
jects to experience variations in their breathing rates dur-
ing an fMRI scan. Such fluctuations can manifest across

various frequencies, leading to a broadening of the spectral
peak. When deep breaths occur, the full process of inspi-
ration and exhalation transpires more slowly than tidal
breaths, evidently occupying about 8 s per cycle (approxi-
mately 0.12 Hz), in contrast to the main tidal rate of about
0.29 Hz.13 These deep breaths represent infrequent, aperi-
odic low-frequency events that, while occurring at 0.12 Hz
(shown by blue array).

Figure 3A presents a scatter plot of the primary respira-
tory frequency against the primary frequency of estimated
head motion in the x-direction from 945 selected fMRI
scans in HCP-YA dataset. The plots for the full signal and
four segmented intervals demonstrate a substantial linear
correlation, as evidenced by data points densely aggre-
gated along the trend line, with respiration frequencies
averaging at 0.302 ± 0.051 Hz and head motion frequen-
cies at 0.298 ± 0.056 Hz. A notably high correlation of 0.95
(with a two-tailed significance level of<0.001) underscores
a potent linear association between respiration and head
motion. This relationship extends to other motion param-
eters, including the y-axis, z-axis, roll, yaw, and pitch direc-
tions. Figure 4B complements this by showing a line graph
of the peak breathing rate variability across scans, illustrat-
ing occasional deviations beyond 0.2 Hz, yet maintaining
a clear congruence with head motion frequencies. These
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F I G U R E 2 Power spectral density (PSD) analysis of head motion parameters across 945 fMRI scans from the HCP-YA dataset. The
figure displays the frequency content of motion parameters (X, Y, Z translations, and pitch, yaw, roll rotations) with the color bar indicating
the power intensity. The X-axis shows the frequency range from 0 to 0.625 Hz, and the Y-axis represents the fMRI scan number. The red
arrow on the X-axis highlights the primary respiratory frequency (∼0.29 Hz), which corresponds to the typical breathing rate in young adults.
The blue arrow indicates the frequency of deep breaths (∼0.12 Hz). Respiratory-induced head pseudomotion is most pronounced in the
X-direction (phase-encoding direction in HCP-YA scans), as shown by the denser regions around 0.29 Hz, demonstrating the significant
impact of respiration on head motion, especially in the phase-encoding direction.
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F I G U R E 3 (A) Scatter plots illustrating the correlation between breathing rate and estimated head motion rate across the entire signal
and four segmented intervals from 945selected fMRI scans. The leftmost plot represents the entire signal, showing a strong positive
correlation (r= 0.953) between breathing rate and head motion rate. The four segmented plots represent different sections of the fMRI scan,
with consistently high correlations (ranging from 0.951 to 0.959). The average breathing rate and motion rate are annotated within each plot.
(B) A line graph depicting peak variations in breathing rate across all 945 scans, with the X-axis showing the scan number and the Y-axis
representing amplitude. The graph highlights the variability in breathing rates during scan time, with occasional peaks exceeding 0.2 Hz.
These findings suggest that head motion parameters are reliable indicators of breathing rate in fMRI data, supporting the use of head motion
as a non-invasive proxy for respiratory monitoring.

findings support the efficacy of using head motion param-
eters as robust proxies for respiratory rate monitoring in
fMRI environments. Intriguingly, high RV variability is
not limited to prominent respiratory events. Our analy-
sis of the HCP-YA dataset reveals that RV also increases
when subjects breathe slowly at a consistent amplitude,
compared to when they breathe rapidly with the same
amplitude. This observation conforms to the definition of
RV as the SD of the respiratory waveform within a 6-s slid-
ing window centered at each time point. We observed a
significant negative correlation between the rate of head
motion and RV variance (r=−0.32, p-value <0.001), as
shown in Figure S.3. This relationship is further enriched
by a strong positive correlation between breathing rate and
head motion rate, suggesting that head motion parame-
ters provide critical insights into the amplitude of RV in
scenarios where the subject’s breathing rate is slow but
consistent. These insights may not be as readily detectable
from BOLD signals alone.

