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International demand for food and services drives
environmental footprints of pesticide use

Fiona H. M. Tang® "23* Arunima Malik*** Mengyu Li® %, Manfred Lenzen® & Federico Maggi%®

Pesticides are well-recognised pollutants that threaten biodiversity and ecosystem func-
tioning. Here we quantify the environmental footprints of pesticide use for 82 countries and
territories and eight broad regions using top-down multi-region input-output analysis. Pes-
ticide footprints are expressed as hazard loads that quantify the body weight (bw) of non-
target organisms required to absorb pesticide residues without experiencing adverse effects.
We show that the world's consumption in 2015 resulted in 2 Gt-bw of pesticide footprints. Of
these, 32% are traded internationally. The global average per-capita pesticide footprint is
0.27 t-bw capita=! y~1, with high-income countries having the largest per-capita footprint.
China, Germany, and United Kingdom are the top three net importers of pesticide hazard
loads embodied in commodities, while the USA, Brazil, and Spain are the three largest net
exporters. Our study highlights the need for policies to target pesticide use reduction while
ensuring adverse impacts are not transferred to other nations.
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ver the past five decades, modern agriculture, driven by

the Green Revolution, has achieved unprecedented high

yields through irrigation and the extensive use of syn-
thetic fertilisers and pesticides!. Unfortunately, this strategy of
intensive food production is not currently sustainable because it
deteriorates terrestrial and aquatic ecosystems, depletes water
resources, and contributes towards climate change?~*. To date,
efforts to quantify the environmental footprints of global pro-
duction and consumption have covered a wide range of
indicators®>, including greenhouse gas emissions®, water
scarcity?’, biodiversity®®, nitrogen pollution!, acidification?,
land use>!112, and others, but they have largely missed to
represent the environmental pressures exerted by pesticide use.

The use of pesticides can exert pressures on the environment
by causing biodiversity loss!>14 and creating disruptions to eco-
system functioning and services that regulate pollination, natural
pest control, soil respiration, nutrient cycling, and others!>10,
Hence, reducing the potential environmental risks of pesticide use
is an important goal of agricultural and environmental policies
worldwide!”. For example, the Farm to Fork Strategy in the
European Union, which targets the transformation into a fair,
healthy, and environmentally-friendly food system by ensuring
sustainability throughout the entire food supply chain!®, provides
an opportunity to establish pesticide reduction strategies within a
holistic framework that encompasses all actors in the food supply
chain!”. One important step to establish such a holistic frame-
work is to quantify the footprint of pesticide use, starting from the
primary producer to final consumer, and to understand how
international trading drives pesticide use among nations to
highlight the potential footprint leakage if a nation’s pesticide
policy were to shift domestic production towards imports.

Thus far, environmental impact assessments have considered
two kinds of indicators: pressure-oriented indicators (based on
elementary flows, such as emissions to environment) and impact-
oriented indicators (such as mid-point and end-point impacts on
human health and ecosystem), both stemming from the literature
on life cycle assessments (LCAs)!%20. Pesticides have primarily
been considered as part of chemical footprints, which have since
been assessed using bottom-up LCAs and impact-oriented indi-
cators such as USEtox?!-24, These bottom-up LCAs, whilst
providing specificity in terms of impacts of specific products and
processes, do not account for hot-spots of pesticide use impacts
driven by final consumption of goods and services, and the
contribution of globalisation and international trade in driving
pesticide use by industries. Furthermore, bottom-up LCAs
require the selection of a system boundary as part of the
assessment?>, thus are not suited to quantifying indirect supply
chain impacts of pesticide use.

To quantify the environmental footprint of pesticide use at the
global economy-wide level, we use the top—down approach that is
based on multi-region input-output (MRIO) analysis. MRIO
analysis has been carried out at multiple scales for analysing
environmental and social impacts of consumption?®. Specifically,
this technique offers the ability to assess international supply
chain linkages, a capability not provided by bottom-up assess-
ments, for analysing how trade relationships (imports and
exports) contribute to unintended environmental and social
effects globally. Recently, with the advent of the Global Industrial
Ecology Virtual Laboratory Platform (Global IELab), construc-
tion of customised trade databases has been made possible. This
advance has led to assessments of specific products and regions?’
from an international trade perspective.

Here, we define the pesticide footprints as the hazard loads
(HL) of pesticides used on crop production for satisfying the
consumption of goods and services, with the hazard loads mea-
suring the total body weight (bw) of non-target organisms

required to absorb pesticides accumulated in the environment at
an annual intake that will not result in observable adverse effects
(“Methods”). A higher value signifies a greater environmental
pressure. The pesticide hazard load used here bases upon a
similar concept as the total applied toxicity indicator (TAT)28.
Specifically, the hazard load is defined as
HL = >[M;/(NOAEL,; x 365)], where M; [kg-pesticide] is the
total mass of active ingredient i accumulated in the environment
and NOAEL, [kg-pesticide kg-bw—!day~1] is the no-observed
adverse effect level of active ingredient i in mammals and birds
(see details in “Methods”). The hazard load defined here does not
account for pesticide effects on human health and acute toxicities
on non-target organisms due to immediate exposure right after
an application event. Based on this definition, we analyse the
pesticide footprints embedded in the global agriculture trade
system by linking a global database of pesticide applications
(PEST-CHEMGRIDSV1.02%, estimated based on USGS3? and
FAOSTAT3! data), a global-scale mechanistic environmental
model®?, and a global supply-chain model33 featuring interna-
tional trade data for 82 countries and territories and eight broad
regions. The 82 selected countries and territories are either top
agriculture producers, top pesticide users or having high and
upper-middle income economies3!, and the remaining countries
and territories were grouped into eight regions according to
geographic locations and whether they are members of Annex-I
parties in the United Nations Framework Convention on Climate
Change3* (see Supplementary Table 1 for the aggregation).

