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Abstract: Tree- and block-level prediction of mango yield is important for farm operations, but
current manual methods are inefficient. Previous research has identified the accuracies of mango yield
forecasting using very-high-resolution (VHR) satellite imagery and an ’18-tree’ stratified sampling
method. However, this approach still requires infield sampling to calibrate canopy reflectance and the
derived block-level algorithms are unable to translate to other orchards due to the influences of abiotic
and biotic conditions. To better appreciate these influences, individual tree yields and corresponding
canopy reflectance properties were collected from 2015 to 2021 for 1958 individual mango trees from
55 orchard blocks across 14 farms located in three mango growing regions of Australia. A linear
regression analysis of the block-level data revealed the non-existence of a universal relationship
between the 24 vegetation indices (VIs) derived from VHR satellite data and fruit count per tree, an
outcome likely due to the influence of location, season, management and cultivar. The tree-level
fruit count predicted using a random forest (RF) model trained on all calibration data produced
a percentage root mean squared error (PRMSE) of 26.5% and a mean absolute error (MAE) of
48 fruits/tree. The lowest PRMSEs produced from RF-based models developed from location, season
and cultivar subsets at the individual tree level ranged from 19.3% to 32.6%. At the block level,
the PRMSE for the combined model was 10.1% and the lowest values for the location, seasonal
and cultivar subset models varied between 7.2% and 10.0% upon validation. Generally, the block-
level predictions outperformed the individual tree-level models. Maps were produced to provide
mango growers with a visual representation of yield variability across orchards. This enables better
identification and management of the influence of abiotic and biotic constraints on production. Future
research could investigate the causes of spatial yield variability in mango orchards.

Keywords: mango (Mangifera indica L.) fruit count; vegetation indices (VIs); machine learning;
random forest; satellite imagery; yield prediction

1. Introduction

Over the past few decades, the yield of mango (Mangifera indica L.), one of the most
important fruit crops with global recognition due to its nutritional benefits and economic
value, has been on the rise [1]. Mango yield is influenced by a range of factors, including
soil quality, weather (i.e., rainfall and temperature) and management practices, among
others [2–4]. Accurate mango yield prediction promotes the efficient use of farm inputs and
resources such as irrigation, fertiliser, labour and machinery [5,6]. Additionally, with an
understanding of the spatial variability in yield across a farm (trees and blocks), growers are
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able to optimise production by implementing site-specific management programmes on the
farms. This is the essence of the concept of precision agriculture, which aims at providing
support for growers to apply the right amount of input at the right time in the right place
(i.e., per tree or management zone) [7]. Thus, the ability to accurately estimate mango
yield in a timely manner at varying scales is crucial for effective agricultural planning and
resource allocation [5,6]. This also help growers in planning harvesting logistics (labour,
transport, storage and processing requirements) and total production estimates to support
forward selling [8–10].

Presently, although the industry has tested different in-season mango yield estimations
at the tree and block levels using techniques such as manual counting, hyperspectral
imaging and machine vision, such trials are often costly, time- and labour-intensive and
lack scalability [11–14]. These trials are usually conducted on small plot(s) in the orchard
and the results are often extrapolated to the entire orchard or farm [6,11,15]. This sometimes
results in inaccurate estimates due to occlusion and the inability to adequately describe
spatial variability. There is therefore the need for a technology that predicts annual yield
using the RS-based vegetation indices (VIs) approach that has the potential of covering a
larger area with relatively less labour and time investment.

Currently, the study of vegetation dynamics and their relationship with agricultural
productivity has gained a significant interest globally. Remote sensing (RS) technologies
using satellite imagery provide valuable tools for monitoring and analysing VIs that are
closely associated with crop yield [7]. Past studies have demonstrated the potential of VIs,
such as the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Soil Adjusted Vegetation Index (SAVI), and Transformed Chlorophyll Absorption
Reflectance Index (TCARI), in estimating crop yield in various agricultural systems [7,16].
However, limited research has focused specifically on mango orchards and the potential
of very-high-resolution (VHR) satellite imagery to assess mango yield at multiple scales
using machine learning (ML) algorithms. By filling this research gap, we aim to enhance
our understanding of the relationship between VIs and mango productivity, ultimately
providing valuable information to mango growers and stakeholders regarding spatial
yield variability, targeted input application and more. The availability of VHR satellite
imagery, such as WorldView–2 (WV2) and WorldView–3 (WV3), has opened up immense
possibilities for understanding the relationship between VIs and crop yield at various
spatial scales [6,10,13]. WV imagery offers spectral bands and spatial resolutions suitable
for detailed vegetation analysis at the tree, block and farm levels. By leveraging the
strengths of this technology, insights into the spatial patterns and variations in VIs within
mango orchards and their association with mango yield can be gained.