Figure 4 displays three respiratory and motion param-
eters on the x-axis. It is evident that respiratory signals
and motion parameters vary in tandem. For instance, in

Figure 5A,B, a decrease in the subject’s breathing rate cor-
responds to a more gradual variation in the head motion
parameter, as highlighted by the red arrows. Similarly, in
Figure 5C, a deep inhalation by the subject aligns with
this slower head motion variation. In addition, Figure 5
illustrates that during pronounced respiratory events, such
as deep breaths, there is a significant alteration in the
amplitude of head motion parameters. To account for this,
we normalized both respiratory and motion parameters
and then calculated the SD for each signal. Our analysis
unveiled a modest positive correlation of 0.17 between the
SDs of the respiratory and head motion signals (p< 0.001,
2-tailed). Additionally, Power et al.13 demonstrated a sig-
nificant association between increased RV variability and
increased head motion (r= 0.57, p< 0.001), reinforcing the
value of head motion parameters as reliable indicators of
both respiratory rate and depth, as well as RV variation.

In addition to respiratory-induced head motions, ran-
dom head motions that are not related to respiration
can also occur. These random head motions, being true
motions, generate BOLD signal artifacts primarily through
spin history effects. Figure 5 shows an example of random
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F I G U R E 4 Comparison of respiratory signals (blue) and head motion parameters (black) for three different fMRI scans from the
HCP-YA dataset. (A-C) Each represent a full scan, illustrating how respiratory fluctuations correspond with head motion changes over time.
Red arrows indicate instances where significant changes in the respiratory signal align with noticeable shifts in head motion, suggesting a
close relationship between the two. This alignment highlights the potential of using head motion parameters as proxies for respiratory
variation in fMRI analyses.
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F I G U R E 5 Comparison of respiratory signals (blue) with head motion parameters (X, Y, Z translations, and pitch, yaw, roll rotations)
over the full duration of an fMRI scan from the HCP-YA dataset. The top panel illustrates the amplitude of the respiratory signal, while the
middle panels display the six head motion parameters, reflecting translational and rotational movements. The bottom panel presents a
grayplot depicting the temporal dynamics of the BOLD signal across voxels. Green arrows highlight instances where random head motion
(indicated by vertical black bands), distinct from respiration-induced head motion, impacts the BOLD signal. The variation in the BOLD
signal caused by random head motion shows a significant difference compared to the BOLD signal variation due to respiratory fluctuations,
as demonstrated in Figure S.3 in the Supporting Information. These visualizations emphasize the differential effects of random head motion
on BOLD signal fluctuations, distinguishing them from the influence of respiratory variations.
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head motion and its impact on BOLD signal using gray-
plots. Grayplots visualize fMRI signal dynamics by map-
ping temporal sequences and spatial voxel distributions,
aiding in artifact identification and data quality assess-
ment.31 The BOLD signal variation generated by a random
true head motion (vertical black band indicated by green
arrow) has a significant difference with BOLD signal vari-
ation because of respiratory variation shown in Figure S.4
in the Supporting Information. This distinction between
the effects of true head motion and respiratory variation on
BOLD signals is critical. The CNN model can exploit these
differences by utilizing all available information—both
BOLD signals and head motion parameters—as inputs to
learn and distinguish between random head motion and
respiratory-induced head motion. By effectively identify-
ing and differentiating the BOLD signal variations caused
by these two types of motions, the model can filter out
confounding signals, thereby improving the accuracy of
RV estimation. This comprehensive approach allows for a
more precise reconstruction of the RV waveform from the
combined BOLD signals and head motion parameters.

