Differential Leukocyte Heat Shock Protein Expression is Modulated in Health and Disease

By

Linda Louise Agnew

B Sc (Biomedical Science) (Hons) University of New England, Armidale, Australia.

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Biological, Biomedical and Molecular Sciences, Faculty of the Sciences, University of New England, Armidale, Australia.

March, 2006

This Thesis is dedicated to Warren, Stephanie, Philip, Elliott and Callum.

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that to the best of my knowledge any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Linda Agnew

Nelson Mandela once said, "After climbing a great hill, one only finds that there are many more hills to climb". Many people have helped me to reach the top of my PhD 'hill' through their prayers, friendship, support and in many practical ways, and to all of my family, friends and colleagues I am truly grateful.

To my supervisor, Professor Kenneth Watson, I extend heartfelt thanks for caring not just about this PhD project, but more importantly, for caring about me personally. I have appreciated the many ways in which you have provided generous support throughout my candidature. As my mentor, you have encouraged me to think critically, you were always available when I needed advice and you provided the freedom for me to take responsibility for 'driving' this project. To my co-supervisor, Associate Professor Graham Jones, thank you for your support. I particularly appreciated your willingness to provide intellectual input when required.

The early stage of this project received input from Dr Rosemary Ffrench, formerly of the Westfield Research Laboratories, Sydney Children's Hospital, Randwick, and Dr Mark Kelly, formerly of the Albion Street Centre, Surry Hills, to whom I am grateful for their advice and support.

To Jega Serangapany, Dr Julian Gold, medical and nursing staff of the Albion Street Centre, Surry Hills, I extend my thanks for taking an interest in this project and for assistance with the recruitment and collection of blood samples from the HIV-positive patients who participated in these studies.

To Dr John Zaunders, Dr Anthony Kelleher, staff and students of the Centre for Immunology, St Vincent's Hospital, Sydney, I extend sincere appreciation for your assistance with the multicolour flow cytometry experiments conducted on HIVpositive samples. The time spent in your laboratory was very rewarding, and I particularly appreciated the way in which you welcomed me and provided a friendly and supportive work environment. To Preeyaporn Srasuebkul of the National Centre for HIV Epidemiology and Research, thank you for the statistical support you provided.

To Dr Jim McFarlane, Dr Kate Kauter and Kym Rae of the Physiology Department, University of New England, thank you for your contribution to the studies on hormonal modulation of heat shock proteins.

To Dr Ian Colditz of CSIRO Livestock Industries, Chiswick, thank you for your assistance with flow cytometry and for your contribution to the studies on hormonal modulation of heat shock proteins.

To Dr Anita Matthias of the MediHerb Research Laboratory, University of Queensland, thank you for performing the HPLC analysis of alkylamides for the Echinacea studies.

To Neil Horton and staff of the Pathology Department, Armidale and New England Hospital, thank you for your assistance with blood sample collection and haematological analysis of samples for the Echinacea study. This work was fitted into the extremely busy schedule of your diagnostic laboratory and for that I am grateful. To the academic staff, technical staff, administrative staff, and fellow postgraduate students of the School of Biological, Biomedical & Molecular Sciences, University of New England, working within this School has given me an appreciation for the benefits of a multi-disciplinary approach to research. I will also take the 'institution' of Friday cake day with me wherever I go! In particular, I would like to thank Rosslyn Busby and Craig Lawlor for technical assistance. I would also like to thank Sharon Styles for administrative support. To Sharon Guffogg, I appreciated your assistance with the Echinacea studies and special thanks for the lighter moments in our office, having someone to share frustrations with helped keep me sane.

This project would not have been possible without the many volunteers who generously donated blood samples. To all who participated in these studies I extend my appreciation.

Financial support for this PhD candidature was provided by an Australian Postgraduate Award. Additional financial support was received from the AIDS Trust of Australia, MediHerb Pty Ltd and a University of New England Internal Research Grant .The work conducted at The Centre for Immunology, Sydney was funded by a Keith and Dorothy Mackay, short-term attachment travel scholarship.

To my husband Warren, daughter Stephanie, sons Philip, Elliott and Callum and my mother, Wendy, I could not have completed this PhD without your ongoing understanding and unconditional love and support.