We first quantified the pesticide residues (i.e., the amount of
applied pesticides not degraded by environmental processes) in
different cropping systems using a mechanistic, spatially-explicit,
and time-resolved model fed with georeferenced databases of soil
properties, agricultural practices, and hydrometeorological vari-
ables (“Methods”). Although there are more than a thousand of
active ingredients registered as pesticides®®>, we modelled in this
study the residues of 80 active ingredients used on crop pro-
duction (Supplementary Table 2) and excluded the use of pesti-
cides in non-cropland setting such as pastures, rangeland,
aquaculture, livestock production (e.g., cattle dip), and urban
areas (e.g., dwellings, railways, gardens). We then calculated the
hazard loads corresponding to the modelled pesticide residues
and traced their flow along international trade routes, starting
from producing nations to end consumers, using a MRIO supply-
chain model to quantify the pesticide footprints of nations as both
producers and consumers. MRIO models allow for the scanning
of multiple supply chain networks across countries and regions.
For quantifying the environmental pressures associated with
pesticide use in supply chains, we considered the final con-
sumption of commodities at a global level by 90 countries/
regions, and traced more than a billion supply chain connections
to trace the primary production of goods (e.g., crop production),
transformation of goods into secondary products (e.g., processed
food) and finally consumption by an end user (e.g., households in
each of the 90 countries/regions). We assessed footprints
according to the primary producer to final consumer perspective
to identify pesticide hazard loads taking place in primary pro-
ducing areas, driven by final consumption, and the final point of
sale to final consumer perspective for linking pesticide hazard
loads with commodities that are finally consumed by end users. It
is important to analyse both perspectives to get a holistic view of
the pesticide hazard loads that occur in primary producing
countries and those that are embodied in supply chains of sec-
ondary and tertiary sectors. Since our analyses include only the
use of pesticides in cropland, all animal-based products (includ-
ing raw meat and eggs) are considered as secondary products, and
hence the pesticide footprints embedded in animal-based foods
are stemmed from feed (e.g., grains, cereal residuals, oilcakes).
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Fig. 1 Pesticide footprints embedded in the world's consumption across different sectors. a-c correspond to the consumption globally, in developed and
economies in transition countries, and in developing countries, respectively. The total pesticide footprints include contributions from herbicides,
insecticides, fungicides, and multi-purpose pesticides and are expressed as giga tonnes of human body weight per year (Gt-bw y=1). Multi-purpose
pesticides refer to pesticides that are used for more than one functions. The footprints embedded in different sectors were analysed using final point of sale
to final consumer perspective. Details of region grouping, pesticide classification, and sector aggregation are provided in Supplementary Tables 1-2 and

Supplementary Data 1.

The footprints embedded in services (e.g., hotels and restaurants)
and other sectors (e.g., construction) are due to the consumption
of food and textiles within those sectors. Analyses conducted in
this study are relative to the year 2015.

Results and discussion

Pesticide footprints embedded in the world’s consumption.
Our study accounts for 3.24 megatonnes (Mt) of pesticides,
representing about 79% of the global pesticide use estimated by
FAOSTAT for 2015, which is 4.09 Mt3! (Supplementary Fig. 1a).
At the national level, our analyses include approximately 63, 70,
and 70% of the pesticide use in China, the USA, and Brazil,
respectively, which are the top three largest pesticide consumers
(Supplementary Fig. 1a). The active ingredients included in our
analyses fall within three functional classes, namely, herbicides
(1.6 Mt globally), insecticides (0.20 Mt), and fungicides (0.40 Mt).
In cases where an active ingredient belongs to more than one
functional class, we classified it as a multi-purpose pesticide (0.9
Mt). Comparing against FAOSTAT data3!, our study accounts for
approximately 70%, 98%, and 76% of herbicide use in Brazil,
France, and Columbia, respectively (Supplementary Fig. 1b),
whereas it includes less than 30% of the insecticide and fungicide
use (Supplementary Fig. 1c, d). This is because 30% of the total
pesticide mass included in our study was attributed to multi-
purpose pesticides, which can be used as insecticides, fungicides,
or both.

Using a spatially-explicit environmental model, we estimated
the amount of applied pesticides that remained in the environ-
ment. We benchmarked the modelled pesticide residues in the
topsoil against field measurements reported in Silva et al. for 11
European Union countries3®, which is one of the most extensive
sampling campaigns for pesticide residues in agricultural soils.
Our model estimated that croplands in Denmark, France, and
Portugal had a 95th-percentile total pesticide residue of 0.9, 1.1,
and 2.5 mg kg-soil 1, respectively (Supplementary Fig. 2a). These
values are relatively close to the maximum pesticide residues
recorded by Silva et al.3® in croplands of those countries, which
are 1.2, 1.1, and 2.9 mgkg-soil~!, respectively. Our estimates
generally show higher median residues than in Silva et al. 3. We
also compared the number of detectable active ingredients in the
topsoil estimated by our model against data reported in Silva
et al.3%. An active ingredient is considered detectable if its residue

is greater than the typical laboratory limit of quantification
(=0.01 mg kg-soil~1). The number of detectable active ingredients
estimated by our model generally falls within the ranges reported
in Silva et al.3¢, with slight overestimation for Portugal and Italy
(Supplementary Fig. 2b). Across the croplands in the 11 European
Union countries, our model estimated a median residue of 0.31,
0.01, 0.03, 0.02, and 0.03 mg kg-soil~! for glyphosate, tebucona-
zole, azoxystrobin, propiconazole, and chlorpyrifos, respectively
(Supplementary Fig. 3). These estimates match relatively well
with data in Silva et al.3%, which reported a median residue of
0.14, 0.02, 0.03, 0.02, and 0.03 mgkg-soil~1, respectively (Sup-
plementary Fig. 3). We underline that there are some differences
in the statistics of our model estimates as compared to those of
field measurements in Silva et al.30. These differences may stem
from differences in sample size as Silva et al3¢ has only
30 samples per country, whereas our model includes all the
croplands in a country and therefore has a substantially bigger
sample size than Silva et al.3®.

Of the 3.24 Mt of pesticides accounted in our analysis, our
model estimated that approximately 9.3% (ie., 0.302 Mt)
accumulated in the environment and this corresponds to a
hazard load of 1.99 gigatonnes of body weight (Gt-bw). Of these,
34% (0.68 Gt-bw) are attributed to consumption in developed
and economies in transition countries (referred to as developed
countries hereafter), where 18% of the world’s population resides.
The remaining 66% (1.31 Gt-bw) are caused by consumption in
developing countries, where most of the world’s population
resides (Fig. 1). Insecticides are the largest contributors to the
global pesticide footprints, contributing more than 80%, followed
by herbicides that contribute about 10% of the total footprints.

Plant-based foods bear the largest portion of the global
pesticide footprints (59%, Fig. 1), with the orchards fruits and
grapes sector being the main contributor, accounting for 17% of
the global footprints (0.34 Gt-bw, Supplementary Fig. 4), while
animal-based foods contribute to about 11% (Fig. 1). Our analysis
also shows that a substantial fraction (17%) of the pesticide
footprints in developed countries is attributed to the consumption
of empty calorie food products such as soft drinks, alcoholic
drinks, chocolates, ice-creams, and sugars (Fig. 1b). In contrast,
these food items contribute only 9% of the footprints in
developing countries (Fig. 1c).

Clothing and textile related sectors (e.g., cotton, rubber, other
fibres) bear approximately 4% of the global pesticide footprints
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Fig. 2 Top 10 countries with the highest per-capita pesticide footprints
embedded in their consumption. *Developed and economies in transition
countries. Broad regions are not included in this plot but are represented in
Supplementary Fig. 6.