The emphasis on head motion along the X-axis in
Figures 3–5 is particularly relevant because, in HCP-YA
scans, the phase encoding direction is left-right, cor-
responding to the X-axis. Respiratory-induced pseudo-
motion is most prominent in this direction due to
B0 magnetic field perturbations caused by chest move-
ment during breathing. However, it is important to
note that respiratory-related head motion is not lim-
ited to the X-axis. While the X-axis shows prominent
factitious motion, other directions, such as the Y-axis
(anterior–posterior) and Z-axis (superior–inferior), also
exhibit both real and apparent respiratory-induced head
motion. These motions result from true brain movement
transmitted through mechanical linkage via the neck, as
well as potential leakage of the B0 artifact into other direc-
tions.13,18 Consequently, respiratory artifacts can influence
all three axes, though they are most pronounced in the
phase encoding direction, which typically aligns with the
X-axis in HCP-YA scans. This focus on the X-axis in our
analysis reflects its importance in assessing respiratory
effects on fMRI data.

3.2 MODEL PERFORMANCE

In this section, each reported value or plot represents
results over the unseen test data in 10-fold cross-validation
in terms of MAE, MSE, r, and DTW. In these experiments,
a window size of 65 was employed. The influence of win-
dow size on the model’s performance is explored in the
Supporting Information, Figure S.5. Figure 6 highlights

the superiority of the current method over the preced-
ing model by Salas et al.,16 which exclusively incorporated
BOLD signals for machine learning inputs. The inclu-
sion of head motion parameters significantly enhances the
reconstruction accuracy of RV, which is evident during
significant respiratory events (marked by orange arrows)
as well as during periods of minimal breathing variabil-
ity (indicated by green arrows). The CNN leverages the
additional head motion data alongside BOLD signals to
infer respiratory rate and depth with improved precision.
Despite this improvement, there remains no uniform pat-
tern in pinpointing the most precise signal estimation
across the various evaluation metrics. As illustrated in
Figure 7, while Pearson correlation values suggest a more
precise estimation for signal ‘a’, the MAE and MSE point
to signal ‘d’ as being superior.

Figure 7 shows the performance of the CNN in terms of
MAE, MSE, r, and DTW. For all metrics, using head motion
parameters has improved the model’s performance. The
statistical analyses using Friedman test showed that there
is a statistically significant difference between the three
approaches (p-value <0.01). The accuracy of the recon-
structed RV in the frequency domain is examined in the
Supporting Information, Figure S.6.

The performance of the proposed model is compared
with the model developed by Salas et al.,16 in Table 1. In
the five-layer CNN model developed by Salas et al., the
number of filters in different layers are 20, 40, 80, 160,
and 320, respectively, and ReLU is used in the hidden
layers. This implementation is compared against the pro-
posed model. In this comparison, BOLD signal and head
motion parameters are used as the input of both CNN
models. To summarize, the proposed method outperforms
Salas’s model with a significant difference in their per-
formance (p-value <0.01) which shows the importance of
the model’s architecture and hyper-parameters. Further
analysis on the impact of the model’s hyper-parameters
contributing to this performance difference is provided in
Supporting Information File, Section 10, while Section 11
discusses additional strategies used to overcome limita-
tions of previous methods.

An interesting application of the proposed method is
reconstruction of the RV time course for scans without res-
piratory data or scans with poor quality respiratory data.
The performance of the developed method is tested on a
scan that respiratory data were not recorded. Due to the
lack of a measured respiratory signal, it is not possible to
evaluate the accuracy of the reconstructed RV signal in
Figure 8. Heat maps and the subject’s head motion param-
eters still provide insight. According to the vertical bands
on the heat maps and the head motion parameters, there
is a reasonable degree of accuracy in the RV estimation.
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ADDEH et al. 1373

F I G U R E 6 Comparison of reconstructed RV waveforms using BOLD signals alone and BOLD signals combined with head motion
parameters across four entire fMRI scans from the HCP-YA dataset. (A-D) The measured RV (black dashed line) is compared with the
reconstructed RV using only BOLD signals (red line) and the reconstructed RV using both BOLD signals and head motion parameters (blue
line). Performance metrics are reported for each reconstruction method. Yellow arrows highlight instances where using head motion
parameters improves the alignment between the reconstructed and measured RV during prominent respiratory pattern changes. Green
arrows indicate areas where the reconstruction using both BOLD and head motion parameters provides a more accurate representation of the
measured RV compared to using BOLD signals alone, particularly when the RV value is small. Estimating RV when it is small is challenging
because subtle respiratory events may not significantly alter the BOLD signal, leaving the CNN with insufficient information to estimate RV
accurately from BOLD signals alone. In these situations, head motion parameters can provide additional information that enhances the
accuracy of the RV estimation.