Abstract

Heat shock proteins (hsps) are a group of highly conserved proteins that represent between 2% and 15% of total cellular protein and are expressed by every living organism. The main functions of hsps are to regulate apoptosis and to act as intracellular molecular chaperones that facilitate protein folding and assembly. Some hsps are highly immunogenic and elicit humoral, cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses against viruses, tumors and infectious diseases.

In the first study, twenty male patients with HIV disease and fifteen age-matched controls were recruited. Lymphocytes were isolated and incubated at either $37^{\circ}C$ for 1 h or heat shocked at $42.5^{\circ}C$ for 1 h. Lymphocytes were then allowed to recover at $37^{\circ}C$ for 3 h and hsp expression was measured using both western immunoblots and 1D-SDS-PAGE (β -actin used as internal control). After a mild heat shock (from $37^{\circ}C$ to $42.5^{\circ}C$ for 1 hr) lymphocytes displayed an augmented synthesis of hsp 110, hsp 90 and hsp 70, relative to actin, in all individuals regardless of HIV-status. There were apparent differences in levels of expression of newly synthesized hsps between the HIV-positive and HIV-negative groups. Within this cohort these differences were not correlated with CD4⁺ count, viral load, dietary supplement use, smoking or the use of highly active antiretroviral therapy (HAART). The significance of altered hsp expression remains to be determined. However, given the recent reports on the role of these proteins in cross-presentation of antigens, α -defensin internalization and pro-inflammatory cytokine production, further investigation is merited.

Flow cytometric methods have demonstrated that hsp70 is constitutively expressed in human leukocytes but that the level of expression varies considerably between different cell types. Specifically, monocytes express significantly more hsp70 than any other leukocyte subtype. These findings were confirmed and extended to develop a scientifically robust system for measuring hsp70 expression in leukocyte sub-populations that only required small volumes (1 - 2 ml) of whole blood. This methodology was then employed to compare hsp70 expression patterns in HIVpositive and HIV-negative cohorts. The results of this study demonstrated significant differences (p<0.05) in hsp70 expression at both basal and heat shock levels, in a number of leukocyte sub-populations, between HIV-positive (n = 42) and HIVnegative (n = 11) individuals. These differences were apparent in cytotoxic T cells (CD8+), helper T cells (CD4+) and monocytes (CD14+). There were no apparent differences in natural killer cell (CD56+) expression of hsp70. A common predictive factor for altered hsp70 expression was viral load suggesting that hsp70 expression may be a reflection of host-virus interactions resulting in alterations to the cellular stress response. Furthermore, preliminary findings indicated that leukocyte hsp70 expression may differ with disease progression/status as indicated by the patterns of hsp70 expression observed in the **HIV-positive** sub-groups examined (seroconverters, long-term non-progressors and Hepatitis C co-infected individuals). Further studies will be required before a definitive statement can be made, however, if the current findings are confirmed, leukocyte hsp70 expression may be a useful clinical marker for HIV-disease progression.

The immunomodulatory effects of oral dosing with an Echinacea preparation were investigated in a small scale clinical trial (n = 11). Expression of leukocyte heat shock protein 70 (hsp70), serum chemistry, haematological values and plasma alkylamide

concentrations were evaluated in eleven healthy individuals (26 to 61 years of age) at baseline (day 1) and on day 15 after consuming two commercially blended Echinacea tablets (containing both Echinacea angustifolia and Echinacea purpurea root) per day for fourteen days. Plasma alkylamide levels were determined one hour after ingestion of one Echinacea tablet and concentrations were found to be 12 ± 2 ng equiv/ml plasma. Echinacea supplementation significantly enhanced the fold increase from 2.2 \pm 0.4 to 3.3 \pm 0.7 (p = 0.03) in leukocyte hsp70 expression after a mild heat shock. Serum chemistry and haematological values for subjects after Echinacea supplementation did not vary significantly from baseline levels with the exception of white cell counts which increased from 6.6 \pm 0.4 to 7.2 \pm 0.3 x 10⁹ (p = 0.04). Differential white cell counts displayed modest increases after Echinacea supplementation although only the lymphocyte sub-population approached significance (p = 0.06). The enhanced hsp70 stress response found was indicative of an improved immune response given that increases in hsp70 expression following cellular stress may play a critical role in antigen presentation, lymphocyte effector function and cytokine induction. This pilot study therefore suggested that supplementation with Echinacea may invoke an immune response through altered expression of hsp70 and increased white cell counts.