(Fig. la). The consumption of food and textile products in
servicing and other industrial sectors contributes to about 8 and
5% of the global pesticide footprints, respectively. Footprints in
other industrial sectors also include those stemmed from crop
residues used for feed (see Supplementary Data 1). Within the
servicing sectors, hotels and restaurants and food services are the
main contributors (Supplementary Fig. 4). We also found that the
fraction of footprints embedded in servicing sectors is much
higher in developed than in developing countries (Fig. 1b, c).

Using the primary producer to final consumer perspective, we
found that approximately 49% of pesticide footprints caused by
the consumption in developed countries (0.33 Gt-bw) are
embodied in international trade (i.e., the pesticide hazard loads
were occurring abroad), while the consumption of imported
goods contributes only 23% of the pesticide footprints in
developing countries (0.30 Gt-bw). Globally, around 32% of the
pesticide footprints are traded internationally (i.e., 32% of global
pesticide hazard loads occurred outside of the country of final
consumption). This percentage is comparable to the international
trade embodiments of other environmental impacts (10-70%2°),
such as global biodiversity loss (30%8), greenhouse gas emissions
(19-24%37), nitrogen emissions (25-27%19), and nitrogen-related
water pollution (13%38). Among all primary sectors, the pesticide
footprints embodied in international trade are the highest in
spices (about 63% are internationally traded), followed by soya
beans and nuts sectors that internationally traded about 61 and
57% of the embedded footprints, respectively (Supplementary
Fig. 5).

Per-capita pesticide footprints. Globally, the average per-
capita pesticide footprints resulted from consumption is
0.27 t-bw capita—ly~1, with a variation that ranges between
0.01 and 1.6t-bwcapita—!y~! depending on countries and
regions. All the top-10 countries and territories having the
highest per-capita pesticide footprints are within the high-
income economies (Fig. 2), 8 of which are developed coun-
tries. Spain has the highest per-capita footprint, which is about
11 and 105% higher than its bordering countries—Portugal
and France, respectively (Supplementary Fig. 6). In fact,
international assessments have reported that a high fraction of
food produced in Spain contained high levels of pesticide
residues3?. The high per-capita footprint in Spain stems from
the high use of pesticides, possibly due to shortcomings and

incongruences in Spanish pesticide policy*. However, only
about 23% of the footprints in Spain are embodied in inter-
national trade (Supplementary Fig. 7), whereas, in Portugal
and France, about 45 and 75% of the pesticide footprints come
from abroad. Many European countries have a high per-capita
pesticide footprint with more than 90% of the footprints
coming from abroad, such as Netherlands, Belgium, Denmark,
Norway, Sweden, Germany, and Switzerland (Supplementary
Figs. 6 and 7).

Net importers and exporters of pesticide footprints. We cal-
culated the net trade balances of the selected 82 countries and
territories and eight broad regions using the primary producer to
final consumer perspective to identify the net importers and net
exporters of pesticide footprints. A net importer exerts more
environmental pressures (i.e., more pesticide hazard loads)
abroad due to their consumption than locally for exports, and
vice versa for net exporters. Such information is unique to
assessments done using MRIO models and is unable to be derived
from traditional LCA datasets. The core of this assessment lies at
the heart of MRIO models that capture data on international
imports and exports. We quantified net importers and net
exporters by following through the supply chain networks for
each of the 90 countries/regions; and identifying countries that
are primarily driving pesticide hazard loads outside their terri-
tories due to their consumption (net importers), and countries
that are being impacted domestically for producing exports to
satisfy foreign consumption (net exporters). The status of coun-
tries as net exporters or net importers is determined by a range of
factors, such as resource endowments, the dependency of the
economy on agricultural exports, trade agreements, tariffs and
policies, and the stringency of environmental regulations.

Among all the net importers, 32 countries out of 52 are
developed countries (Supplementary Fig. 8). China, being the
world’s biggest agricultural importer®l, is the largest net importer
of commodities embodied with hazard loads caused by the use of
insecticides and herbicides, followed by Germany, the UK, and
Japan (Fig. 3a). About 44% of the pesticide hazard load-embodied
commodities imported into China originated from the USA,
about 12% from sub-Saharan countries, and about 8.7% from
Brazil. Unexpectedly, India also appears as one of the top-five net
importers with about 18% of the imported pesticide hazard load-
embodied commodities coming from the USA, mainly due to the
imports of cotton and nuts, and 16% from Argentina for soya
beans and other oil-bearing crops. When considering the
population size, high-income countries such as Ireland, Denmark,
Norway, Qatar, and Sweden appear to have the highest per-capita
net import (Fig. 3b).

We also found that EU27 member states import from
elsewhere approximately 0.06 Gt-bw of hazard loads caused by
the use of active substances that were banned in their own
countries (i.e., about 34% of their imported pesticide footprints).
Specifically, banned substances contribute to more than 90% of
the total imported footprints in Sweden, Denmark, Germany,
Finland, Lithuania, and Latvia—noting that these countries have
one of the most stringent regulations on pesticide use*243.

Surprisingly, many of the net exporters are countries within
high- and upper-middle income economies (Supplementary
Fig. 8). The USA is the largest net exporter of commodities
embodied with hazard loads caused by insecticides and
herbicides, with the major final destinations being China (34%),
Japan (7.1%), and Mexico (6.9%, Supplementary Table 3).
However, the USA is also a net importer of hazard loads caused
by fungicides and multi-purpose pesticides (Fig. 3a). Brazil is the
second largest net exporter with the major final destinations being
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b per-capita net imports and exports. Net importers are exerting more environmental pressures abroad as a result of their consumption of imported
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Fig. 4 Top 100 international flows of embodied pesticide footprints
between countries of final sale and countries of consumption. Red lines
represent the flows with the flow volume proportional to the line thickness
(the thicker the line, the larger the flow volume). The colour map
represents the footprint embodied in imports minus the footprint embodied
in exports on a scale from —80 to 80 megatonnes of body weight (Mt-bw).
Net imp. refers to net importer and Net exp. refers to net exporter.

the USA (13.5%, for nuts and orchard fruits and grapes), China
(12%, for nuts and soya beans), and Germany (6.9%, for orchard
fruits and grapes and nuts, Supplementary Table 3). Approxi-
mately 61% of pesticide footprints embodied in Brazil’s exports
(0.04 Gt-bw) is caused by consumption in developed countries,
especially the USA, Germany, and the UK. In contrast, only 29%
of the hazard loads occurring in Argentina as a result of its
exports is due to consumption in developed countries. The major
final destinations of hazard loads embodied in Argentina’s
exports are Brazil (12.4% of the total exported footprints, mainly
for wheat), China (11%, mainly for soya beans), and India (8%,
mainly for soya beans, Supplementary Table 3).

