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Abstract: Although algorithms are well developed to predict soil organic carbon (SOC), selecting
appropriate covariates to improve prediction accuracy is an ongoing challenge. Terrain attributes
and remote sensing data are the most common covariates for SOC prediction. This study tested the
predictive performance of nine different combinations of topographic variables and multi-season
remotely sensed data to improve the prediction of SOC in the cultivated lands of a middle mountain
catchment of Nepal. The random forest method was used to predict SOC contents, and the quantile
regression forest for quantifying the prediction uncertainty. Prediction of SOC contents was improved
when remote sensing data of multiple seasons were used together with the terrain variables. Remote
sensing data of multiple seasons capture the dynamic conditions of surface soils more effectively
than using an image of a single season. It is concluded that the use of remote sensing images of
multiple seasons instead of a snapshot of a single period may be more effective for improving the
prediction of SOC in a digital soil mapping framework. However, an image with the right timing of
cropping season can provide comparable results if a parsimonious model is preferred.

Keywords: digital soil mapping; Nepal; Sentinel-2; soil organic carbon; topography

1. Introduction

Accurate quantification of soil organic carbon (SOC) distribution in croplands is
necessary to monitor SOC status changes and to fine-tune soil management applica-
tions. The need to monitor SOC status in croplands is growing in the present context
of changing global climate, degrading soils, declining agricultural productivity, and carbon
auditing [1–4]. Monitoring the topsoil SOC is more urgent than the subsoil, as the top-
soil SOC is highly variable yet vulnerable due to the direct effects of various natural
and anthropogenic phenomena, such as erosion, deposition, tillage operations, and or-
ganic amendments [5]. Recent developments in satellite-based Earth observation data
coupled with machine learning tools and techniques may have the potential to improve
the prediction accuracy of topsoil SOC for better farm management decisions [6–8].

In digital soil mapping, a framework that provides modern tools and techniques to
accurately and efficiently quantify SOC spatial variability, a wide range of environmental
variables are used as SOC predictors [9]. Among the variables, terrain attributes that can
be derived from the digital elevation model (DEM) and satellite imagery-based reflectance
data are the commonly used and easily accessible datasets for the predictive mapping
of SOC [8,10–12]. In recent years, some studies have attempted to make use of these
freely available satellite imagery to predict SOC [6,13–16]. These studies have used the
latest high-resolution multispectral satellite images such, as Sentinel-2 and Landsat 8,
with varying rates of success at predicting SOC. However, the results are not consistent
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across the studies. In addition, the potential of the multiple-season Sentinel-2 images on
the predictive mapping of SOC in croplands has not been explored fully yet. Previous
studies indicated that the models built using multi-temporal images improved accuracy
and stability over models built with a single-date image when it came to predicting soil
organic matter [17]. Hill and Schütt (2000) also made use of time-series images to minimize
potential estimation errors due to particular land cover properties at the time of image
acquisition [18]. In addition, SOC contents are likely to be affected by the long-term stand of
vegetation cover resulting in the addition of organic materials to soils. Therefore, capturing
the land cover dynamics by taking images from different cropping seasons can provide
more predictive capacity to the models for the predictive mapping of SOC in the framework
of DSM. Therefore, there is a need to test multi-season satellite imagery, such as Sentinel-2,
selected on the basis of a local cropping calendar for more empirical evidence with rigorous
sampling and validation techniques.

It is common in remote sensing analyses to construct ratios and map various combi-
nations of multispectral bands to investigate relationships among the bands. The Kauth-
Thomas (K-T) transformation, commonly known as the Tasseled Cap transformation owing
to the shape of the graphical representation of data distribution, is a type of principal
component analysis that converts raw image data to a set of orthogonal axes in a new
coordinate system [19]. The indices obtained from the K-T transformation of Sentinel-2
satellite images have not been adequately explored in the predictive mapping of SOC
so far. The primary axis of the K-T transformation, known as brightness, is determined
statistically as the weighted sum of reflectance values from all spectral bands. It accounts
for the majority of the image’s variability. Brightness is linked to partially or completely
exposed soil, as well as natural and man-made surface features, such as rock outcrops,
gravel, asphalt, concrete and other bare regions. The second component is greenness, which
is associated with green vegetation and is orthogonal to the first component. Wetness, the
third component, is orthogonal to the previous two and is related to water, soil moisture,
and other moist surface features. Atmospheric influences and image noise, such as sun
angle differences, haze, and clouds, are included in the other additional components, which
have been eliminated from the first three most important components. Approximately 97%
of the image’s relevant information is included in the first three components of the K-T
transformed images [20]. The use of K-T transformed bands instead of individual bands
avoids the issue of multicollinearity while building predictive models.