The effects of gender, menstrual cycle phase and oral contraceptive use on leukocyte hsp70 expression were examined in a small-scale study involving 11 female and 5 male participants. The results of these studies demonstrated that female leukocyte hsp70 expression displayed gender differences and in females, menstrual cycle phase differences and alterations as a result of oral contraceptive use were observed. These studies also demonstrated that serum leptin levels displayed gender dimorphism, serum cortisol levels were higher in females using oral contraceptives, and that serum prolactin levels displayed menstrual cycle variation in females and showed gender dimorphism. This is the first report of changes in leukocyte hsp70 expression in response to gender, menstrual cycle phase and oral contraceptive use indicating interactions between the immune response and stress response pathways.

Publications arising from this Thesis

Agnew LL, Kelly M, Howard J, Jeganathan S, Batterham M, Ffrench RA, Gold J, Watson K. Altered lymphocyte heat shock protein 70 expression in patients with HIV disease. *AIDS*, 2003; **17(13):** 1985-1988. A copy of this paper appears in Appendix III.

Agnew LL, Guffogg SP, Matthias AM, Lehmann RP, Bone K, Watson K. Echinacea intake induces an immune response through altered expression of leukocyte hsp70, increased white cell counts and improved erythrocyte antioxidant defences. *Journal of Clinical Pharmacy and Therapeutics* 2005; **30:** 363-369. A copy of this paper appears in Appendix III.

Agnew LL. And Watson K. Stress Proteins as Biomarkers of Oxidative Stress. *Current Protocols in Toxicology* 2006; Supplement 28, **17.8**: 1 – 25. A copy of this paper appears in Appendix III.

Agnew LL, Zaunders J, Serangapany J, Kelleher A, Gold J, Watson K. HIV-positive individuals display altered hsp70 expression in a number of leukocyte subtypes. In preparation

Agnew LL, Colditz IG, Rae K, Kauter K, McFarlane JR, Watson K. Leukocyte hsp70 expression is modulated by gender, menstrual cycle phase and oral contraceptives. In preparation

Aspects of Thesis presented at conference proceedings

Poster "Altered Expression of Heat Shock Proteins (Hsp70, Hsp90, Hsp110) in Lymphocytes from HIV-positive Individuals" Presented at the Australasian Society for HIV Medicine Inc, 15th Annual Conference, Cairns, 2003.

Poster "HIV-positive individuals have altered hsp70 expression in a number of leukocyte subtypes" at the Gordon Research Conference Stress Proteins in Health, Development and Disease, Newport, Rhode Island, USA, 2005. Also presented at the School of Biological, Biomedical & Molecular Sciences, Postgraduate Conference, University of New England, Armidale Australia, 2006

Poster "Effect of Echinacea on human immune responses *in vivo*" Presented at the 53rd Annual Congress of the Society for Medicinal Plant Research, Florence, Italy, 2005.

Abstracts and copies of these posters are presented in Appendix II.

Abbreviations

- **AAPH** 2,2'-azobis-(2-amidinopropane) dihydrochloride
- ACTH adrenocorticotropic hormone
- ADCC antibody-dependent cellular cytotoxicity
- AIDS acquired immune deficiency syndrome
- AMPS ammonium peroxodisulphate
- APC Allophycocyanin
- **APC** antigen presenting cell
- APC-Cy7 Allophycocyanin-Cy7
- ASC Albion Street Centre
- BSA bovine serum albumin
- CAM complementary and alternative medicine
- CHD cardiovascular heart disease
- CFI Centre for Immunology, St Vincent's Hospital, Sydney
- CNS central nervous system
- **CO** carbon monoxide
- CTL cytotoxic T lymphocyte
- **DC** dendritic cell
- DMSO dimethyl sulfoxide
- DNA deoxyribo nucleic acid
- **DNPH** 2,4-dinitrophenylhydrazine
- ELISA enzyme linked immunosorbent assay
- **ER** endoplasmic reticulum
- FACS flow cytometry and cell sorting
- FCS fetal calf serum
- FITC Fluorescein
- **FSH** follicle stimulating hormone
- **GnRH** gonadotrophin-releasing hormone
- grp glucose regulated protein
- **GSH** glutathione
- **HAART** highly active antiretroviral therapy
- HIV human immunodeficiency virus
- HLA human leukocyte antigen
- HO-1 heme oxygnase