International flows of embodied pesticide footprints between
countries of final sale and countries of final consumption.
Tracing the flows of embodied pesticide footprints along the
supply chains based on final point of sales to final consumer
perspective, we found that the largest international flow occurs
from the USA to China (0.029 Gt-bw, Fig. 4), of which 73.4% are

ising the footprints against mass, calories, and protein (Fig. 5). In
this analysis, we observe substantial variations in the embodied
pesticide footprints across both producing countries and food
products, with some plant-based foods having higher pesticide
footprints than animal-based foods. Among all food products,
orchard fruits and grapes have the highest footprints per unit
mass and per unit calories. Among all grains, wheat has the
lowest pesticide footprint per unit calories (Fig. 5b). Rice has per-
calories footprints about 1.3 times higher than wheat, while the
pesticide footprint of maize is about 3.5 times higher than wheat.
Among all protein-rich crops, soya beans have the lowest pesti-
cide footprint per unit protein, while nuts have the highest
(Fig. 5¢). Raw meat (includes all types of meat) has slightly higher
pesticide footprint per unit protein (1.35kg-bw kg-protein—1)
than soya beans (1.24 kg-bw kg-protein—!), while eggs have the
lowest per-unit protein footprint (Fig. 5¢). Animal-based oils and
fats have comparable per-calories footprints as other plant-based
oils, but they are about 2.3 times higher than soya bean and maize
oils (Fig. 5b). The assessment presented here considers all
upstream supply chains for production of food products (for
example: crops, grains, vegetables, fruits, meat, dairy, eggs and
other products), including feed production. MRIO analysis cap-
tures the production and consumption of feed, and associated
pesticide hazard loads, through multiple supply chain networks
needed for satisfying final consumption of food products.

Our findings partly contrast with the footprint analyses of
greenhouse gas emissions and land use, where animal meats were
shown to have higher environmental footprints? but aligns with
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Fig. 5 Pesticide footprints embedded in food products. Footprints expressed as per kilogram food product (a), per kilocalories (b), and per kilogram
protein (c). The bars show the 25th and 75th percentile values across different producing countries. The cross markers show the global median values. n

represents the number of producing countries included. Footprints per kilogram protein are not represented for “Vegetable and fruits”,

“Oils and fats"”, “Sugars”, and “"Empty calories food".

bottom-up LCA analysis of pesticide toxicity hazard conducted
for crop and livestock production in Australia*3, where the
authors also find that livestock production bears lower ecotoxicity
hazards than crop production, noting that they also did not
account for the direct application of pesticides on animal skins to
combat flies and flees. Because the direct application of pesticides
on animal skins constitutes only a small fraction of the total
pesticides used®4, its inclusion will not change our finding that
animal-based foods bear lower pesticide footprints than some of
the plant-based foods such as orchard fruits and grapes and nuts.
We acknowledge that further analysis should be conducted to
verify this finding when the information on the direct use of
pesticides on livestock and in aquaculture becomes publicly
available. In addition to the use of pesticides, antibiotics and other
agrochemicals such as plant growth regulators are also used in
livestock and crop production, and hence, further analyses
accounting for those inputs are required to achieve a compre-
hensive assessment of the environmental footprints of agriculture
production.

Limitations and uncertainties. We acknowledge that there are
limitations and uncertainties underlying in our analyses. The
PEST-CHEMGRIDSv1.0 database?® does not include all active
ingredients used in croplands. The selection of the top 20 most
used active ingredients in each cropping system by mass may
miss to include those that have a high toxicity but used at a low
dosage over a small surface area. The first step of the estimation
of application rates in PEST-CHEMGRIDS assumes that the
relationships between pesticide application rates and covariates
(e.g., hydrometeorological conditions, soil properties, agricultural
practices and socio-economy) in the USA are similar to those in
other countries for the same type of cropping system. We note
that this assumption may miss to capture conditions that do not
happen in the USA but occur in other parts of the world. To
account for national factors, the application rate estimates based
on statistical inference were then constrained against country-

"ou

Other food crops”,

specific pesticide use data from FAOSTAT. There are uncer-
tainties within the FAOSTAT data especially in Africa and
Oceania regions where the response rates to pesticide use ques-
tionnaire were lower than 20%3!. In addition, national regulations
on pesticide use and cultivation of pesticide-resistant genetic-
modified crops were explicitly accounted for in PEST-CHEM-
GRIDS, but it did not consider sub-national regulations and
farmers’ preferences, which are currently unknown or cannot be
retrieved at the geographic scale of this work.

The estimation of pesticide application rates in PEST-
CHEMGRIDS and the modelling of pesticide environmental
concentrations rely on the crop maps in Monfreda et al.#> to
provide the geographic distribution of individual crops. Although
Monfreda et al.#* is currently the only dataset that provides the
global spatial distribution of 175 crops, those maps refer to circa
2000. As global cropland has increased by about 4% from year
2000 to 201531, the use of crop maps in Monfreda et al.*> may
lead to a general slight underestimation of global pesticide
footprints. Specifically, uncertainty in crop surface area will affect
the estimation of pesticide hazard loads, which will then affect the
values of the direct intensities (i.e., impact per dollar output, q,
“Methods”). An increase in crop area will lead to an under-
estimation of the direct intensities, whereas a decrease will result
in an overestimation.

The pesticide footprints quantified in this work did not include
pesticide use in non-cropland settings, such as pastures, rangeland,
livestock production, aquaculture, and urban areas. Information
about the direct use of pesticides (e.g., the quantity and type of
active ingredients) in livestock production, aquaculture, and urban
areas is very limited and generally not available for most countries.
Although pastures take up around two-third of global agricultural
land3!, only a small fraction of grazing area is managed and
cultivated in many parts of the world. For example, >90% of
permanent pastures in China, India, Argentina, Mexico, and
Australia are natural and unmanaged3!4647, In managed pastures,
pesticides are normally used during sowing. Because pastures are
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mostly perennial crops, they are not sown every year. For instance,
a survey study shows that the majority of farmers (>80%) re-
planted <25% of their pasture land in a year8. Hence, pastures
have, on average, low annual pesticide inputs.

Although our estimates of pesticide residues in soil were within
the observed ranges reported in Silva et al.3%, the comparison was
done only for agricultural soils in European Union countries.
Furthermore, our estimations of pesticide residues and hazard
loads rely on the assumption that crops for both local
consumption and exports were grown using the same pesticide
application rates. However, producers targeting export may adjust
their pesticide application to adhere to the maximum residue
limits for pesticides in food established by the importing
countries, such as the European Union*’. Without accounting
for potential differences in pesticide application rates for local
consumption and exporting crops, our analysis may overestimate
or underestimate the pesticide footprints traded internationally,
depending on the limits applied in different countries.

The pesticide hazard loads estimated here did not reflect the
effects of pesticides on human health (e.g., carcinogenic effects are
not accounted for) and their acute toxicities to non-target
organisms as a result of immediate exposure after an application
event. There may be an underestimation of pesticide footprints
because the hazard loads were estimated based on the NOAEL
values for mammals and birds only (expressed as mass of
pesticide per unit body weight) and some active ingredients can
be more toxic to other non-target organisms not considered here.
We did not account for the effects to other non-target organisms
(e.g, fish and earthworms) because their ecotoxicities are
commonly expressed as median lethal concentrations (LC50),
which cannot be easily converted to per-unit body weight for
hazard load calculation.