F I G U R E 7 Violin plots comparing the performance metrics for RV reconstruction using three different approaches: Head motion
parameters alone (blue), BOLD signals alone (green), and a combination of BOLD signals and head motion parameters (red). The metrics
displayed are MAE, MSE, correlation coefficient, and DTW. The width of each violin represents the distribution of values across the dataset,
with the white dot indicating the median, and a black horizontal line indicates the mean value. The combination of BOLD signals and head
motion parameters (red) generally shows improved performance across all metrics, particularly in reducing MAE and MSE and increasing
the correlation coefficient, compared to using BOLD signals or head motion parameters alone.
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T A B L E 1 Comparing the performance of the proposed method with Salas’s model for all scans in the unseen test data in a 10-fold
cross-validation.

Method Measure MAE MSE r DTW

Proposed
method

Mean ± SE 0.204 ± 0.0026 0.082 ± 0.0057 0.64 ± 0.0076 55.26 ± 0.97

Median ± SE 0.200 ± 0.0018 0.0705 ± 0.0030 0.67 ± 0.014 53.42 ± 0.62

Salas’s
model

Mean ± SE 0.225 ± 0.0014 0.102 ± 0.0083 0.59 ± 0.0091 61.52 ± 0.49

Median ± SE 0.221 ± 0.0045 0.091 ± 0.0061 0.62 ± 0.035 58.01 ± 0.93
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F I G U R E 8 Reconstruction of the RV signal using the proposed method for an fMRI scan from the HCP-YA dataset where physiological
data were not recorded (scan ID: 133019-REST 1-LR). Deep breaths are reflected as prominent bumps in the RV waveform, while the black
vertical bands correspond to decreases in the BOLD signal following these deep breaths. The comparison of the estimated RV waveform with
the grayplots and head motion parameters suggests a reliable estimation of respiratory fluctuations, even in the absence of direct
physiological recordings.

3.3 Evaluation of the proposed method
on independent datasets

Dataset 1 consisted of 70 scans; however, due to par-
tial corruption of respiratory data, only 41 scans were
included in the final analysis. Dataset 2 comprised 461
scans, with 381 scans meeting the criteria for inclu-
sion due to the availability of complete respiratory data
(see Section 12 in Supporting Information). To ensure a
meaningful comparison across these datasets, the HCP-YA
dataset was resampled to match the TRs of Dataset 1 and
Dataset 2. The CNN model was subsequently trained on
the resampled HCP-YA data and tested on the two new
datasets.

The results, summarized in Figure 9, underscore
the effectiveness of the proposed method, which inte-
grates both BOLD signals and head motion parameters.
Figure 9A illustrates representative examples of recon-
structed RV waveforms from both datasets, comparing the
use of BOLD signals alone to the combined use of BOLD
signals and head motion parameters. Figure 9B presents
violin plots that further quantify the performance across
multiple metrics.

In Dataset 1, the integration of head motion parame-
ters led to significant reductions in MAE, MSE, and DTW,
accompanied by an increase in correlation, thereby vali-
dating the efficacy of this combined approach. Statistical
analysis confirmed a significant improvement (p< 0.001)
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ADDEH et al. 1375

F I G U R E 9 Reconstruction of respiratory variation (RV) using convolutional neural networks (CNNs) from BOLD-fMRI signals and
head motion parameters across independent datasets. (A) Representative examples of reconstructed RV waveforms from two distinct
datasets: Dataset 1 with a TR of 1.5 s, and Dataset 2 with a TR of 3 s. The comparison highlights the differences between RV waveforms
reconstructed using BOLD signals alone and those reconstructed using both BOLD signals and head motion parameters. (B) Violin plots
illustrate the performance metrics for RV reconstruction across the two datasets. Green violins represent reconstructions using only BOLD
signals, while red violins indicate the inclusion of head motion parameters. The proposed method demonstrated significant improvements in
Dataset 1, with the correlation coefficient increasing from r= 0.78 to r= 0.83, representing a 6.4% improvement, along with a reduction in
error metrics, underscoring the effectiveness of integrating head motion parameters. In contrast, the performance on Dataset 2 was
comparatively lower, likely due to the longer TR and associated aliasing effects, though the method still maintained a degree of robustness.
This figure illustrates the method’s generalizability and its variable efficacy depending on TR and dataset characteristics.