HPA	hypothalamic-pituitary-adrenal axis
HRT	hormone replacement therapy
HSE	heat shock element
HSF	heat shock factor
hsp	heat shock protein
HTLV	human T-lymphocytotropic virus
IFN-γ	interferon-gamma
IL	interleukin
kDa	kilodalton
LAV	lymphadenopathy associated virus
LH	luteinizing hormone
LPS	lipopolysaccharide
LTNP	long-term non-progressor
МАРК	mitogen-activated protein kinases
MDA	maliondialdehyde
МНС	major histocompatibility complex
MS	multiple sclerosis
MUFA	monounsaturated fatty acids
NAC	N-acetylcysteine
NK	natural killer cells
NF-κB	nuclear factor- κΒ
NNRTI	non-nucleoside reverse transcriptase inhibitor
NO	nitric oxide
NRTI	nucleoside reverse transcriptase inhibitor
oc	oral contraceptive
PBMC	peripheral blood mononuclear cells
PBS	phosphate buffered saline
PBS-T	phosphate buffered saline-Tween 20
PE	Phycoerythrin
PE-Cy7	Phycoerythrin-Cy7
PerCP	Peridinin Chlorophyll Protein
PI	protease inhibitor
PLWHA	people living with HIV/AIDS
PMSF	phenylmethylsulphonyl fluoride

PUFA	polyunsaturated fatty acid
RNA	ribonucleic acid
ROS	reactive oxygen species
SD	standard deviation
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate-poly acrylamide gel electrophoresis
SEM	standard error of the mean
SFA	saturated fatty acid
SIV	simian immunodeficiency virus
SLE	systemic lupus erythematosus
STD	sexually transmissible disease
STI	structured treatment interruption
TAS	total antioxidant status
TBARS	thiobarbituric acid reactive substances
ТСА	trichloroacetic acid
TCR	T cell receptor
TEMED	N,N,N',N',-tetramethylenediamine
TLR	toll-like receptor
TNF-α	tumour necrosis factor alpha
WRL	Westfield Research Laboratories

List of Figures

Figure		Page
1.1	The proposed roles of Hsp90 and its co-chaperones	4
1.2	Hsp60 an intracellular signalling molecule	6
1.3	A proposed mechanism for activation of hsp70	9
1.4	The Immune response system	13
1.5	Leukocytes	14
1.6	HIV life cycle	22
1.7	Stages of HIV infection	23
1.8	Global estimates of HIV infection as at end 2003	25
2.1	Principle of the Total Antioxidant Status assay	48
3.1	Western blots and fold-increase of hsp70 in lymphocytes	52
	from HIV-positive and HIV-negative individuals	
3.2	Effect of heat shock on induction of hsps in lymphocytes	57
3.3	Effect of heat shock on induction of hsps in lymphocytes	58
3.4	Effect of heat shock on induction of hsps in lymphocytes	59
3.5	Effect of heat shock on induction of hsps in lymphocytes	60
3.6	Effect of heat shock on induction of hsps in lymphocytes	61
3.7	Effect of heat shock on induction of hsps in lymphocytes	62
3.8	Densitometric analysis of <i>de novo</i> synthesis of lymphocyte	63
3.9	Densitometric analysis of <i>de novo</i> synthesis of lymphocyte hsp90	63
3.10	Densitometric analysis of <i>de novo</i> synthesis of lymphocyte hsp110	63
3.11	Densitometric analysis of fold increase in hsps after heat shock	64
3.12	Fold increase in hsp90 expression	64
3.13A	Western immunoblots measuring hsp90 expression	65
3.13B	Corresponding Western immunoblots measuring β -actin	65
2 1/	Western immunoblets of henge from HIV-negative individuals	65
3 15	Western immunoblate of heng0 from HIV-negative individuals	65
3.15	Desma han70 in LUV positive and LUV positive individuals	66
3.10	measured by ELISA	00
4.1	The effect of cryopreservation on <i>de novo</i> protein synthesis	79