This study aimed to assess the usefulness of Sentinel-2 images captured at different
periods of cropping seasons for the predictive mapping of SOC distribution in croplands
of a montane ecosystem. Specific objectives were to (i) test the predictive performance of
nine different SOC predictive models, (ii) assess the prediction results with an additional
probability sampling, (iii) map the spatial distribution and prediction uncertainty of SOC,
and (iv) assess the importance of predictor variables used in the models. This study made
use of a rigorous process of soil sampling design for collecting the calibration and validation
datasets, and the predictive performance of these models can be a reference for future
digital soil mapping work in similar physiographic settings.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Palung catchment, which is an upstream catchment of
the Kulekhani watershed and lies in the middle mountain region of central Nepal (Figure 1).
Extending across 27◦35′41.4′′ to 27◦39′37.9′′ north latitude and 85◦1′20.3′′ to 85◦5′45.1′′ east
longitude over an area of 3076.7 ha, the elevation of the study area ranges from 1753 to
2605 m above the mean sea level. The boundary of the catchment was delineated using
AW3D-5m DEM derived from the Advanced Land Observation Satellites of JAXA [21].
Influenced by the easy access to major urban centers, such as Kathmandu, this area is a
pocket area for commercial vegetable production. The cropping pattern is similar across
the arable lands in the catchment, and most soils are well drained. Vegetable production
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during the rainy season is a specialty of this area when most of the plain lands across the
country are inundated with water. Table 1 shows the crop calendar of the major crops
grown in this area and the classification of seasons that relate to the annual pattern of
precipitation [22].
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Table 1. Local crop calendar of the study area.

Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Cauliflower
Cabbage
Radish
Chilli

Coriander
Potato
Maize

Symbols Sowing/transplanting Mid-season Harvesting
Seasons Winter Pre-monsoon Monsoon Post-monsoon

Upper and mostly steeper slopes of the catchment, which are less accessible and less
amenable to cultivation, are covered by mixed forests. Regarding the climate, winter in this
area is cold and frosty with mild summer temperatures, which is a typical characteristic of
the higher ranges of the middle mountain physiographic region of Nepal. According to
the meteorological data recorded by the nearest station of the Department of Hydrology
and Meteorology at Daman, over the decade of the 2000s, the average annual precipitation
received by this region was 1883 mm. The average annual maximum and minimum
temperatures were 19.64 and 8.34 ◦C, respectively [23]. Soils were predominantly Glayic
Cambisols with well drained sandy loam texture developed from colluvial deposits [24].
The predictive mapping of SOC in this study was confined to the cultivated lands of this
catchment, which occupied 901.7 ha of the catchment.

2.2. Land Cover Mapping

The land cover map of the study area was derived from a Sentinel-2 image captured in
October 2019. The level 2A surface reflectance image product was used as it was available
and already atmospherically corrected. The object-based image analysis approach was
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followed to classify the image. Image segmentation and classification were carried out
using the “Example-based classification approach” on ENVI 5.5 software [25]. The support
vector machine algorithm was chosen to classify the image. Training samples were selected
through visual interpretation of the image. Bands 2 (blue), 3 (green), 4 (red), and 8 (near-
infrared), and four other spectral layers, namely normalized difference vegetation index
(NDVI), hue, saturation, and value were used for the segmentation of the image. The mean
and standard deviation of these bands, layers, and Haralick texture features were calculated
from these bands and layers and were used for classifying the image segments. Validation
was performed using the point locations collected during the fieldwork. Overall accuracy
and Kappa statistics were calculated to evaluate the quality of classification output.