A number of existing studies in the horticultural tree crop sector have tested the use
of different statistical and ML approaches for the in-season yield estimation of different
fruit trees [17–19]. For example, Matese and Di Gennaro [19] applied a Gaussian process
regression and NDVI acquired from a UAV to evaluate the performance of traditional linear
and ML regression in forecasting in-season grape yield with an accuracy of 85.95%. Gan
et al. [20] detected and counted fruits using a combination of a thermal imaging method
(from a vehicle mounted camera (FLIR A655SC)) and ML (Region-Convolutional Neural
Network (Faster R-CNN)) to tackle problems associated with colour similarity between
immature citrus fruits and leaves, achieving an accuracy of 96%. Additionally, Apolo-
Apolo et al. [18] applied Faster R-CNN to detect small target fruits from top-view RGB
images of apple trees captured by UAVs with accuracy above 90%. In the mango industry
specifically, only a handful of studies have conducted in-season counting of fruits on trees.
Notable among them are the studies by Rahman et al. [6] and Anderson et al. [10], who
predicted in-field, in-season (for two seasons) mango yield for mango with an “18 tree
calibration” approach using VHR WV3 imagery. Although the approaches discussed above
produced accurate results, they require physical measures of fruit counts/weights from
many individual trees for model calibration [6,10,15,17].
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The current study is thus meant to expand the initial findings from those studies,
particularly the work of Rahman et al. [6], who primarily used an Artificial Neural Network
(ANN) on single-capture WV3 imagery over three mango orchards in the Australian
Northern Territory. That method was tested for only one region, two seasons and one
cultivar. Although there is scope for the application of other machine learning and deep
learning approaches to model mango yield using remote sensing, the current study, firstly,
aims to expand the scope of that research using multiple farms, growing seasons and
regions in Australia. This will help to explore the potential of predicting mango yield
without the need for in-field calibration. The application of deep learning approaches has
the potential for generalisation across a wider range of geographical coverage and such
methodologies could be explored. Secondly, the current study aims to investigate whether
a generic model is possible using this large dataset. Thus, the Random Forest approach,
which has been widely used due to its user friendliness in practical applications with the
ability to produce accurate predictions, as reported by numerous studies by describing
more variability in the data, was explored [2,21–23]. The RF model will be particularly
useful in capturing the spatial variability in mango yield across different numbers of farms,
growing seasons and regions in Australia. This will contribute to the understanding of
the spatial variability of yield. The successful implementation of this approach would not
only promote adoptability for individual growers but also potentially support scalability to
multiple scales (block, farm, regional and national levels).

The objectives of this study are as follows:

1. Explore the relationships between VIs derived from WV2 and WV3 imagery and fruit
count at the individual tree level, using data sourced from different growing seasons,
locations and cultivars.

2. Evaluate a range of analytics to determine if a generic crop load (yield) model can be
derived between canopy reflectance and yield.

3. Validate the accuracies of a generic model for estimating fruit number at the individual
tree and orchard block level.

4. Produce tree-level yield variability maps.

2. Materials and Methods
2.1. Study Area

The study was conducted from 2015 to 2021, including 1958 individual trees from
55 orchard blocks across 14 farms in three mango growing regions of Australia, namely,
the Northern Territory (NT), Northern Queensland (N–QLD) and South East Queensland
(SE–QLD). The study regions are located between longitudes 131.02◦E and 152.41◦E and
latitudes 12.73◦S and 27.91◦S. Table 1 describes the study sites with information including
regions, the location of individual farms, cultivar, number of blocks, etc. Eight cultivars
including Calypso, Kensington Pride (KP), Honey Gold (HG), Parvin, R2E2, Keitt, Lady
Jane (LJ) and Lady Grace (LG) were studied. The regions are characterised by a tropical
climate with distinct dry (May to October) and wet (November to April) seasons. For NT,
average daily minimum and maximum temperatures range between 21 ◦C and 35 ◦C in the
dry season, with average annual rainfall of 1570 mm and wet season temperatures ranging
between 25 ◦C and 33 ◦C [24]. For the Queensland regions, minimum and maximum
temperatures range between 21 ◦C and 30 ◦C with average annual rainfall of 1030 mm in
SE–QLD and 2010 mm in N–QLD [25]. These study areas, apart from being the regions in
Australia with the highest mango production volumes, are also locations that have benefited
significantly from previous research and have available data for exploring various forms of
analytics. Figure 1 shows the spatial distribution of the study farms.

Figure 2 show the flowchart that outlines the procedural steps used to generate the
results. Each component of the flowchart refers to a section describing the methodology in
greater detail.
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Figure 1. Location of mango farms in the three mango growing regions of Australia.
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Table 1. Description of study farms and their respective WV2 and WV3 imagery capture dates.

Region Farm No. of
Blocks Season Cultivar No. of

Sampled Trees Satellite Image Acquisition
Date

NT Farm 1 6

2016
2017
2019
2020
2021

Calypso 432 *

WV3
WV3
WV3
WV3
WV2

23-10-2016
16-08-2017
27-08-2019
27-08-2020
01-09-2021

Farm 2 5 2020
2021 KP, R2E2, Parvin 158 * WV3

WV3
27-09-2020
23-09-2021

Farm 3 6 2020
2021 KP, R2E2 144 * WV3

WV3
27-09-2020
23-09-2021

Farm 4 5 2020
2021 KP, R2E2, LG, LJ 180 WV3

WV2
04-11-2020
16-11-2021

Farm 5 2 2020
2021 Calypso 36 * WV3

WV3
27-09-2020
23-09-2021

Farm 6 2 2020
2021 HG 72 WV3

WV2
04-11-2020
16-11-2021

Farm 7 2 2016
2019 KP, R2E2 72 WV3

WV3
23-10-2016
27-08-2019

Farm 8 5 2019
2020 Calypso, HG 126 * WV3

WV3
08-12-2019
07-11-2020

Farm 9 4 2020 KP, R2E2, Keitt 72 WV3 07-11-2020

N–QLD
Farm 10 4 2019

2021 Calypso 144 WV3
WV3

08-12-2019
07-11-2020

Farm 11 4 2019
2020 KP, HG, R2E2 108 * WV3

WV3
08-12-2019
07-11-2020

Farm 12 2 2020 KP, R2E2 36 WV3 07-11-2020

Farm 13 3 2019
2020 Calypso 108 WV3

WV3
06-12-2019
06-12-2020

SE–QLD Farm 14 5

2015
2016
2017
2019
2020

Calypso, HG, R2E2 270 *

WV2
WV3
WV3
WV3
WV3

02-09-2015
23-09-2016
14-05-2017
06-12-2019
06-12-2020

Total 55 1958

* Numbers of 18 tree datapoints per farm vary in some cases as a result of variation in the number of years with
available data per block. For example, out of the six blocks in Farm 1, three blocks had 18 tree sample datapoints
for only three years out of the five-year period of data collection.