4.2	The effect of cryopreservation on <i>de novo</i> protein synthesis	80
4.3	Western immunoblots of hsp70 expression in cryopreserved	81
	lymphocytes	
4.4	Western immunoblot of hsp70 expression in lymphocytes	82
4.5	Comparison of hsp70 levels in plasma and serum	82
4.6	Male hsp70 plasma kinetics	83
4.7	Female hsp70 plasma kinetics	83
4.8	Comparison of hsp70 expression CD14-positive and CD14-	84
	negative cells from the female volunteer	
4.9	Comparison of hsp70 expression CD14-positive and CD14-	84
	negative cells from the male volunteer	
4.10	Hsp 70 expression in CD14-positive whole blood leukocytes	85
	(female)	
4.11	Hsp 70 expression in CD14-negative whole blood leukocytes	86
	(female)	
4.12	Hsp 70 expression in CD14-positive whole blood leukocytes	87
	(male)	
4.13	Hsp 70 expression in CD14-positive whole blood leukocytes	88
	(male)	
4.14	Gating on leukocyte sub-populations at 37°C	89
4.15	Histograms depicting leukocyte hsp70 expression at 37°C	90
4.16	Gating on leukocyte sub-populations at 42.5°C	91
4.17	Histograms depicting leukocyte hsp70 expression at 42.5 $^{\circ}$ C	92
4.18	Gating on leukocyte sub-populations at 37°C	93
4.19	Histograms depicting leukocyte hsp70 expression at $37^\circ C$	94
4.20	Gating on leukocyte sub-populations at 42.5°C	95
4.21	Histograms depicting leukocyte hsp70 expression at 42.5°C	96
4.22	Flow cytometric analysis of hsp70 expression in leukocyte	96
	subtypes	
5.1	Gating on leukocyte sub-populations and histograms depicting	110
	hsp70 expression in control $(37^{\circ}C)$ cells from a HIV-positive	
	individual	
5.2	Gating on leukocyte sub-populations and histograms depicting	111
	hsp70 expression in heat shocked (42.5°C) cells from a HIV-	
	positive individual	

5.3	Gating on leukocyte sub-populations and histograms depicting hsp70 expression in control (37°C) cells from a HIV-negative	112
5.4	individual Gating on leukocyte sub-populations and histograms depicting hsp70 expression in heat shock (42.5°C) cells from a HIV-negative individual	113
5.5	MFI of hsp70 expression in CD4+ T lymphocytes	114
5.6:	Percentage of CD4+ T lymphocytes expressing hsp70	114
5.7	MFI of hsp70 expression in CD8+ T lymphocytes	115
5.8	Percentage of CD8+ T lymphocytes expressing hsp70	115
5.9	MFI of hsp70 expression in CD56+ natural killer cells	116
5.10	Percentage of CD56+ natural killer cells expressing hsp70	116
5.11	MFI of hsp70 expression in CD14+ monocytes	117
5.12	Percentage of CD14+ monocytes expressing hsp70	117
5.13	MFI of hsp70 expression in CD14+ monocytes also expressing CD16+ (CD14+/CD16+)	118
5.14	Percentage of CD14+/CD16+ monocytes expressing hsp70	118
5.15	MFI of hsp70 expression in CD16+ monocytes that do not express	119
	CD14+ (CD14-/CD16+)	
5.16	Percentage of CD14-/CD16+ monocytes expressing hsp70	119
5.17	Differential leukocyte hsp70 MFI in HIV-negative controls and HIV-	124
	positive sub-groups at 37°C	
5.18	Differential leukocyte hsp70 MFI in HIV-negative controls and HIV- positive sub-groups at 42.5°C	124
5.19	Differential percentages of leukocytes expressing hsp70 in HIV- negative controls and HIV-positive sub-groups at 37°C	125
5.20	Differential percentages of leukocytes expressing hsp70 in HIV- negative controls and HIV-positive sub-groups at 42.5°C	125
5.21	Differential fold-increase (the ratio of heat shock 42.5°C relative to control 37°C) in hsp70 MFI in HIV-negative controls and HIV-positive sub-groups	126
5.22	Differential fold-increase (the ratio of heat shock 42.5°C relative to control 37°C) in percentage of cells expressing hsp70 in HIV-negative controls and HIV-positive sub-groups	126