2.3. Soil Sampling and Laboratory Analysis

Two sets of SOC point data were collected from the field using a soil sampling auger.
For calibrating the models, the conditioned Latin Hypercube (cLHS) sampling technique
was used [26] and for validating the models, simple random sampling was adopted. The
cLHS sampling design is an efficient model-based sampling strategy that is appropriate
for efficient mapping of the spatial variability of soil properties [27] as it captures a maxi-
mum amount of variability in the covariate feature space with minimum possible sample
points [26]. The terrain and Sentinel-2 based covariates were used as the covariates to
allocate the sample locations across the feature space, and two raster surfaces, namely
slope and distance to the roads were used to create the cost surface as an input to the
cLHS model to assure the accessibility to the target sample point locations and to min-
imize the travel time needed to collect samples from across the catchment. Altogether,
114 topsoil (0–20 cm) samples were collected to calibrate the model, and 38 additional
samples collected following probability sampling design were used to validate the model.
Validating the prediction model using samp1es derived from probability sampling has been
suggested as the superior method in comparison to other methods, such as data-splitting
and cross-validation [28]. For a specific sample location, three soil samples were collected
within a buffer distance of 1 m from the targeted sample points and composited into one. A
handheld Garmin GPS device was used to navigate to the target sample points and record
the geographic location of the samples collected in the field. The horizontal accuracy of
the device was 3 m, and the allowed buffer distance of 1 m added up to 4 m. We aimed
to make sure that the point soil sample was collected within a 5 m radius from the center
of the selected pixels of the Sentinel-2 image. This way, the sample fell within the area of
the image pixel, which was of 10 m spatial resolution. This minimizes the chance of the
sampling point falling into the pixels surrounding the target pixels. Figure 2 shows the
spatial distribution of calibration and validation datasets overlaid on the land cover map
of the catchment.

Soil samples were analyzed in the laboratory of the Soil Science Division of Nepal
Agricultural Research Council for soil organic matter determination using the Walkley-
Black wet oxidation method [29]. A correction factor of 1.3 was used to account for partial
oxidation of organic matter [30]. After that, the organic matter content of the soil samples
was multiplied by the van Bemmelen conversion coefficient of 0.58 to obtain SOC percent
values [31]. The SOC concentration in percent was then multiplied by 10 to convert it
to g kg−1.

2.4. Covariates

The environmental covariates were collected from two major sources. The terrain-
based covariates were derived using AW3D-5m DEM, derived from the Advanced Land
Observation Satellites of JAXA [21] that was resampled to 10 m to align it with the origin
resolution of the Sentinel-2 images [21] using the SAGA-GIS software platform [32]. Remote
sensing-based covariates were based on the Sentinel-2 images obtained in three different
months, namely February, May, and November, representing three different seasons in
the local crop calendar. The Sentinel-2 image bands included in this study to construct



Remote Sens. 2021, 13, 4772 5 of 16

the covariates were Band 2 (blue), Band 3 (green), Band 4 (red), Band 5 (red edge), Band 8
(near-infrared), Band 8A (narrow-infrared), Band 11, and 12 (shortwave-infrared (SWIR)).

The K-T components were calculated in the Google Earth Engine (GEE) platform
using the coefficients for the six-band model advised by Shi and Xu [33]. In addition,
the Sentinel-2 Leaf Area Index (SeLI) was calculated using the red-edge (band 5) and
the narrow near-infrared (Band 8a) bands [34]. These two bands were not used while
generating K-T transformed indices. Details on the covariates used to construct different
prediction models are presented in Table 2. The Median monthly image composites were
created by taking the median pixel values from the time-series of images obtained within a
given month. The median pixel values were used to avoid the influence of outliers that
might have been introduced due to bad pixel values or atmospheric anomalies during
image acquisition. Sentinel-2 Level 1A products were used for this study, which were
available as both geometrically and atmospherically corrected values.

Table 2. Covariates used to build predictive models.