2.2. Field Data Collection

For each mango farm, a representative block (calibration block) was selected for
the targeted ground truthing of 18 trees representing high, medium and low vigour (i.e.,
6 replicate trees per vigour zone). Initially, either PlanetScope or WV satellite data were used
to derive a Normalized Difference Vegetation Index (NDVI)-based mango tree vigour map,
classified into 8 classes from low to high vigour. The tree vigour map was superimposed
on a high-resolution ESRI basemap image in ArcGIS [26] to identify 6 trees in each of
high-, medium-, and low-vigour categories (total of 18 trees per block). These trees thus
represented the spatial variability in tree vigour in each block. Figure 3 shows an example
of 18 tree locations on a classified NDVI map and ESRI basemap image in ArcGIS.
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Figure 3. Example of 18 tree locations on the classified NDVI map (a) and on the ESRI basemap
image (b). The points with L, M and H prefixes represent the different tree vigour classes of low,
medium and high, respectively.

The latitude and longitude of sample trees were extracted, along with their positions
in terms of row and tree numbers. The coordinates and row/tree numbers were used in
DGPS to identify the same trees in the field. For each identified tree, field measurements of
fruit numbers (fruit count) were carried out manually at the stone hardening stage, at least
six weeks before harvest timing (August–December, depending upon the growing region
and the harvest timing). The counting was performed by three different individuals, and
was then averaged to obtain the total number of fruits/trees. The same trees were used
for sampling across the different seasons. In total, tree-level data collected over 55 blocks
between 2015 and 2021 were used for model development and validation. Additionally,
the actual total yield (fruit count at harvest) of 29 unique blocks over the same period
was obtained from the growers. This information was used for further comparisons at the
block level.

2.3. Satellite Data

VHR WorldView–2 (WV2) and WorldView–3 (WV3) satellite imagery was acquired for
the study regions from MAXAR (https://earth.esa.int/eogateway/missions/worldview
(accessed on 28 October 2024)). Images had a spatial resolution of 1.6 m and 1.24 m,
respectively, suitable for tree-level analysis, with eight multispectral visible near-infrared
(VNIR) bands [27], used for the derivation of Vis in this study (Table 2). The pansharpened
(PS) images with spatial resolutions of 0.4 m and 0.31 m (at nadir) for WV2 and WV3,
respectively, were used for tree crown delineation. Despite the very high spatial resolution
of the WV2 and WV3 sensor systems used, their spectral and radiometric capabilities are
largely limited [27].

A total of 17 images covering 14 farms captured between 2 September 2015 and 16
November 2021 (Table 1) were acquired. The image capture dates were timed to coincide
with the fruit development (FRD) or stone hardening stage of the mango fruit [16]. In cases
where WV3 images were unavailable, WV2 data were used as replacement.

https://earth.esa.int/eogateway/missions/worldview
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Table 2. Spectral characteristics of the WV2 and WV3 imagery used in this study.

Image Band Band Name Wavelength (nm)

1 Coastal (C) 400–450
2 Blue (B) 450–510
3 Green (G) 510–580
4 Yellow (Y) 585–625
5 Red (R) 630–690
6 Red-edge (RE) 705–745
7 NIR-1 770–895
8 NIR-2 860–900/1040 *

* NIR-2 wavelength for WV2 and WV3 ranges from 860 to 1040 and from 860 to 900 nm, respectively.

Spectral Data Extraction and VI Calculation

The canopy reflectance data for each sampled tree were extracted for each spectral
band (Table 2), which were then used to derive 24 structural and pigment-based Vis (Table 3).
The Vis were calculated taking advantage of the spectral characteristics of each band in
the multispectral WV2 and WV3 data applying the mathematical formulas displayed in
Table 3 in the R statistical package. Typically, indices that are critical for the assessment of
vegetation properties as shown in Table 3 were considered.

Table 3. Formula and characteristics of spectral vegetation indices used in this study.

Vegetation Index Formula Reference

Red-edge Normalized Difference Vegetation Index (RENDVI) (RE − R)/(RE + R) [28]

Normalized difference Red-edge index (N1/RENDVI) (NIR1 − R)/(NIR1 + RE) [29]

Normalized difference Red-edge index 1 (N1RENDVI) (NIR1 − RE)/(NIR1 + RE) [29]

Normalized difference Red-edge index 2 (N2RENDVI) (NIR2 − RE)/(NIR2 + RE) [29]

Transformed Chlorophyll Absorption in Reflectance Index (TCARI) 3 × ((RE − R) − 0.2 × (RE − G) × (RE/R)) [30]

Structure Insensitive Pigment Index (SIPI) (NIR1 − B)/(NIR1 + R) [31]

Structure Insensitive Pigment Index (CB SIPI) NIR1 − CB)/(NIR1 + CB) [31]

Normalized Difference NIR Index (N1/N2NDVI) (NIR1 − R)/(NIR1 + NIR2) [32]

Green Normalized Difference Vegetation Index (N1GNDVI) (NIR1 − G)/(NIR1 + G) [33]

Normalized Difference Vegetation Index (N1NDVI) (NIR1 − R)/(NIR1 + R) [34]

Normalized Difference Vegetation Index (N2NDVI) (NIR2 − R)/(NIR2 + R) [34]

Renormalized Difference Vegetation Index 1 (RDVI1) (NIR1 − R)/(SQRT(NIR1 + R)) [32]

Renormalized Difference Vegetation Index 2 (RDVI2) (NIR2 − R)/(SQRT(NIR2 + R)) [32]

Modified Simple Ratio (MSR) (NIR1/R − 1)/(SQRT((NIR1/R) + 1)) [35]

Transformed Difference Vegetation Index 1 (TDVI1) 1.5 × ((NIR1 − R)/(SQRT(NIR12 + R + 0.5)) [36]

Transformed Difference Vegetation Index 2 (TDVI2) 1.5 × ((NIR2 − R)/(SQRT(NIR22 + R + 0.5)) [36]

Ratio Vegetation Index (RVI) (NIR1)/(R) [37,38]