6.1	Echinacea purpurea flowers	137
6.2	Structures of some alkylamides and caffeic acid derivatives	138
	present in <i>Echinacea</i> spp.	
6.3	Echinacea Premium tablets and component ingredients. HPLC	139
	trace of MediHerb Echinacea Premium showing the major	
	phytochemical groups	
6.4:	The kinetics of erythrocyte haemolysis as induced by the free	140
	radical generator AAPH	
6.5	The plasma Total Antioxidant Status (TAS) as determined by the	140
	ABTS method	
6.6	Hsp70 expression as measured by Western immunoblot	141
6.7	Hsp70 mean fold increase after heat shock	141
6.8A	Western immunoblots measuring hsp70 expression	142
6.8B	Corresponding Western immunoblots measuring β -actin	142
	expression	
6.9	De novo expression of hsp70 before and after Echinacea intake	143
6.10	De novo expression of hsp90 before and after Echinacea intake	143
6.11	Effect of heat shock on induction of hsps in lymphocytes	144
6.12	Effect of heat shock on induction of hsps in lymphocytes	145
6.13	Effect of heat shock on induction of hsps in lymphocytes	146
6.14	Effect of heat shock on induction of hsps in lymphocytes	147
6.15	Mean white cell count pre- & post-Echinacea	148
6.16	Mean differential white cell counts before Echinacea	148
	supplementation	
6.17	Mean differential white cell counts after Echinacea	149
	supplementation	
6.18	Alkylamide levels in plasma 1 h after ingestion off one Echinacea	149
	Premium tablet	
7.1	The human menstrual cycle	158
7.2	Female follicle stimulating hormone (FSH) and luteinizing hormone	161
	(LH) expression profiles across one menstrual cycle	
7.3	Male follicle stimulating hormone (FSH) and luteinizing hormone	161
	(LH) expression profiles across one month	
7.4	Female progesterone and estradiol expression profiles across one	162
	menstrual cycle	

7.5	Male progesterone and estradiol expression profiles across one month	162
7.6	Female leptin expression profile across one menstrual cycle	163
7.7	Male leptin expression profile across one month	163
7.8	Female testosterone expression profile across one menstrual cycle	164
7.9	Male testosterone expression profile across one month	164
7.10	Female prolactin expression profile across one menstrual cycle	165
7.11	Male prolactin expression profile across one month	165
7.12	Female cortisol expression profile across one menstrual cycle	166
7.13	Male cortisol expression profile across one month	166
7.14	Serum leptin comparisons based on gender and oral contraceptive use	167
7.15	Serum cortisol comparisons based on gender and oral contraceptive use	167
7.16	Serum prolactin comparisons based on gender and oral contraceptive use	168
7.17	Mean hsp70 MFI in control cells (incubated at 37°C for 4 h)	171
7.18	Mean percentage of cells expressing hsp70 under control conditions (cells incubated at 37°C for 4 h)	171
7.19	Mean hsp70 MFI in heat shocked cells (incubated at 42.5° C for 1 h then at 37° C for 3 h). Values are means ± SEM (female non-oral contraceptive	172
7.20	Mean percentage of cells expressing hsp70 under heat shock conditions (cells incubated at 42.5°C for 1 h then at 37°C for 3 h)	172
7.21	Mean fold-increase hsp70 MFI (measured as the ratio of heat shock MFI compared with control MFI)	173
7.22	Mean fold-increase in percentage of cells expressing hsp70 (measured as the ratio of heat shock % cells compared with control % cells)	173