Covariate Description Reference

Remote sensing-based

bright_feb K-T transformed brightness component for an at-sensor
Sentinel-2 median image of February 2020 [19,33]

green_feb K-T transformed greenness component for an at-sensor
Sentinel-2 median image of February 2020 [19,33]

Wet_feb K-T transformed wetness component for an at-sensor Sentinel-2
median image of February 2020 [19,33]

SeLI_feb Sentinel-2 LAI Index for February 2020 [34]

bright_may K-T transformed brightness component for an at-sensor
Sentinel-2 median image of May 2020 [19,33]

green_may K-T transformed greenness component for an at-sensor
Sentinel-2 median image of May 2020 [19,33]

Wet_may K-T transformed wetness component for an at-sensor Sentinel-2
median image of May 2020 [19,33]

SeLI_may Sentinel-2 LAI Index for May 2020 [34]

bright_nov K-T transformed brightness component for an at-sensor
Sentinel-2 median image of November 2019 [19,33]

green_nov K-T transformed greenness component for an at-sensor
Sentinel-2 median image of November 2019 [19,33]

Wet_nov K-T transformed wetness component for an at-sensor Sentinel-2
median image of November 2019 [19,33]

SeLI_nov Sentinel-2 LAI Index for November 2019 [34]
Terrain based

elevation Elevation (meters above sea level) [21]
maxElDev Maximum elevation deviation [35]
mid_slope Mid-slope position [32]
ls_factor Slope length and steepness factor [32]

curv_plan Plan curvature [32]
insolation Direct annual solar radiation [36]

twi Topographic wetness index (SAGA) [32]
mrrtf Multi-resolution index of ridge-top flatness [32]
mTPI Multiscale topographic position index [32]

2.5. Prediction Models

Nine random forest (RF) models [37] were built using nine sets of covariates represent-
ing different combinations of terrain covariates and Sentinel-2-based covariates for three
different seasons/months, as listed below. A local cropping calendar was used to match the
seasons/months of the images. RF models were used because their predictive performance
was reported to be superior in the majority of the recent SOC mapping and modeling stud-
ies in a systematic review [38–40]. The RF models are trained to create ensemble estimates
from a set of regression trees built from bootstrap samples. The final predictions of the
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target attributes are the averages of the predictions of individual regression trees [37,41].
The models constructed to predict SOC contents are listed below.

Model 1. Sentinel-2 (Feb)
Model 2. Sentinel-2 (May)
Model 3. Sentinel-2 (Nov)
Model 4. Sentinel-2 (Feb, May, Nov)
Model 5. Terrain only
Model 6. Terrain + Sentinel-2 (Feb)
Model 7. Terrain + Sentinel-2 (May)
Model 8. Terrain + Sentinel-2 (Nov)
Model 9. All (Terrain + Sentinel-2 (Feb, May, Nov))

2.6. Model Evaluation and Uncertainty
2.6.1. Evaluation of Prediction

External validation was performed to test the results of the predictive models on
38 samples collected through probability sampling. Mean error (ME), root mean square
error (RMSE), and R2 were computed to compare model performance. In order to assess
which models predicted better for the calibration sites, these indices were also calculated
for calibration datasets.

R2 =
∑n

i=1

(
predictedi − observed

)2

∑n
i=1

(
observedi − observed

)2 (1)

RMSE =

√
1
n

n

∑
i=1

(observedi − predictedi)
2 (2)

ME =
1
n

n

∑
i=1

(observedi − predictedi) (3)

2.6.2. Measure of Prediction Uncertainty

The quantile regression forest (QRF) approach was used to analyze the model’s
uncertainty in a spatially explicit manner [42–44]. The model uncertainty was estimated
as a function of the specified prediction variables as represented by the full conditional
distribution of the response variable (SOC in our case) using the QRF technique in the
‘quantregForest’ package on the R software platform [45,46]. This technique computed
a probability distribution function for each pixel, and the standard deviation calculated
from the entire prediction range was divided by the mean SOC prediction and expressed
in percentage for an easier interpretation of the model uncertainty [47].