Yellow Soil Adjusted Vegetation Index (Yellow SAVI) (NIR1 − CB) × (1 + 0.5)/(NIR1 + CB + 0.5) [39]

Enhanced Vegetation Index 1 (EVI2N1) 2.5 × ((NIR1 − R)/(1 + NIR1 + (2.4 × R)) [40]

Enhanced Vegetation Index 2 (EVI2N2) 2.5 × ((NIR2 − R)/(1 + NIR2 + (2.4 × R)) [40]

Chlorophyll Index Green 1 (CIg_1) (NIR1)/(G) − 1 [41]

Chlorophyll Index Green 2 (CIg_2) (NIR2)/(G) − 1 [41]

Chlorophyll Index Red-edge 1 (CIRE_1) (NIR1)/(RE) − 1 [41]

Chlorophyll Index Red-edge 2 (CIRE_2) (NIR2)/(RE) − 1 [41]
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2.4. Data Analysis
2.4.1. Correlation Analysis

Exploratory data analysis was conducted to understand the data and its distribution.
Thereafter, correlation analysis between the Vis and fruit count was performed, first for
the entire dataset and then its subsets (location, cultivar and season). This was carried
out to assess the direction, strength and statistical significance of their relationship. The
analysis was conducted using the R statistical software version 4.1.2 which also assessed
the Pearson’s correlation coefficient for all the relevant combinations. The correlations were
then plotted using the “ggplot” package in the R software version 4.1.2 to facilitate visual
interpretation of the relationships and their respective strengths.

2.4.2. Linear Regression and Slope Analysis

To explore the relationship between the response (fruit count) and predictor variables
(Vis), a multiple linear regression analysis was conducted in Python using the scipy.stats
library (https://www.scipy.org/). The slopes of the regression lines were analysed using a
two-tailed paired t-test. The t-test was conducted to test the null hypothesis that the means
of the slopes from the relationships between Vis and fruit count are equal to zero. This
analysis was conducted for the combined dataset containing all individual trees and subsets
of this dataset (location (region), cultivar and season). To satisfy normality requirements
for statistical testing, the sampling framework for selecting mango trees was random.

2.4.3. Random Forest Prediction of Fruit Count

Fruit count was predicted using an RF model. Knowing that most of the Vis used
were highly autocorrelated, the RF model was optimised to make it less susceptible to
overfitting. Thus, to parameterize the model to select the optimum number of trees and
mtry and to perform independent evaluation, a k-fold (with k = 10) cross validation (CV)
with 5 iterations was conducted during model training [42] using the “caret” package
in the R software version 4.1.2. This reduced the detrimental impact of multicollinearity
between predictor variables to ensure the models were stable [2,43]. The model developed
using all datasets (combined model) was trained on 80% of the dataset using the CV
approach mentioned above and tested on the remaining 20%. The sample selection was
performed randomly. Additionally, models were trained and tested on subsets of the data,
including season, location and cultivar, using the 80%/20% approach to assess which
method produces better accuracy at the individual tree level. The location scale used in this
study was “region” and, thus, all location references made are in that respect. A different
approach, the leave-one-year-out (LOYO) approach, following Torgbor et al. [2], was used
for the seasonal prediction model in which one season is held out as a test set and all other
seasons are used for model training. All 24 Vis were used as predictors in the models.

The results from these models were graphically displayed and compared. Subse-
quently, the best approach was applied in validating fruit count (yield) prediction at the
block level. The predicted block-level yield, Ypred (number of fruits), was computed from
the product of the predicted average fruit count (Fcpred) per tree and the total number of
trees per block (N) [10] as shown in equation 1. The Fcpred per tree was obtained from the
final model calibrated using a total of 1940 individual trees’ data and excluding the 18 trees
of the actual block being validated for a given season.

Ypred = FCpred × N (1)

This was compared with the grower-obtained actual yield (fruit count for blocks with
available yield data at harvest spanning the period from 2016 to 2021) from the respective
blocks to assess the performance of the model at the block level.

https://www.scipy.org/
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2.4.4. Model Evaluation

Several model evaluation metrics, including mean absolute error (MAE) and root
mean squared error (RMSE), have been used in the past [8,44,45]. The models in this study
were evaluated using MAE and percentage root mean squared error (PRMSE) as shown in
Equations (2) and (3), respectively. The MAE was used because, compared to the RMSE, it
is less sensitive to outliers [46,47].

MAE(fruits/tree) =
1
N

× ∑N
i=1|yi − yI| (2)

where N, yI and yI are the number of observations and the predicted and actual fruit count,
respectively.

The PRMSE is an easy-to-interpret metric that explains the performance of the model
in relation to the predicted feature (i.e., fruit count). It is the ratio of the model’s RMSE to
the absolute difference of the predicted minimum (|Pmin|) and maximum (|Pmax|) fruit
count expressed as a percentage. The sampling framework for selecting the mango trees
was randomised to satisfy normality requirements for statistical testing.

PRMSE(%) =
RMSE

(|Pmax| − |Pmin|) × 100 (3)

2.4.5. Yield Variability Mapping

To show the spatial variability of yield across orchard blocks for grower management
decision support on the precise application of farm inputs, among others, a surrogate
yield map was produced from the region-based RF model. The map was produced with
ESRI ArcGIS version 10.8 [26], using the predicted yield obtained from the RF model. The
yield predicted per tree from the RF model was grouped and assigned a unique colour.
This helped categorise trees with similar yield profiles and offered an opportunity for site
productivity assessment.

3. Results
3.1. Exploratory Data Analysis

The NT had the highest number of farms and datapoints. Farm 1 contributed the
highest number of trees sampled (432) and fruits counted (46,090), followed by Farm 14
with 270 sampled trees and 35,259 fruits counted across the six-year period. The least
number of trees sampled and fruits counted was found on Farms 5 and 12 with 36 trees
each and respective fruit counts as shown in Figure 4a. While majority of the cultivars
planted produced median number of fruits below 100, Calypso, Keitt and Parvin produced
median fruit counts above 100 fruits/tree (Figure 4b).
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3.2. Exploring the Relationship Between VIs and Fruit Count

The results of the three separate experiments conducted to assess the relationship
between VIs and fruit count are presented in this section. They include (1) regression
analyses for all datasets combined, (2) separate cultivar and region subset regressions and
(3) meta-regression analyses of the yield vs. VI slopes of all blocks.