List of Tables

Table		Page
1.1	The heat shock protein families	2
1.2	CD antigens	15
1.3	Cytokines and their functions	19
1.4	HIV gene products	20
1.5	Oxidative stress induction of stress proteins	29
2.1	Calibrated molecular weights of pre-stained SDS-PAGE standards	42
2.2	Primary antibody dilutions	44
2.3	Flow cytometry extracellular marker antibodies	47
3.1	Baseline demographics of HIV-positive subjects	54
3.2	Baseline demographics of HIV-negative subjects	54
4.1	Antibodies to extracellular leukocyte markers	77
5.1	Baseline demographics of HIV-positive subjects	107
5.2	Baseline demographics of HIV-negative subjects	108
5.3	Median (Inter quartile range: IQR) for MFI at basal and heat shock	120
	levels and fold-increase by HIV status	
5.4	Median (Inter quartile range: IQR) for % cells at basal and heat shock	120
	levels and fold increase by HIV status	
5.5	Coefficients for predictive factors for MFI from regression analysis	121
5.6	Coefficients for predictive factors for percentage of cells expressing	121
	hsp70 from regression analysis	
6.1	Blood chemistry and haematological values	150
7.1	Oral contraceptive use differences in percentage of leukocytes	174
	expressing hsp70	
7.2	Oral contraceptive use differences in leukocyte hsp70 MFI	175
7.3	Menstrual cycle phase differences in percentage of leukocytes	176
	expressing hsp70	
7.4	Menstrual cycle phase differences in leukocyte hsp70 MFI	176
7.5	Gender differences in percentage of leukocytes expressing hsp70	177
7.6	Gender differences in leukocyte hsp70 MFI	178

Declaration	iii
Acknowledgements	iv
Abstract	vi
Publications arising from this Thesis	viii
Aspects of Thesis presented at conference proceedings	ix
Abbreviations	x
List of Figures	xiii
List of Tables	xviii
Chapter 1 General Introduction	1
1.1 Heat shock proteins	1
1.1.1 Hsp110	3
1.1.2 Hsp90	3
1.1.3 Hsp70	4
1.1.4 Hsp60	5
1.1.5 Hsp56	6
1.1.6 Hsp47	6
1.1.7 Hsp40	7
1.1.8 Hsp32 (Heme oxygenase-1)	7
1.1.9 Hsp27/Small hsps	7
1.2 Transcriptional regulation of stress proteins	8
1.3 Stress proteins as molecular chaperones	9
1.4 Stress proteins and the immune response	10
1.5 Stress proteins in circulation	12
1.6 The immune system	12
1.7 Leukocytes	13
1.8 CD antigens	15
1.9 Hsp cell surface receptors/cytokine effects	16
1.10 Cytokines	17
1.11 The Human Immunodeficiency Virus	20
1.11.1 The course of HIV-1 infection	22
1.11.2 Epidemiology of AIDS	24
1.11.3 Highly Active Antiretroviral therapy (HAART)	26
1.11.4 Stress proteins and HIV infection	26

Contents

1.12 Oxidative stress	27
1.13 Modulation of stress protein synthesis by CAM	30
1.14 Use of CAM by HIV-positive individuals	31
1.15 Hormones and stress proteins	33
1.16 Thesis aims	34
Chapter 2 Materials and Methods	36
2.1 Materials	36
2.1.1 Chemicals and consumables	36
2.1.2 Antibodies	38
2.1.2.1 Anti-hsp antibodies	38
2.1.2.2 Secondary antibodies	38
2.1.2.3 Flow cytometry extracellular marker antibodies	38
2.1.2.4 Flow cytometry intracellular marker antibodies	38
2.1.2.5 Flow cytometry control antibodies	38
2.1.3 Software packages	39
2.2 Methods	39
2.2.1 General	39
2.2.2 Study design	39
2.2.3 Blood Collection	40
2.2.4 Isolation of lymphocytes	40
2.2.5 Stress treatment	40
2.2.6 Analysis of protein synthesis	40
2.2.7 Western blotting analysis	43
2.2.8 Cryopreservation of peripheral blood mononuclear cells	44
2.2.9 Hsp70 ELISA	45
2.2.10 Flow cytometric analysis of hsp70 expression in whole blood	46
2.2.11 Erythrocyte haemolysis assay	47
2.2.12 Total antioxidant status of plasma	48
2.2.13 Measurement of hormone levels in plasma	49
2.2.14 Measurement of blood chemistry and haematological values	49
2.2.15 Measurement of alkylamide concentrations in plasma	49
2.2.16 Statistical analysis	50