3. Results
3.1. Land Cover Map

Figure 2 shows the land cover map produced using a Sentinel-2 image from which four
major land cover categories were extracted, namely, cultivated lands (area 901.7 ha), forests
(2056.5 ha), built-up areas (88.7 ha), and creeks, including adjacent sandbars (29.8 ha). As
calculated using a DEM of 10 m resolution, the mean slope of the cultivated areas was
16.35◦, and that of the forest areas was 31.68◦. Accuracy of the land cover classification
was carried out using 182 point locations with an overall accuracy of 92.31% and a kappa
coefficient of 0.87.
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3.2. General Statistics

Descriptive statistics of SOC measurements on calibration and validation points are
presented in Table 3. The measured SOC content ranged from 2.5 to 57.3 g kg−1 with a
mean of 24.98 ± 1.9 g kg−1. High variation in the SOC contents is due to the diversity in
the terrain and the subsequent differences in microclimate and soil management within
the study area.
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Table 3. Descriptive statistics of the soil organic carbon content (g kg−1) in the calibration and validation datasets.

Statistics Calibration Validation All

Number of samples (n) 114 38 152
Min (g kg−1) 2.50 4.54 2.50

Mean (g kg−1) ± 95% Confidence
interval

24.21 ± 2.27 27.04 ± 3.52 24.98 ± 1.9

Median (g kg−1) 22.94 26.50 23.72
Max (g kg−1) 57.32 57.12 57.32

Standard deviation (g kg−1) 11.20 10.41 11.02
Standard error of the mean (g kg−1) 1.14 1.73 0.96

Skewness 0.49 0.62 0.5
Kurtosis −0.02 0.84 0.22

Figure 3 illustrates the frequency distribution of the SOC contents in the calibration
and validation datasets. Bars represent the histograms, and the curves show the probability
density. The rug plots show the location of individual sample points along the continuum
of SOC content values in the X-axis. The distribution of the values of the SOC content
is somewhat bell-shaped, indicating that it is following a normal distribution. Transfor-
mations (log and square root) did not improve the distribution to make it more normal.
Therefore, the original SOC values were used for fitting the predictive models. In addition,
unlike the conventional regression models, the machine learning model used in this study
did not require the data to be of normal distribution. To avoid the issues related to spatial
autocorrelation, before fitting the predictive models to the observed data, a test of spatial
autocorrelation was performed using the Global Moran’s I test [48,49]. The spatial pattern
did not show significant spatial autocorrelation.
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3.3. Evaluation of Prediction Models

The goodness of fit and error statistics of the predictive models used in this study are
presented in Table 4. The observed and predicted SOC contents for each of the nine models
are shown in Figure 4. The model that used all-terrain variables and the Sentinel-2 images
of all three cropping seasons yielded the best prediction results with the R2

cal 0.81 and the
R2

val 0.46, followed closely by the one that used the Terrain variables and the Sentinel-2
image obtained in February, which had the R2

cal 0.79 and the R2
val 0.45. The RMSE and

MAE were also in favor of these two models in comparison to other models. The model
with only the Sentinel-2 image captured in November had the lowest predictive power for
predicting SOC in the cultivated lands of this catchment.

Table 4. Goodness of fit and error statistics of predictive models.

Prediction Models R2 RMSE MAE

Cal Val Cal Val Cal Val
Model1 [Sentinel-2 (Feb)] 0.69 0.35 2.81 5.31 2.17 4.10

Model 2 [Sentinel-2 (May)] 0.67 0.31 2.99 5.64 2.24 4.23
Model 3 [Sentinel-2 (Nov)] 0.64 0.22 3.05 5.75 2.26 4.27

Model 4 [Sentinel-2 (Feb, May, Nov)] 0.76 0.42 2.73 5.16 2.12 4.00
Model 5 [Terrain only] 0.68 0.35 2.84 5.35 2.22 4.19

Model 6 [Terrain + Sentinel-2 (Feb)] 0.79 0.45 2.67 5.04 2.08 3.93
Model 7 [Terrain + Sentinel-2 (May)] 0.73 0.40 2.72 5.13 2.13 4.02
Model 8 [Terrain + Sentinel-2 (Nov)] 0.71 0.37 2.90 5.47 2.17 4.10