3.2.1. All Data Aggregation Results

The correlation coefficients (r) of the VIs with the highest correlation of fruit count for
all blocks and all seasons as well as cultivar and location data subsets were assessed. The
results show that considering all blocks, including their respective locations, cultivars and
seasons, N1RENDVI, CIRE_1 and SIPI produced the highest correlation with r = 0.14, 0.14
and −0.14, respectively (Figure 5).
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Figure 5. Correlation between fruit count and the 24 VIs using the entire datasets of 1958 datapoints.
The green and red colour ramps show the strength and direction of the correlation being positive and
negative, respectively.

3.2.2. Separate Cultivar and Region Regression Results

Subsequently, for the cultivar and location subsets, N2RENDVI produced the highest
correlation with r = 0.76 (maximum from the Keitt cultivar) and 0.34 (from SE–QLD),
respectively. Table 4 provides details on the correlation analysis results from the cultivar and
location subsets. In general, the correlation coefficient obtained for the highest correlating
VI(s) was higher in the subset models than in the combined model.
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Table 4. Output from the correlation analysis on cultivar and location subsets.

Subset Description Best Correlation
Coefficient (r) Best Contributing VI (s)

Cultivar Calypso 0.24 CIRE_2

KP −0.19 CIRE_2 and CB-SIPI

HG 0.39 CIRE_2, N2RENDVI, TDVI1 and N1/N2NDVI

Parvin −0.69 EVI2N2

R2E2 0.35 CB-SIPI

LJ 0.15 Yellow-SAVI

LG 0.51 CB-SIPI

Keitt 0.76 N2RENDVI

Region NT −0.18 SIPI

N–QLD −0.15 Yellow-SAVI

SE–QLD 0.34 CIRE_2 and N2RENDVI

3.2.3. Individual Block Meta-Regression Analysis Results

In an attempt to better quantify the influence of location, cultivar and season on the
relationship between VIs and fruit count, a meta-regression analysis of slopes was con-
ducted using a two-tailed t-test of the regression lines per block for all datasets and subsets.
The results show that for all 24 VIs tested on the entire datasets, only two (N1RENDVI
with p = 0.044 and CIRE_1 with p = 0.036) provided enough evidence for the rejection of
the null hypothesis at p < 0.05. Figure 6 shows a histogram of CIRE_1 with the average
slope and standard deviation. It was therefore concluded that the mean of the slopes for
the relationship of fruit count with these indices was significant.
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Further analysis conducted on subsets of the data to investigate the effect of location,
cultivar and season on the relationship between VIs and fruit count using all the datapoints
for each group revealed the following:

1. Location (region): the mean of all slopes tested was not significantly different from
zero in the NT, whereas one VI (SIPI with p = 0.023) in the N–QLD and two VIs
(N1RENDVI with p = 0.041 and CIRE_1 with p = 0.038) in the SE–QLD regions were
significantly different from zero.
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2. Cultivar: there were significant differences in the mean of the slopes for all VIs except
SIPI for both KP and Calypso and N1_N2NDVI for LJ.

3. Season: The mean of the slopes for 2015, 2020 and 2021 was not significantly different
from zero and the null hypothesis was therefore accepted. However, slopes were
significantly different in the 2016, 2017 and 2019 seasons.

Generally, three different kinds of relationships were identified between VIs and fruit
count for all the VIs tested across different seasons. VIs were either positively, negatively
or not related with fruit count as shown by the regression lines. Figure 7 shows the
relationships obtained for Block 4 from Farm 1 using RENDVI over four seasons.
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Figure 7. Relationships identified between RENDVI and fruit count: (a) and (b) were positive for
2016 and 2017, (c) negative for 2020 and (d) non-existent for 2021.

Different relationships were observed in different seasons for the same trees. Similar
relationships were identified for the other VIs and blocks as well. There is therefore no
universal relationship between all VIs and fruit count across different seasons and blocks.

3.3. Random Forest Prediction of Fruit Count at the Individual Tree Level
3.3.1. Fruit Count Prediction Using Combined Datasets

Using the RF model on the entire dataset and splitting it into 80% for training and 20%
for testing to predict fruit count produced PRMSE = 26.5% with an MAE of 48 fruits/tree
(Figure 8). Zero (0) predicted fruit counts were recorded due to the inclusion of calibration
trees without fruits in some blocks across the period. This was accounted for by the model.

To explore the possibility of improving the prediction, subsets of the data including
location, cultivar and seasons were tested. The following section presents the outcome of
this trial.
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Figure 8. RF prediction of fruit count using all individual tree datasets (combined model). The
different coloured points represent the sampled trees from the respective farms and regions. n = 390
represents the number of datapoints (20%) used for model validation.

3.3.2. Individual Tree Fruit Count Prediction Using Data Subsets (Location, Cultivar
and Season)

In this section, the results of the individual tree fruit count prediction using the location
(region), cultivar and season subsets are shown. Figure 9 shows the RF models for the
predictions of fruit number from individual trees based on their growing region from the
locational subset model.
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Figure 9. RF-based location (region) prediction of fruit count in the (a) Northern Territory (NT),
(b) Northern Queensland (N–QLD) and (c) South East Queensland (SE–QLD). The different coloured
points represent the sampled trees on a given farm in the respective regions.
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The PRMSE associated with the SE–QLD region model was 29%. Similar results were
produced for the NT region with PRMSE and MAE values of 38% and 44 fruits/tree and for
the N–QLD region with PRMSE and MAE values of 36% and 42 fruits/tree, respectively.