MRIO analysis relies on the assumption that a change in
demand or output of an industry will result in a proportional
change in production. This technique translates financial
expenditure to impacts, i.e. the greater the spending on a food
commodity, the greater the impact. Our analyses reflect the
pesticide use and trading patterns of the year 2015. Changes in
pesticide use and trading patterns over time can alter the pesticide
footprints. Based on previous studies on a range of other
environmental indicators, the key drivers of negative environ-
mental impacts are affluence (consumption per capita) and
population growth®®!, which resulted in an increase of
environmental footprints from 1990 to 2015 despite improve-
ments in energy efficiency®?. Moreover, the future projections
provided in PEST-CHEMGRIDS database show an increasing
trend in pesticide application rates. Hence, we may expect
pesticide footprints to increase over time. Future work could
focus on quantifying drivers of pesticide footprints by using
structural decomposition analysis®>.

To account for limitations in pesticide hazard load estimation
and variations in trade flows, we conducted an uncertainty
analysis based on Monte-Carlo approach (“Methods”), where we
perturbed the pesticide applications, the NOAEL values, and the
intermediate and final demands. Our uncertainty analysis shows
that, across all countries and regions, the standard deviations of
the total pesticide footprints ranged between 2.4 and 16% of the
reference values, with an average of 4.5% (Supplementary Data 2).

Conclusions

Our study depicts the role of international trades in governing
pesticide contamination. Understanding the flow of pesticide
footprints through supply chains is important to help establish
international policies that contribute towards sustainable agri-
culture. In particular, our analyses identify the leakage of pesticide

footprint. We show that the consumption in developed coun-
tries has a substantial contribution to the pesticide con-
tamination occurring in other countries. Specifically, more than
90% of pesticide footprints imported by some European coun-
tries were caused by active substances that were banned for use
in those importing countries. Hence, a reciprocal pesticide
regulation may need to be implemented for imports to dis-
courage the consumption of imported commodities produced
using the substances banned in the importing country. Coun-
tries importing pesticide footprint should also contribute a fair
share in the effort to develop technology for sustainable pest
management and the implementation of remediation projects to
reduce pesticide contamination in exporting countries. To
reduce environmental impacts from global food production, our
study suggests that, in addition to sustainable pest management
strategies that reduce pesticide use>*, the strategy of shifting
human diet towards plant-based foods should be accompanied
by the promotion of awareness to minimise food waste and food
loss, reduction of overconsumption, and a decrease in the
consumption of empty-calorie foods (e.g., sweets, soft drinks,
and alcoholic drinks).

While our study uses the best available georeferenced dataset for
pesticide use in global cropland, access to more detailed and
extensive datasets of pesticide use in all possible settings, including
livestock production, aquaculture, and urban usage, is of utmost
importance to achieve a holistic view of global pesticide con-
tamination and its associated footprints along supply chains. Many
countries require pesticide applicators in agriculture settings to
record the location, timing, pesticide types, and rates of applica-
tions, but these data are only publicly available as aggregated values
at the national level, with California being the only region that
releases highly temporally and spatially granular databases of crop-
and active ingredient-specific application rates®. To the best of the
authors’ knowledge, no country or region has released recent
pesticide use data on livestock production and aquaculture.
Moreover, the georeferenced pesticide application data used in our
work relies on country-level data provided by FAOSTAT collected
via questionnaire, which also contain uncertainties especially in
Africa and Oceania regions where the questionnaire response rates
were below 20%3!. The inaccessibility to high-quality pesticide use
data can hinder the advancement of pesticide policies®®, and thus
we urge an international effort to reform the legal framework of
data distribution to allow authorities to report and make detailed
pesticide use data open access.

Methods

Summary. In this study, we quantified the pesticide footprint as the hazard load
measuring the body weight of non-target organisms required to absorb pesticide
residues accumulated in the environment without experiencing adverse effects.
This indicator considers the fact that the use of pesticides may or may not create
pressure to ecosystems, depending on their degradability and toxicity. The
degradation efficiency of pesticides can vary spatially because pesticide degradation
and transport are controlled by hydroclimatic conditions and soil properties®®>7.
Hence, we used a process-based and spatially explicit environmental model to
estimate residues of 80 active ingredients across various cropping systems at the
global scale with a resolution of 0.5° x 0.5° (i.e., about 55 km x 55 km at the equator
with bounding box 180°E-180°W; 90°S-90°N). From the model outputs, we cal-
culated the total mass of each active ingredient that accumulated in the environ-
ment and the corresponding pesticide hazard loads in each cropping system for 168
crop producing countries, which we then linked to the multi-region input-output
(MRIO) classification that consists of 6357 sectors (aggregated into 83 sectors;
Supplementary Data 1) and 221 countries and territories (with 82 countries and
territories selected and others grouped into eight broad regions; Supplementary
Table 1). These steps yield the so-called satellite account that was then linked to an
MRIO table to undertake a consumption-based footprint assessment and obtain
the footprint of each active ingredient embodied in the production of goods and
services. Satellite account is the term used to describe a physical data set (in this
study: data on pesticide hazard loads) that can be linked to an MRIO table for
footprint assessments. A consumption-based assessment enables the quantification
of pesticide footprint at various stages from primary production to intermediate
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production to final consumption. The analysis conducted in this study corresponds
to the pesticide application and international trading patterns of the year 2015.

Definition of pesticide footprint. The potential consequence of pesticide con-
tamination embedded in a product is commonly quantified through the chemical
footprint?!, which is calculated using the bottom-up life cycle assessment (LCA)
approach?2. Here, we investigate the pressure (instead of the consequence) exerted
by pesticide use at the global economy-wide level using the top-down approach
that is based on environmentally-extended input-output analysis.

We define the pesticide footprints as the hazard loads (HL) of pesticides used in
the supply-chain for satisfying the consumption of goods and services. HL measures
the body weight (bw) of non-target organisms required to absorb pesticide residues
(i.e., the amount of pesticides not degraded by environmental processes and
accumulated in the environment) without experiencing adverse effects, noting that
an effect does not imply mortality. This definition accounts for two important
elements that make pesticide use a pressure on the natural environment, i.e.,
accumulation and toxicity. In other words, pesticides will not exert pressure on
ecosystems if they can be fully degraded by environmental processes and if they are
non-toxic to non-target organisms. Specifically, the pesticide footprint, quantified as
hazard load, is defined as HL = >_[M,/(NOAEL,; x 365)], where M, [kg-pesticide] is
the total mass of active ingredient i accumulated in the environment and NOAEL,
[kg-pesticide kg-bw~! day~1] is the no-observed adverse effect level of active
ingredient i in non-target organisms. A higher value of HL signifies a higher
environmental pressure. We consider the total accumulated mass without
partitioning the mass to different environmental compartments with the
justification that pesticides can move through different compartments over time and
that we aim to quantify the overall pressure, in line with other environmental
footprint indicators, such as the nitrogen footprint!?. We acknowledge that the
values of NOAEL can vary across various species, and hence, by taking a
conservative measure, we compared the NOAEL values reported by various data
sources for mammals and birds (Supplementary Data 3) and we used the minimum
values for the calculation of pesticide footprint.