Model 9 [All (Terrain + Sentinel-2
(Feb, May, Nov)] 0.81 0.46 2.16 4.08 2.07 3.91

Note: R2: coefficient of determination, RMSE: root mean squared error, MAE: mean absolute error
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3.4. Spatial Distribution of SOC in the Catchment

Figure 5 shows the spatial distribution of the predicted topsoil SOC contents in
the catchment based on the model that included all covariates as predictors, as this
model performed better than other models. The predicted SOC content ranged from
12.5 to 40.4 g kg−1, with a mean of 25.6 g kg−1. The spatial pattern of the SOC contents
shows that there was a higher level of SOC contents in the upstream areas of the catchment
in comparison to the downstream areas.
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3.5. Uncertainty Assessment

The uncertainty map of the model prediction is presented in Figure 6; it was based
on the model that performed the best among the nine different models. The prediction
uncertainty ranged between 5 and 55%. The uncertainty shown here is the standard
deviation of prediction expressed as the percentage of the mean prediction of topsoil SOC
contents. Less uncertainty indicates that the prediction was more precise in those areas
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when the model was used for prediction. The spatial pattern of the uncertainty map shows
that the lower and flatter areas of the catchment had higher uncertainty compared to the
upper areas of the catchment.
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3.6. Variable Importance

The importance of variables in all nine prediction models used in this study is pre-
sented in Figure 7. When only the Sentinel-2 images of a single season were used, the
brightness index was the most important predictor in February and November (Figure 7a,c)
and the greenness index in May (Figure 7b). When the Sentinel-2 images from all three
cropping seasons were used together, the SeLI of February was rated as the most influential
variable, followed by the greenness index of May and the brightness index of November
(Figure 7d). In the model that used only the terrain variables, elevation was the most
influential covariate, followed by the maximum elevation deviation and mid-slope position
(Figure 7e). The brightness index, elevation, and SeLI were the most important covariates
in the model that used terrain variables and the Sentinel-2 image indices from February
(Figure 7f). In the model that used terrain variables plus Sentinel-2 image indices from
May, elevation, maximum elevation deviation, and the mid-slope position index were
ranked as the most important variables (Figure 7g). The model using the terrain variables



Remote Sens. 2021, 13, 4772 12 of 16

and the Sentinel-2 image indices from November ranked elevation, maximum elevation
deviation, and wetness index as the most influential variables (Figure 7h). The model that
used all covariates, including the terrain variables and the Sentinel-2 image indices from all
three cropping seasons, ranked elevation, SeLI (February), mid-slope position, maximum
elevation deviation, and the brightness index (November), as the most influential variables
(Figure 7i).
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4. Discussion

An object-based image analysis approach with the SVM algorithm was found to be
effective at classifying a Sentinel-2 satellite image to extract major land cover types. Most of
the cultivated lands were situated at the downstream areas of the catchment. Downstream
areas were flatter than the upstream areas of the catchment, rendering the downstream
areas more amenable to tillage operations. However, it was also not uncommon to cultivate
upstream areas of the catchment where bench terraces were built on the steep slopes.
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The prediction model that used all covariates performed better than the other models.
When comparing only the Sentinel-2-based covariates from three different seasons/months,
those of February performed better than those from May and November. In February, the
cultivated lands in this catchment are fallow with the least vegetation cover, and the bare
soil surface is exposed. The reflectance obtained during this season is mostly from the bare
soils, and the predictive capacity of the satellite images can be expected to be higher than
the images obtained during other seasons when the land is covered with vegetation [5].
The model that used only the Sentinel-2 image covariates obtained in November had the
lowest performance. The terrain-only model performed similarly to that obtained using the
Sentinel-2 February model. The performance of the model that used the terrain variables
and Sentinel-2-based covariates obtained in February performed very similarly to the
all-covariate model. In this mountainous region, topography controls the micro-climatic
variation, soil erosion, and deposition processes. As a consequence, SOC can be expected
to be influenced by the features of the landform. A model that uses all covariates might
predict better than partial models. However, there might be a risk of overfitting models
to the specific datasets. Therefore, the model that used terrain features and Sentinel-2
image-based covariates obtained from February (Model 6) can be recommended as an
optimum one, which performed very close to the all-covariate model (Model 9).