Chapter 3 Expression of heat shock proteins is altered in HIV-infection51
3.1 Introduction51
3.2 Study design
3.2.1 Study participants53
3.2.2 Blood collection53
3.2.3 Patient profile data53
3.3 Results
3.3.1 Autoradiograms55
3.3.2 Western immunoblots for hsp9064
3.3.3 Hsp70 plasma ELISA66
3.4 Discussion
Chapter 4 Methodological developments in the measurement of stress protein
synthesis in leukocytes73
4.1 Introduction
4.2 Study design and methodologies74
4.2.1 Expression of stress proteins in cryopreserved cells74
4.2.2 Minimum volume of blood required to measure stress protein
expression75
4.2.3 Comparison of hsp70 expression in plasma and serum
4.2.4 Kinetics of plasma hsp70 expression after heat shock
4.2.5 Flow cytometric analysis of hsp70 expression in leukocytes75
4.2.6 Multicolour flow cytometric analysis of hsp70 expression in
leukocyte subpopulations77
4.3 Results
4.3.1 Expression of stress proteins in cryopreserved cells
4.3.2 Minimum blood volume required to measure stress protein
avaragian 90

expression	82
4.3.3 Comparison of hsp70 expression in plasma and serum,,,,	82
4.3.4 Kinetics of expression of plasma hsp70 after heat shock	83
4.3.5 Flow cytometric analysis of hsp70 expression in leukocytes	84
4.3.6 Multicolour flow cytometric analysis of hsp70 expression in	
leukocyte subpopulations	89
4.4 Discussion	97

4.4.1 Expression of stress proteins in cryopreserved cells	97
4.4.2 Minimum blood volume required to measure stress protein	
expression	98
4.4.3 Comparison of hsp70 expression in plasma and serum	99
4.4.4 Kinetics of expression of plasma hsp70 after heat shock	
4.4.5 Flow cytometric analysis of hsp70 expression in leukocytes	100
4.4.6 Multicolour flow cytometric analysis of hsp70 expression in	
leukocyte subpopulations	

Chapter 5 Analysis of stress protein expression by flow cytometry: Differential

hsp70 expression in leukocyte subpopulations	103
5.1 Introduction	103
5.2 Study design	105
5.3 Results	107
5.3.1 Comparison of HIV-positive and HIV-negative cohorts	107
5.3.2 Sub-groups of the HIV-positive cohort	121
5.4 Discussion	

Chapter 6 Modulation of stress protein synthesis by <i>Echinacea</i> spp	.135
6.1 Introduction	.135
6.2 Study design	.137
6.2.1 Echinacea premium tablets	.137
6.2.2 Study participants	.138
6.3 Results	.139
6.3.1 Erythriocyte haemolysis	.139
6.3.2 Total antioxidant status	.139
6.3.3 Expression of hsp70	.140
6.3.4 <i>De novo</i> synthesis of stress proteins	.142
6.3.5 Serum chemistry and haematological values	.147
6.3.6 Alkylamide	.148
6.4 Discussion	.150

Chapter 7 Modulation of stress protein expression by gender, menstrual cycle	
phase and oral contraceptives	156
7.1 Introduction	156
7.2 Study design	158
7.3 Results	158
7.3.1 Hormone levels	
7.3.2 Hsp70 expression	
7.4 Discussion	
7.4.1 Hormone levels	178
7.4.2 Hsp70 expression	

Chapter 8 Summary and future directions	.189
8.1 Expression of heat shock proteins is altered in HIV-infection	.190
8.2 Methodological developments in the measurement of stress protein	
synthesis in leukocytes	.191
8.3 Analysis of stress protein expression by flow cytometry:	
Differential hsp70 expression in leukocyte subpopulations	.192
8.4 Modulation of stress protein synthesis by <i>Echinacea</i> spp	.194
8.5 Modulation of stress protein expression by gender, menstrual cycle phase	
and oral contraceptives	.195

References	
Appendices	239