Our definition of pesticide footprint is pressure-oriented, in contrast to the
commonly used impact-oriented chemical footprint. Pressure-oriented indicators
focus on human activities resulting from the needs and drivers that may exert
pressures on the environment by the use of resources, emissions, release of
substances into the environment and/or land-use change. Impact-oriented
indicators focus on the consequences on ecosystem and human health, which may
require the knowledge of the exposure level of non-target organisms to the
pesticides. While impact-oriented indicators can provide insight into the impacts of
a specific product or process at a local scale, it is currently technically challenging
to apply on a global scale. Pressures, on the other hand, can vary at spatial and
geographical scales without the need to make assumptions around exposure level.
Our definition of pesticide footprint allows pesticide use to be assessed across 90
countries/ regions, and provides opportunities for comparison within a family of
environmental footprints (e.g., carbon, nitrogen, water, material, energy,
biodiversity) in future studies to investigate trade-offs in order to achieve a holistic
understanding of the sustainability and equity of resource use across nations from
both production and consumption perspectives’.

Pesticide application data. The type and quantity of active ingredients used in
different cropping systems at specific geographic locations were obtained from the
PEST-CHEMGRIDS v1.0 database?®. This database provides the global georefer-
enced annual application rates of 95 active ingredients used in the year 2015 in ten
crop groups that include six dominant (i.e., alfalfa, corn, cotton, rice, soybean, and
wheat) and four aggregated crops (i.e., vegetable and fruits, orchards and grapes,
pasture and hay, and other crops), accounting for a total of 175 crops. The crop
aggregation follows the classification of the USGS Pesticide National Synthesis
Project® (see Table 2 in Maggi et al.?? for detailed classification). Briefly, the
“vegetable and fruits” includes legumes, roots and tubers, bush fruits, and her-
baceous crops; the “orchards and grapes” includes nuts, fruit trees, and vines;
“pasture and hay” includes forage crops and grasslands used for grazing, while the
“other crops” includes other cereals, oil crops, and fibre crops. The data have an
original resolution of 5 arcmin (about 10 km x 10 km at the equator), encom-
passing 38.54 million km? of agricultural land (including pastures) in 168 coun-
tries. In this work, we excluded the use of pesticides on pasture and hay because
only a small fraction of grazing area is managed and cultivated in many parts of the
world3! and pastures are mostly perennials that do not require frequent re-
planting®3, hence having low annual pesticide inputs. We also excluded three other
active ingredients (i.e., calcium polysulfide, Bacillus amyloliquefaciens, and petro-
leum oil) due to insufficient data on the physicochemical properties required for
residue estimation. Hence, we modelled 80 active ingredients in total across 11.85
million km?2 of croplands.

The application rates were estimated by re-analysis of the USGS Pesticide
National Synthesis Project database3, which reports 512 active ingredients used in
the above major and aggregated crop groups in the United States from 1992 to
2016. In each of the crop groups, the top 20 active ingredients with the highest total
mass used were selected. This selection results in 200 active ingredients, but some
of them are recurring across different crop groups. Hence, in total, PEST-
CHEMGRIDS v1.0 database includes 95 unique active ingredients and represents

about 84% of the total pesticide mass used in the United States in 2015. The
selected active ingredients are among the most widely used pesticides around the
world identified by Li®® through compilation of pesticide consumption data in
various countries across Asia, Europe, North and South America, Africa, and
Oceania. Estimates of application rates at the global scale provided in PEST-
CHEMGRIDS were calculated using spatially-conditioned statistical methods that
accounted for soil physical properties (soil textures, carbon content, porosity, and
thickness, and water table depth), hydroclimatic variables (precipitation,
atmospheric temperature, solar radiation, net primary productivity, actual
evapotranspiration, and thermal climatic classification), agricultural quantities
(nitrogen and phosphorous fertilisation, crop yield, crop water security), and socio-
economic indices (population density, gross domestic product, and human
development index, see Table 1 in Maggi et al.? for the full list of public
inventories used for spatial estimates). In addition to those quantities used in
spatial analysis, the estimates explicitly consider the country-specific approval for
adopting genetically modified pesticide-resistant crops as reported by the
International Service for the Acquisition of Agri-Biotech Applications®?, and the
country-specific pesticide bans (or not approved for use) as reported by the
European Commission*? and PAN database3. Additionally, other national factors
(e.g., policy, agricultural practices, infrastructure capacities, access to pesticides)
were implicitly accounted for by constraining the estimates against country-level
pesticide use data reported by FAOSTAT?!. Estimates in 28 countries
(Supplementary Table 1) were not constrained against FAOSTAT because data in
those countries were not available. To control the quality of the estimates, the
source data and spatial inference methods used for the estimation were
benchmarked and validated. Furthermore, the estimates were also benchmarked
against independent and publicly available national active ingredient use data from
Australia, the United Kingdom, South Korea, and South Africa, and cross-checked
against the application rates recommended by manufacturers or regulatory bodies.
Information about the type and quantity of active ingredients applied in
agricultural fields is currently very scarce and sparse®, and therefore we
acknowledge that benchmarking the estimates for all countries is currently not
possible. Despite the limitations (see details in Limitations and uncertainties
section), PEST-CHEMGRIDS is currently the only publicly available, data-driven,
and evidence-based inventory of crop-specific and georeferenced application rates
of active ingredients.

Estimation of pesticide residue at the global-scale. The transport and degra-
dation rate of pesticides depend on the physicochemical properties of active
ingredients as well as environmental conditions. For two countries with different
hydroclimatic and soil conditions, the amount of pesticides accumulated in the
environment in those countries can be substantially different even if they applied
the same quantity and same type of active ingredients. Moreover, environmental
conditions can also vary within the same country, and hence the total pesticide
mass accumulated in the environment (i.e., the pesticide residues) resulting from
crop production in a nation has to be estimated at sub-national or sub-county
levels.