Downstream areas are more intensively cultivated than the upstream counterparts of
this catchment. In addition, the soil surface temperature in the upper elevation is lower
than that in the lower elevations. The intensive tillage operations are expected to expose
soils to the atmosphere, and higher temperatures accelerate the process of the oxidation
of organic carbon and release it into the atmosphere [50]. Decomposition processes are
aided further by the combination of warm and moist soil conditions that promote microbial
activity [51]. This resulted in lower levels of SOC contents in the lower regions of the
catchment. Conversely, upland areas are tilled less frequently. Accompanied by the
lower temperatures, these upper regions are expected to experience reduced loss of SOC
from the soils.

Cultivated lands of the downstream areas appear to have a higher level of uncer-
tainty in comparison to upstream areas of the catchment. This can be explained by the
variability in the management practices of the cultivated lands, which are more intensively
cultivated [52]. The management factors that might have influenced the spatial variability
in the levels of SOC contents in these downstream cultivated areas may not have been
captured by the covariates used in these predictive models. The steep upstream areas are
less intensively cultivated, which may have less influence due to the management and
because they are more strongly controlled by the terrain features.

Regarding the importance of covariates, the brightness index was picked as the most
influential variable by the models that used the Sentinel-2 image-based covariates of
individual months or seasons. It has been reported that SOC increases the darkness of the
soils, hence the reverse correlation of SOC contents with the brightness index [53]. SeLI
was another important covariate based on the Sentinel-2 satellite image. SeLI index was
constructed using the red-edge band, and the narrow-infrared band was ranked among the
high impact covariate by the all-Sentinel-2 model and all-covariates model. Studies have
reported that SOC is sensitive to the bands in these spectral regions. Among the terrain
variables, elevation was consistently the most influential covariate [8,54,55]. Maximum
elevation deviation and the mid-slope position were also ranked as highly influential
terrain covariates by these prediction models. The elevation is directly correlated with
the soil surface temperature in general and indirectly with the intensity of management
or cultivation practices, specifically in this catchment [56]. The soil surface temperature
and management factors are reported to be important variables that determine the spatial
variability in the level of SOC. The maximum elevation deviation shows the variation of
terrain relief, which is likely to influence the local climatic condition and, therefore, the
level of SOC contents. The mid-slope position index measures the position in a sloping
landscape along the slope of the terrain. It indicates the difference in the air temperature
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along the vertical span of slopes. In general, the middle sections of the terrain slope are
warmer than the upper and lower ends [57]. This difference in air temperature near the
surface of the earth can influence the level of SOC loss from the soils. Therefore, these
terrain covariates are relevant in determining the levels of SOC contents in this catchment.

5. Conclusions

This study evaluated the performance of terrain variables and Sentinel-2 image-
based indices from three different cropping seasons for the predictive mapping of SOC.
Calibration soil sample points were collected using a cLHS approach, and validation
samples were selected using an additional probability sampling approach. The model that
used terrain and image-based indices from all seasons (Model 9) had the greatest predictive
performance. However, the model with the terrain variables and the image-based indices
from February (Model 6) were very close to the predictive performance of the full model
(Model 9) that used all covariates. In order to capture the maximum possible variability in
SOC contents, a mix of relevant terrain and multi-season remote sensing-based covariates
are recommended. Among them, elevation, maximum elevation deviation, and mid-slope
position are the most important terrain covariates, and brightness index and SeLI are
the most influential remote sensing-based covariates for the predictive mapping of SOC
contents. Therefore, it can be concluded that the terrain variables and the multi-season
Sentinel-2 image indices obtained in different seasons of a local cropping calendar can
improve the prediction of SOC. Furthermore, the combination of terrain variables and the
Sentinel-2 image from February can also make an optimal and parsimonious prediction
model for the improved digital mapping of SOC in the catchments similar to this study
area. However, it should be remembered that the month of imagery will depend on the
local cropping pattern.
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