We compared models built using all 24 predictors to the top 10 and 6 predictors
(as determined by feature importance analysis, Figure 10). It was shown that using all
24 VIs produced slightly better results. Table 5 shows a summary of the feature selection
experiment from the regional subset model.
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Table 5. Regional model PRMSE (%) comparison using different numbers of predictors (all 24 VIs,
top 10 and top 6) based on RF-based feature importance ranking.

Regional Model All 24 Predictors 10 Top Ranked Predictors 6 Top Ranked Predictors

NT 38.1% 42.5% 40.8%

N–QLD 36.3% 37.9% 36.6%

SE–QLD 29.0% 30.0% 29.2%

For the season-based model which was developed using the LOYO approach, 2017
and 2015 produced the best (PRMSE = 32.6%) and worse (PRMSE = 59%) predictions, re-
spectively. From the cultivar-specific modelling experiments, the Parvin cultivar produced
the lowest PRMSE of 19.3%, followed by the R2E2 cultivar with a PRMSE of 26.6%. The
Lady Jay (LJ) cultivar produced the worse prediction with a PRMSE over 90%. Overall, the
results show that the subset model approach is not consistently better than the combined
model described in Section 3.3.1.

3.4. Validation of Combined and Subset (Location, Season and Cultivar) Predicted Fruit Count
Models at the Block Level

This section focuses on the validation of the combined model developed in Section 3.3.1
using actual harvest data (51 validation points, blocks per season), spanning a five-year
period (2016 to 2021, excluding 2018) and covering 29 unique blocks located within the
three regions (NT = 26, N–QLD = 8 and SE–QLD = 17 validation blocks per season). The
predicted total block yield (fruit count), which is a product of the predicted average number
of fruits per tree and the respective total number of trees per block (Equation (1)), was
compared with the actual total yield at harvest. The performances of the models (combined
datasets and NT-, N–QLD- and SE–QLD-specific models) were compared to test the effect
of location on the combined model. Figure 11 shows the results from the validation for all
51 validation points.
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The accuracy of the combined model on a block-by-block level showed median ac-
curacy of 65.5%, with 45% of the blocks producing accuracies greater than 70%. This
holds great promise for the industry as a performance guide for general season block-
level prediction.

The PRMSE associated with the combined dataset model was 10.1%. Subsequently, the
NT-, N–QLD- and SE–QLD-specific models produced PRMSEs of 16.8%, 61.0% and 7.2%,
respectively. Table 6 details the performance of the location-specific models. Additionally,
the model was validated for seasons (irrespective of region and cultivar) and cultivar
(irrespective of region and season). The results of this assessment are also shown in Table 6.

Table 6. Model validation for region, season and cultivar at the block-level.

Model Description PRMSE (%) MAE (No. of
Fruits/Block) * R2 No. of Calibration

Datapoints
No. of Validation
Blocks

Location
(Region)

NT 16.8 59.2 0.75
1940

26
N–QLD 61.0 41.9 0.78 8
SE–QLD 7.2 40.6 0.93 17

Season

2016 46.2 103.4 0.18

1940

4
2017 35.8 47.8 0.17 5
2019 7.7 39.7 0.93 18
2020 12.2 50.6 0.77 20
2021 14.4 45.7 0.97 4

Cultivar †

Calypso 10.0 50.7 0.86

1940

35
KP 174.5 76.3 0.90 6
HG 44.5 33.4 0.19 7
R2E2 72.3 38.7 0.98 2

* MAE values are in ×1000 of fruits/block per respective region, season or cultivar. † Data were available for the
Calypso, HG, KP and R2E2 cultivars. Only one validation point was available for the LJ cultivar.

The 2019 seasonal model produced the lowest PRMSE of 7.7% compared to all other
seasons, followed by the 2020 season with a PRMSE of 12.2%. The 2016 and 2017 seasons,
with small numbers of validation points (<10), produced PRMSEs of 46.2% and 35.8%,
respectively (Table 6). Similarly, in the block-level validation for the cultivar model, Calypso
was the most dominant cultivar produced the lowest PRMSE of 10.0%. The KP, HG and
R2E2 cultivars produced PRMSEs above 44%, whilst LG, LJ, Keitt and Parvin had either
one or no validation points at all for conducting any analysis.

3.5. Yield Variability Mapping for a Block at the Tree Level

An example variability map showing the tree-level predicted fruit count per tree is
shown in Figure 12, generated using the combined model developed in Section 3.3.1. The
map shows that the north-western portion of the block generally had low productivity
(red-orange colour) as compared to the south-western and eastern portions of the orchard
(magenta). The overall pattern across the field is that 2–3 neighbouring trees have similar
productivity levels and then change. Pockets of individual low-performing trees in terms
of productivity are found even in the higher potential areas (Figure 12).
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seasons, followed by the 2020 season with a PRMSE of 12.2%. The 2016 and 2017 seasons, 
with small numbers of validation points (<10), produced PRMSEs of 46.2% and 35.8%, 
respectively (Table 6). Similarly, in the block-level validation for the cultivar model, Ca-
lypso was the most dominant cultivar produced the lowest PRMSE of 10.0%. The KP, HG 
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3.5. Yield Variability Mapping for a Block at the Tree Level 
An example variability map showing the tree-level predicted fruit count per tree is 

shown in Figure 12, generated using the combined model developed in Section 3.3.1. The 
map shows that the north-western portion of the block generally had low productivity 
(red-orange colour) as compared to the south-western and eastern portions of the orchard 
(magenta). The overall pattern across the field is that 2–3 neighbouring trees have similar 
productivity levels and then change. Pockets of individual low-performing trees in terms 
of productivity are found even in the higher potential areas (Figure 12). 

 
Figure 12. An example of a tree-level yield variability map derived from the RF-based combined 
model (right). The RGB image of the mango orchard mapped is shown on the (left). The legend 
presents an industry-based categorization of yield variability ranging from low (0–55) to high (139–
170) for this study. 