Here, pesticide residues were estimated using a process-based and spatially-
explicit environmental model®?, with crop-specific and georeferenced active
ingredient application rates sourced from PEST-CHEMGRIDS database as
described above. The model considers the water, gas, and heat flow along a one-
dimensional variably-saturated soil column, the diffusion and advection of
dissolved chemicals, and the volatilisation, adsorption, and degradation of the
selected active ingredients. The modelling was conducted using the general-
purpose multi-phase and multi-component bioreactive transport simulator
(BRTSim v4.0e%Y), which solves for the continuity and conservation laws of mass
and energy flows using hybrid explicit-implicit numerical techniques within finite
volumes, and non-isothermal equilibrium and kinetic reactions describing pesticide
degradation, adsorption, and volatilisation. Specifically, the water flow is modelled
using the Richards equation along with the relative permeability-water potential-
saturation relationships of the Brooks—Corey model. The advection and diffusion
of aqueous chemicals are modelled by the Darcy’s and the Fick’s equations,
respectively. Diffusion of gaseous compounds is also explicitly described using the
Fick’s law. Using the mass action law, volatilisation is modelled as a function of the
Henry’s law constants of active ingredients, while the adsorption is modelled as a
function of the soil organic carbon partition coefficients of the various active
ingredients and the soil organic carbon content, soil bulk density, and soil
moisture. The degradation of pesticides is described by first-order kinetics with an
explicit accounting for biological activity, soil moisture content, soil temperature,
soil pH, and soil organic carbon content. The solving equations are described in
detail in Maggi®' and Tang and Maggi®2.

The model was then deployed on a three-dimensional grid resolved at
0.5° x 0.5° resolution horizontally and extended vertically over two atmospheric
and three soil layers in the root zone (0 to 100 cm depth) and one additional soil
layer down to either the equilibrium water table or the bedrock. Pesticides were
applied at the first soil layer following the crop calendar maps®2. Incoming water
fluxes (precipitation and irrigation) and solar radiation (shortwave and longwave)
were also applied at the first soil layer, while the evapotranspiration was allocated
over the soil profile according to crop root distributions estimated based on the
maximum crop rooting depth®3. For the degradation rates to reach a near steady-
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state, the model was run for 48 years using the annual active ingredient application
rates of the year 2015 and the time series of precipitation, crop evapotranspiration,
irrigation, and solar radiation that spanned from 1970 to 2017. In total, we
modelled 11.85 million km?2 of croplands selected based on the crop area maps
distributed along with PEST-CHEMGRIDS, which were originally produced by
Monfreda et al.%>. In total, 32,768 geographic grid cells were modelled.

We sourced the georeferenced soil texture, bulk density, pH, and organic carbon
content from the SoilGrids2.04, soil porosity from SoilGrids1.09, soil
permeability, pore volume distribution index, air-entry suction, heat capacity, and
heat conductivity from Dai et al.%, equilibrium water table from Fan et al.%’, soil
thickness from Pelletier et al.%, and soil residual liquid saturation from Zhang
et al.%. Time series of precipitation, atmospheric temperature, longwave and
shortwave solar radiation, and potential evapotranspiration were sourced from the
Climatic Research Unit datasets". Irrigated area was determined based on the crop
water security indicator map’!. The physicochemical properties of the active
ingredients were sourced from the Pesticide Properties DataBase (PPDB)3>. All
datasets used to feed the model are described in detail in Table S1 of the
Supplementary Information in Tang and Maggi’2. In this work, all georeferenced
data products (including pesticide applications) were harmonised to 0.5° x 0.5°
resolution with either a mass-conservative interpolation for quantities related to
mass or energy (e.g., rainfall) or a linear interpolation otherwise (e.g., temperature).

This modelling framework has been previously used to study the dynamics of
various compounds at plot to global scales, including the dynamics of atrazine’?,
glyphosate’3, and soil carbon and nitrogen’4. We benchmarked the modelled soil
moisture, temperature, and pH against the CPC Soil Moisture dataset’?, the
NOAA/NCEI land surface temperature dataset’%, and the SoilGrids2.0 dataset®4,
respectively. We also benchmarked the estimated pesticide residues in soil against
field measurements reported in Silva et al.3¢ (Supplementary Figs. 2 and 3). In
addition to benchmarking, we also assessed the sensitivity of model input
variables3? and we propagate the uncertainties from residue estimation to the
overall uncertainties in pesticide footprint calculation (see sections below).

From the near steady-state simulation, we then calculated the undegraded
fraction of active ingredient i in cropping system j at time t = * for each grid cell k
as Fff](t*) = Mf-fj(t*)/ ig MAifj(t), where Z;z{{ MAifj(t) is the cumulative applied

mass from ¢t = 0 to t* and M;‘J(t) is the instantaneous total pesticide mass present

in the atmosphere and soil in gaseous, dissolved, and adsorbed forms. We then
calculated the average undegraded fraction Ffﬁj over the last five years of the
simulation, which was later used to build the satellite account for the MRIO table.

MRIO analysis. Input-output (IO) analysis was developed by the Nobel Prize
Laureate, Wassily Leontief’” in the 1930s. This technique relies on input-output tables
that capture interdependencies between economic sectors. IO tables can be either
national (e.g., for individual countries—USA, Australia, etc.) or global (e.g., a multi-
regional IO table). Today, statistical agencies around the world publish IO tables’879,
which have been used for numerous social and environmental footprint assessments
of international trade26. The pesticide footprints of nations are yet to be quantified.

MRIO tables capture interactions between sectors in more than one country,
and specifically include data on international trade. We constructed a customised
MRIO table for this study on the Global Industrial Ecology Virtual Laboratory
Platform (Global IELab)33. The platform enables the construction of global
international trade databases and provides the most detailed resolution of
6357 sectors for 221 countries and territories. Due to computational constraints in
developing a MRIO table with the highest resolution of sectors and regions, the
IELab offers the capability to construct MRIO tables with specified regional and
sectoral resolution. In this study, we aggregated the 6357 sectors into 83 sectors (see
Supplementary Data 1). We selected 82 countries and territories which are either
the top agriculture producers and top users of pesticides according to FAOSTAT?!
or having high and upper-middle income economies, and we grouped the other
countries and territories into eight broad regions following their geographic
location and whether they are members of the Annex-1 parties in the United
Nations Framework Convention on Climate Change (UNFCCC)3* (see
Supplementary Table 1).

The mathematics underlying IO analysis includes three key matrices: (i) the
intermediate demand (T), (ii) the final demand (Y), and (iii) the value added (v).
The intermediate demand matrix includes elements (T, ;) that represent the supply
of commodity a for use by industry b. The T matrix constructed in this study
covers primary (e.g., livestock, crops), secondary (e.g., dairy products) and tertiary
(e.g., services) sectors. The final demand matrix (Y) captures the consumption of
goods and services (Y},) by so-called final consumers, ¢ such as households,
government and inventories. The elements in the value-added matrix (v,,,) include
the contribution of primary inputs p, such as wages and salaries, subsidies, into the
production of commodities by industry a.