in models trained with both BOLD and head motion
parameters compared to those trained with BOLD signals
alone. This enhancement highlights the method’s capac-
ity to capture the intricate respiratory variations present in
fMRI data, particularly in contexts with notable physiolog-
ical fluctuations and shorter TRs.

Conversely, the results for Dataset 2 were more com-
plex. Despite the inclusion of head motion parameters,
the improvements were less pronounced, as indicated by
a lower average correlation coefficient (r= 0.55) and ele-
vated error metrics. This reduced performance is likely
attributable to the aliasing effects associated with the
longer TR, which complicate the extraction of relevant res-
piratory features. Although the method exhibited some
degree of robustness in tracking RV, the improvements
were not statistically significant (p> 0.001) when com-
pared to using BOLD signals alone.

Overall, these findings affirm the generalizability of
our proposed method across diverse experimental con-
ditions. However, they also underscore the necessity for
methodological adaptations to optimize the application of
this approach across varying fMRI contexts.

4 DISCUSSION

4.1 Implications of respiratory
variations in fMRI analysis

The method we present for reconstructing RV waveforms
from BOLD-fMRI data enhances existing techniques by
integrating head motion parameters to refine accuracy.
This advancement is particularly relevant in functional
neuroimaging, where the traditional reliance on exter-
nal respiratory data often poses analytical challenges.
By enhancing the precision of RV waveform extraction
directly from fMRI data, our approach supports more accu-
rate neural activation detection across diverse study popu-
lations, including those with irregular respiratory patterns
and those intolerant to conventional monitoring devices.

The methodological enhancement carries significant
logistical benefits. It promotes cost-efficiency and opera-
tional simplicity in fMRI studies by reducing the depen-
dence on external respiratory monitoring equipment. Such
a shift is beneficial across varied imaging settings, where
equipment and expertise can differ markedly, as seen
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1376 ADDEH et al.

in multi-site studies like the Adolescent Brain Cogni-
tive Development study,32 and the IMAGEN study.33 By
improving the standardization of respiratory data quality,
the proposed approach ensures that all participants’ data
are subject to uniform analytical quality, irrespective of
the site-specific variations in data collection protocols or
technician expertise.

Enhancing the robustness of RV waveform reconstruc-
tion also has implications for increasing the statistical
power of fMRI research. By enabling the use of previously
unusable fMRI data affected by suboptimal respiratory
records, our method can expand the volume of analyz-
able data, thus bolstering the statistical strength of studies.
This is particularly valuable for large-scale datasets that
lack comprehensive respiratory recordings, such as those
from the Pediatric Imaging, Neurocognition, and Genetics
study,34 and the UK Biobank Brain Imaging project.35 The
potential for retrospective enhancement of these datasets
demonstrates the added value of our refined approach.

Although the core methodology of reconstructing RV
from fMRI data has been previously explored, the integra-
tion of head motion parameters significantly augments the
precision and utility of this approach. The proposed refine-
ment not only simplifies the data collection process but
also enhances the overall quality and interpretability of
neuroimaging data. Our contributions should be viewed as
an evolutionary step in RV waveform reconstruction that
addresses specific limitations of prior methods, thereby
expanding their applicability and effectiveness in neu-
roimaging research.