Figure 12. An example of a tree-level yield variability map derived from the RF-based combined
model (right). The RGB image of the mango orchard mapped is shown on the (left). The leg-
end presents an industry-based categorization of yield variability ranging from low (0–55) to high
(139–170) for this study.

4. Discussion
4.1. Relationship Between VIs and Fruit Count

With the aim of developing an accurate mango yield model, the correlation between
VIs and yield (fruit count) was tested using all datasets including all blocks and all seasons.
Subsequently, subsets of the data in terms of cultivar and location (region) were evaluated.
Overall, four VIs (CIRE_1, N1RENDVI, N2RENDVI and SIPI) were found to correlate
better with fruit count at both the combined data and subset scales of analysis. Generally,
the correlation improved when the data were split based on cultivar and location. This
observation is consistent with Rahman et al. [6], who also found red-edge NDVI and
SIPI as the highest correlating VIs with fruit number and weight. Their findings align
with Anderson et al. [10], who noted that the observed performance of different VIs in
different blocks (and also in different regions and cultivars) is a result of factors such as
tree age, cultivar, seasonal and locational difference, and management activities [6,48].
These differences are reflected in the variation in the spectral reflectance characteristics
of the tree canopies in different blocks and regions. While this study focused on mango,
it has the potential to predict the yield of other horticultural tree crops. For example,
Zhu et al. [49] developed a machine learning model that is able to accurately detect the
fruit tree canopy and subsequently count fruit. Their study demonstrated the ability
to apply UAV-derived images in combination with other machine and deep learning
algorithms to improve the accuracy and efficiency of such models. To ensure scalability
and transferability, our study, by its nature, shows potential in adopting such methods
in combination with very-high-resolution satellite imagery to cover lager geographical
areas. Furthermore, Zheng et al. [50] demonstrated the capabilities of multi-view remote
sensing (UAV) image detection in combination with Faster R-CNN and FaceNet models in
improving the accuracy of recognising strawberry flowers and fruits in central Florida, USA.
This method improved the recognition accuracy of strawberry flowers and unripe and ripe
strawberry fruit from 76.3% to 97%, 71.6% to 99.1% and 69.8% to 97.2%, respectively.
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Three key relationships were identified between VIs and fruit count across the six-year
period (Figure 6). The identification of these relationships (positive, negative and non-
existent) is well aligned with the observation of Robson et al. [32], who identified similarly
variable relationships in Avocado and macadamia in Australia using 18 structural and
pigment-based VIs derived from WV3 imagery. For a given block, the relationship could be
positive in one season and negative or non-existent in another season as shown in Figure 6.
This led to the establishment of the fact that no consistent generic relationship between
the predictor and response variables across the period exists [10,48]. This situation could
be a result of the irregular bearing habits (biennial bearing (BB)) exhibited by a mango
tree [11,51].

4.2. RF Prediction Using All Datasets and Subsets

The lowest prediction PRMSEs from the location (region), cultivar and seasonal subsets
were 29%, 19.3% and 32.6%, respectively. Using all the individual tree data combined, the
PRMSE was 26.5%. Therefore, in situations where location-, cultivar- or season-specific
models are required, the subset models could produce appreciable accuracies. However, it
would be more valuable to have a single generic model that is capable of predicting yield
with satisfactory accuracy without restrictions from factors such as the cultivar, among
others. Additionally, SE–QLD produced a relatively higher average number of fruits per
tree (115) than the NT (94) and N–QLD (91) regions. These predicted average fruit counts
and associated errors are consistent with the findings of Anderson et al. [10] and Payne
et al. [52].

Assessing the number of predictors in the locational models demonstrated that, out of
the 24 VIs used, 6 of them (SIPI, TCARI, Yellow_SAVI, N1/N2NDVI, CIg_2 and CIRE_1)
were found to contribute more to the prediction from the variable importance plot list
(Figure 9) in the RF models for both the combined and subset models. Out of these six VIs,
SIPI and TCARI were usually in the top two out of all the models as the most important
predictors. Although TCARI is mainly a pigment-related VI, it is also structure-sensitive
and resistant to variations in LAI; therefore, it has the ability to capture vital information in
the canopy that other VIs may not resolve [30]. Generally, the accuracies achieved using
the top six predictors were marginally lower than those obtained using all 24 VIs in the RF
model. It is therefore better to use all 24 VIs in a machine learning model like RF to draw as
much information as possible from the variability in the data. For the number of predictors
involved in this analysis, computational time was not a challenge for the RF model. If a
multiple linear regression model were used instead of RF, it is likely that a model with
fewer predictors would have been optimal [53].

4.3. Validation of Predicted Fruit Count Models at the Block Level

Although the performance of the block-level combined model, with PRMSE = 10.1%
and an R2 of 0.84, was higher than the regional model (SE–QLD) with the lowest PRMSE
of 7.2% and an R2 of 0.93, it was comparable with the seasonal and cultivar models with
the lowest PRMSE. This observation, which is expressively better than the finding in fruit
count prediction at the individual tree level, agrees with the acceptable range of errors
for tree crops as reported by a number of studies [2,54]. Additionally, it lays credence to
the findings of Brinkhoff and Robson [55], Filippi et al. [56], Deines et al. [57] and Torgbor
et al. [2] that the application of yield prediction models developed at finer resolution (e.g.,
at the tree level) to predict yield at a coarser scale (e.g., at the farm level) tends to improve
the accuracy of the model, as overprediction and underprediction errors at finer scales end
up cancelling each other out.