The consumption-based calculation for the quantification of pesticide footprint
proceed as follows: first, the total output (x) of an input-output system is calculated
as: x = T1T +yI”, where I = {1, 1, ..., 1} is a summation operator. Following,
the calculation of the direct requirements matrix A = Tx"' provides insights on
the inputs required by each of the 83 sectors of the economy for the production of
output. The hat symbol denotes diagonalisation of the total output vector x. The
matrix A is further used to derive the fundamental Leontief input-output equation:

x = (I-A) "'y, where L is the identity matrix and (I—A)™! is the Leontief inverse L
that provides the supply chain perspective. For calculating the pesticide footprint,
the satellite account Q is post-multiplied by the inverse of diagonal x to obtain
impacts per dollar of output (also known as direct intensities): q = Qx~'. Total
intensities are then derived as: m = qL. Total intensities capture both direct and
indirect impacts, which yield footprints when post-multiplied with final demand:
f=my.

Constructing the satellite account for the MRIO table. We first disaggregated the
ten crop groups (i.e., denoted by index j) into 175 individual crops (i.e., denoted by
index n) following the crop aggregation reported in Table 2 in Maggi et al.?. Spe-
cifically, we calculated the mass of active ingredient i accumulated in the environment
as a result of its use for the production of individual crop » in each grid cell k as
M;‘M = Rf,‘_j(n) X A’y“ X Fffj(n), where R;‘J(n)
rate and the average undegraded fraction of active ingredient i in the j(#) crop group
for which the individual crop # belongs to. A¥ is the harvested area of crop # obtained
from Monfreda et al. 4. For example, the individual crop “apples” belongs to the
“orchards and grape” crop group, and thus the accumulated mass of active ingredient
i due to apple production was determined by multiplying the application rate of active
ingredient i in “orchards and grape” [kg-pesticide applied m—2] with the harvested
area of apples [m?] and the undegraded fraction in “orchards and grape” [kg-pesticide
accumulated/kg-pesticide applied]. The corresponding hazard load is then calculated
as HL, = M, /(NOAEL, x 365).

We next calculated the total hazard load of each active ingredient in the
production of each individual crop for each country m (HL{)) by summing HLE,
across all the grid cells belonging to that country. To construct the satellite account
for the MRIO table, we aligned the country-specific hazard load of each active
ingredient for the 175 individual crops with the sector classifications of the MRIO
database. The alignments between crop groups, the 175 individual crops and the
sector classification in MRIO table are reported in Supplementary Data 1.

and Ff.‘_;(n) are the median annual application

Data analyses. To highlight the contribution of different types of pesticides, we
grouped the pesticide footprints into four classes, namely herbicides, insecticides,
fungicides, and multi-purpose pesticides (multi-purpose pesticides refer to pesti-
cides that belong to more than one functional classes, i.e., they can be used as either
herbicides, insecticides or fungicides, Supplementary Table 2). To determine
whether a region is a net importer or net exporter of pesticide hazard load-
embodied commodities, we calculated the difference between the total pesticide
hazard load embodied in the imports (final consumers) and the exports (first
producers) of goods and services in that region. In consumption-based analyses, we
considered the consumption of both locally-produced and imported products and
services. When analysing the total footprint embodied in a commodity or service,
we considered the cumulative footprint of the entire supply chain, starting from
first producers to final sales. We calculated the pesticide footprint of different food
products in terms of per unit mass, per unit calories, and per unit protein. We used
the basic price of export (i.e., trade value/trade quantity) obtained from the UN
Comtrade Database®” to calculate the pesticide hazard loads embodied in one
kilogram of food produced in each producing country. Countries where the basic
price were not available were excluded from the analysis. The calories and proteins
contained in per kilogram of food products were obtained from the USDA
National Nutrient Database8!. For all per-capita analyses, the population counts of
each region in 2015 were obtained from FAOSTAT?L

Robustness checks and uncertainty of estimates. We conducted robustness
checks to test if variations in climatic patterns and soil properties would affect the
estimation of pesticide hazard loads. In this first robustness test, we randomly selected
1000 grid cells and repeated the model runs (only the environmental model) using
rainfall, evapotranspiration, solar radiation, and air temperature time series of the last
17 years (i.e., from 2001 to 2017). In the second test, we repeated the model runs of
the 1000 random grid cells with a + 50% variation in the soil carbon content. Changes
in climatic patterns resulted in an average of -0.33% change (25th percentile: —1.2%,
75th percentile: 0.3%) as compared to the reference simulation, whereas a £50%
variation in soil carbon content resulted in an average of 5.9% change (25th per-
centile: —4.6%, 75th percentile: 10.7%, Supplementary Fig. 10).

To quantify the overall uncertainties associated with pesticide footprints, we
conducted Monte-Carlo simulations. This method of uncertainty quantification
has previously been carried out for footprint studies!%82. Firstly, we quantified the
uncertainties in pesticide hazard load estimations by performing a global sensitivity
analysis on the pesticide application rates, undegraded fractions, and the NOAEL
values. We randomly sampled across the variable space that spans within +/—50%
of the reference values using a Gaussian distribution that has a mean around the
reference value and a standard deviation of 15% of the reference value. We
conducted 8000 realisations to obtain the standard deviations of pesticide hazard
loads embedded in each sector and region, which were then used for uncertainly
quantification of pesticide footprints.

MRIO databases are compiled from primary data, hence are associated with
measurement errors. These errors propagate from raw data collection to MRIO
compilation to pesticide footprint assessments®3-8> and can be quantified using
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Monte-Carlo techniques®®87. Here, we follow the approach outlined in Lenzen

et al.82 by propagating uncertainty using data on standard deviations for the
intermediate demand (or) and final demand (o) sourced from the Global MRIO
Lab33, and pesticide hazard loads (6) calculated as described above to perturb the
Q, T and y data, then calculating the perturbed pesticide footprints. These
perturbed footprints were calculated from 1,000 Monte-Carlo runs. Standard
deviations of the pesticide footprints were then calculated from the standard
deviations of the perturbations. The mathematical formulations of these Monte-
Carlo runs are detailly described in Heijungs and Lenzen®> and Lenzen et al.88. We
presented the standard deviations of the total pesticide footprints for all countries
and regions of the MRIO table in Supplementary Data 2 and we showed the
probability distribution of the Monte-Carlo runs in Supplementary Fig. 9.

Data availability

The georeferenced data on pesticide residues were distributed via figshare at https://doi.
org/10.6084/m9.figshare.129663233289. The country-based pesticide footprint data are
reported in Supplementary Data 2 accompanied with this manuscript. All Supplementary
Data files, source data used in Figs. 1-5, and the crop-specific georeferenced pesticide
hazard load maps were distributed via figshare at https://doi.org/10.6084/m9.figshare.
19612173%.

Code availability

The BRTSim software used to estimate the pesticide residues can be freely downloaded
from https://sites.google.com/site/thebrtsimproject. An example of input files required to
run the model can be downloaded via figshare at https://doi.org/10.6084/m9.figshare.
129663233289, The footprint analysis was conducted using the IELab, which can be
accessed via https://ielab.info/.
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