4.2 Incorporating head motion
parameters

The primary differentiator in this study is the inclusion
of head motion parameters to boost the accuracy of the
machine learning algorithm. Previously, BOLD signals
have been used for such estimations.14–16 However, the
realization that respiration-induced head movements can
provide salient markers for respiratory events reshapes the
paradigm. In the studies by Fair et al.18 and Kaplan et al.,19

a band-stop (also known as a notch) filter was employed
to eliminate respiration-related effects from motion esti-
mates. The results demonstrated that the use of such a
filter enhances data quality and outcomes. These studies
posited that respiration-related effects exist within certain
frequency ranges, especially in the phase-encoding direc-
tion: [0.31, 0.43] Hz for the Adolescent Brain and Cognitive
Development (ABCD) study, which involved participants
aged 9–11,18 and [0.25, 0.5] Hz for the Baby Connectome
Project (BCP) with subjects averaging 14.3 ± 4.2 months
old.19 If respiratory effects have a designated frequency or

frequency range and can be eliminated using a band-stop
filter, it suggests the filter suppresses this frequency range.
Thus, it is conceivable that applying a bandpass filter cen-
tered on this range would isolate these respiratory-related
components.

The visual differences in Figure 6 is subtle because
it shows individual random examples from the 945 sam-
ples used in the study. These examples may not fully
capture the variability or differences across the entire
dataset. Figure 7, on the other hand, summarizes the per-
formance across all samples, providing a more compre-
hensive view of the model differences. The quantitative
metrics in Figure 7 reflect the overall trends and variabil-
ity in model performance, which are not always apparent
in a few individual examples.

In the aforementioned studies, the filter’s bandwidth
was chosen considering the entire cohort, making it
notably broad. Excessively broad filters can diminish
power in the overall trace. A static central frequency for
the bandpass filter captures accurate respiratory-related
motion only when it coincides with the actual breath-
ing rate, leading to potential mismatches at other times.
Such inconsistencies can mislead the machine learning
model. Results from experiments detailed in the Support-
ing Information section, Table S.2 and Figure S.9 support
these observations, demonstrating that use of bandpass fil-
ters significantly affects the model’s ability to accurately
reconstruct respiratory variations. We advise against using
a fixed-frequency bandpass filter for isolating respiratory
signals in machine-learning models. Instead, raw esti-
mated head motion parameters should be used as they
contain the full spectrum of motion-related information.
Deep learning architectures, inherently capable of sophis-
ticated nonlinear filtering, are better suited to discern
and leverage patterns within the unprocessed data for RV
reconstruction.

4.3 Model performance and insights

The proposed technique is grounded in a set of assump-
tions. The interplay between breathing patterns, chemore-
flexes, and head movements paves the way for RV estima-
tion. Especially notable is the assertion that BOLD signals
are influenced not just by immediate respiratory events but
also by past breathing patterns, implying that the BOLD
signal contains a memory of sorts of preceding respira-
tory events. This, when combined with the valuable data
from head motion, can be tapped to gain a more com-
prehensive insight into RV. The model’s commendable
performance, as illustrated in the various figures, empha-
sizes the value of integrating multiple data streams. There
are a few pertinent observations:
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ADDEH et al. 1377

4.3.1 Reconstructing high-variation RV

The CNN showcases heightened accuracy when recon-
structing RV timeseries that have significant fluctuations.
This suggests that, in scenarios where respiratory patterns
are more dynamic, the model performs best. In contrast, it
has challenges when the RV is constant.

4.3.2 Significance of head motion
parameters

The superior performance achieved when incorporating
head motion parameters underlines their importance. The
difference in accuracy when comparing both BOLD sig-
nals and head motion parameters versus using only BOLD
signals is statistically significant. This elucidates the power
of combining diverse data streams for comprehensive RV
estimation.

However, for fMRI studies with larger TR, the aliasing
of respiration-induced head motions into lower frequen-
cies poses a significant challenge. This aliasing compli-
cates the CNN’s ability to effectively capture and utilize
the full range of respiratory variations, particularly those
occurring at higher frequencies. As a result, the con-
volutional neural network may struggle to extract and
leverage the complete respiratory signal information, lead-
ing to potential reductions in the accuracy and robust-
ness of the reconstructed respiratory variation waveforms.
Nevertheless, with the increasing trend in fMRI studies
utilizing higher field scanners and shorter TRs, our pro-
posed method is well-suited to be effective in most cur-
rent fMRI research. The method’s design aligns with the
prevailing practices in the field, ensuring its applicabil-
ity and relevance across a broad range of modern fMRI
studies.