Generally, sub-setting the data based on location (region) did not improve the model.
Thus, applying the combined model to predict block-level yield in any of the regions could
produce appreciable accuracy that can aid grower logistics planning for harvesting and
forward selling. This aligns well with the findings of Rahman et al. [6], who concluded in a
study that split datasets into a training and a test set in two growing seasons, compared



Remote Sens. 2024, 16, 4170 19 of 23

with combining the seasons, produced better results and showed the influence of location
and seasonal variation on the orchards studied. The poor performance of the 2016 and
2017 seasons, the N–QLD regional model and the KP, HG and R2E2 cultivar models with
high PRMSEs could be explained by the limited number of datapoints available for the
block-level validation. Furthermore, factors such as biennial bearing, tree age and tree
density could have contributed to the performance of the models. For example, the effect
of soil background and tree size resulting from tree age and tree density can influence the
accuracy of VIs derived from the satellite imagery.

4.4. Mapping the Spatial Variability of Tree Yield in an Orchard Block

In this work, we predicted the spatial distribution of yield in addition to productivity
summaries. This is a crucial aspect of yield modelling as it provides information to
growers that aids their farm management decisions in applying precision agricultural
principles in a number of ways. Firstly, this yield variability map provides a spatial and
graphical aid to growers to identify portions of their orchard blocks that are less productive
and require attention. For example, fertiliser regimes can be adjusted for the following
seasons to increase production in low-productivity areas as was described for mango and
macadamia by Robson et al. [32]. Secondly, it helps to provide growers with areas to
focus monitoring activities to identify yield-limiting factors such as soil fertility, moisture
stress, pests, diseases, etc. [58,59]. This ensures a more efficient use of resources as growers
target specific portions of the orchard that require specific attention instead of the whole
field input application, which results in wastage [7]. For instance, in the yield variability
map produced in this study (Figure 11), the north-western portion of the block had low
productivity as compared to the south-western and eastern portions of the orchard. This
could be explained by the variation in soil fertility across the field as climate, cultivar,
management and other factors are similar across the field. The grower is aided by the
map to identify individual trees in the orchard that require attention to improve their
productivity. Thirdly, and perhaps most importantly, the growers are able to allocate labour
and transport resources for farm operations such as harvesting in a more efficient way when
they know what is going to be harvested from the different parts of the fields. In this way,
farm costs will be reduced, which will increase the profitability of the farming operations.

Furthermore, the novelty of this research is in the extraction of canopy reflectance
values and VIs for individual trees and using an RF prediction model to predict yield at the
individual tree and block levels. The yield variability map subsequently has a direct benefit
for growers in terms of targeted agronomic management. Thus, it helps in field-based
manual measurement. The significance of this research is in its ability to reduce the amount
of field work required for manual estimation (i.e., the current traditional method involves
the selection of 5–10% of trees in a given block for manual yield estimation). This is through
the strategic use of 18 trees of different vigour (low, medium and high) for field sampling
and model development, and subsequently predicting yield for the entire block. The new
approach not only estimated the yield with satisfactory accuracy but also reduced the cost,
labour and time required for such operations. This is therefore a significant contribution to
the understanding of mango yield variability at multiple scales using remote sensing and
machine learning approaches.

4.5. Limitations of the Study

Difficulty in obtaining more validation datasets is one of the limitations of this
study [60]. The effect of this was seen in the validation of the seasonal and cultivar
model, which had a high error rate. This could be due to the limited number of datapoints
available, especially for the 2016 and 2017 seasons as well as the KP, HG and R2E2 cultivars
(Table 6). The errors were minimised when those seasons and cultivars with a smaller
number of observations were grouped together. The assessment of the subset model at
the block level was thus limited due the lack of actual block-level data. Therefore, further
research could consider validating such models on more blocks in multiple seasons and
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cultivars when such data are available. Another key limitation of this study is the use
of relatively costly high-resolution satellite data for predicting fruit count. In situations
where budgetary allocation for similar projects is limited, implementing such a study could
be challenging. Additionally, delineation of individual tree crown areas was a daunting
task, although it was a key prerequisite to the development of the yield variability map
produced in this study. The delineation of tree crowns can only be performed using a
high/very-high-resolution image, which is often expensive. It would therefore be useful
in the future to develop an approach that will establish the relationship between freely
available medium-resolution and very-high-resolution data for such tasks. This will be
particularly useful because, although VHR data have high spatial resolution, they are
sometimes limited in spectral and radiometric resolution. The use of other forms of data
with varying resolutions will take advantage of the strengths of the other to complement
the VHR imagery.

5. Conclusions

The current study explored the relationships between vegetation indices and mango
yield (fruit count) at the individual tree scale and applied a random forest approach that
predicted fruit count at both the tree and block level. The study identified three key
relationships between VIs and fruit count, including positive, negative and non-existent,
for the different seasons and blocks assessed. It thus demonstrates that no consistent
generic relationship exists between the predictor (VIs) and response variables (fruit count)
over the six-year period (2015–2021, excluding 2018). For example, a given block could
exhibit any of the three relationships in different seasons. Generally, the performance of the
RF-based combined and subset models was better at the block level than at the individual
tree level. Sub-setting the data based on region, season or cultivar did not improve model
performance. Thus, applying the combined model to predict block-level yield in any of
the regions could produce appreciable accuracy that could aid grower logistics planning
for harvesting and forward selling. We demonstrated that the developed model could be
applied to all trees in an orchard, mapping yield variability, which provides a range of
commercial benefits to mango growers. It offers them an opportunity to spatially assess
productivity at the tree and block level for harvest segregation. Additionally, it affords
growers the opportunity to identify potential effects of management, soils, diseases and
pests on the productivity of orchards. Future research could thus explore the application
of the methods in this study to other horticultural tree crops and also investigate the
causes of spatial yield variability in mango orchards. Furthermore, with the availability of
other machine and deep learning methods, future studies could explore the application
of our method in combination with other approaches that could leverage the use of either
UAV data or freely available medium-resolution data like Sentinel-2 to develop accurate
and cost-effective yield prediction models. This will reduce the cost of acquiring VHR
satellite imagery like the VW2/WV3 used in our study. There is also the potential of
detecting and predicting the yield of small fruits like strawberry and others in different
geographical regions.
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