4.3.3 Impact of window size

The study underscores the profound effect of window
size on the model’s accuracy. Notably, as the window
size expands, the distinction in performance between the
two data input approaches (BOLD only vs. BOLD and
motion parameters) diminishes, suggesting a diminishing
return for larger windows. Use of a larger reconstruction
time-window could potentially enable a broader range of
RV frequencies to be captured by the model, though at
the cost of increased complexity. Our method, which inte-
grates the BOLD signal with head motion parameters,
addresses the challenges of extensive window sizes and
unnecessary complexity.

4.3.4 Frequency content considerations

The analysis concerning PSD of RV provides intriguing
insights. Specifically, when solely utilizing BOLD signals,
the model grapples with capturing high-frequency compo-
nents, an issue mitigated with the incorporation of head
motion parameters.

4.4 Limitations

While the current study yields promising results in
reconstructing respiratory variations from resting state
BOLD-fMRI data in healthy adult participants, we must
acknowledge several limitations. First, the generalizabil-
ity of the proposed method may be compromised by the
homogeneous nature of the sample from HCP-YA. Despite
the dataset’s extensiveness, it does not feature individu-
als with respiratory conditions such as chronic obstruc-
tive pulmonary disease (COPD) or asthma, leaving the
method’s performance in a clinically diverse population
untested.

Second, the method’s efficacy across various age
groups has not been examined. Relying solely on data
from young adults ignores pediatric and older adult pop-
ulations, which may have distinct respiratory rates and
patterns due to age-related physiological changes.

Third, the focus of the current study on resting-state
fMRI limits our ability to address the unique challenges
associated with task-based fMRI. Task-based fMRI, which
requires participants to perform specific cognitive or
motor tasks during scans, involves complexities absent in
resting-state studies.

Acknowledging these deficiencies, future research
should incorporate datasets that represent a wider demo-
graphic, include individuals with respiratory diseases,
span multiple age groups, account for varied scanning
conditions, and incorporate task-based fMRI studies.

4.5 Future work

The implications of our study extend to several prospective
domains of research and technology, particularly within
the realms of pediatric and geriatric neuroimaging. We
envisage adapting our current methodology to better suit
the intricate physiological profiles encountered in these
age groups. This adaptation will involve the recalibration
of our CNN to account for the distinctive variabilities in
respiratory and neural patterns that manifest across the
developmental and aging spectrums. Additionally, we will
incorporate fMRI data with varied scan parameters to
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1378 ADDEH et al.

improve the model’s generalization and robustness across
diverse experimental conditions.

Heart rate variability (HRV) has been established as a
notable confounder in BOLD-fMRI analyses. Our subse-
quent efforts will be channeled toward the development
of a robust computational model capable of discerning
HRV directly from fMRI data. The realization of such a
model aims to curtail the current reliance on peripheral
monitoring technologies, thereby further streamlining the
neuroimaging process.

Additional discussion can be found in the Supporting
Information Sections 10 and 11, concerning the impact
of hyperparameter tuning and addressing previous limita-
tions.

5 CONCLUSIONS

This study represents a substantial step forward in the
domain of fMRI by enhancing the reconstruction of res-
piratory variations. The integration of BOLD signals and
head motion parameters into a CNN has produced a
model that surpasses previous attempts in accuracy. The
improved performance, as evidenced by the reduction in
MAE and MSE, along with increases in correlation and
DTW, illustrates the untapped potential of machine learn-
ing techniques. The enhanced ability of the CNN to accu-
rately reconstruct respiratory signals, even in the absence
of direct respiratory data, opens the door to the retro-
spective examination of fMRI datasets and could signif-
icantly boost the quality of neuroimaging studies. Such
advancements are crucial for progressing fMRI technolo-
gies and their application in both research and clinical
settings, and they emphasize the critical role of integrating
physiological data for the advancement of neuroimaging
methodologies.
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