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ABSTRACT

A 305-d lactation followed by a 60-d dry period has 
traditionally been considered economically optimal, 
yet dairy cows in modern intensive dairy systems are 
frequently dried off while still producing significant 
quantities of milk. Managing cows for an extended 
lactation has reported production, welfare, and eco-
nomic benefits, but not all cows are suitable for an 
extended lactation. Implementation of an extended 
lactation strategy on-farm could benefit from use of 
a decision support system, based on a mathematical 
lactation model, that can identify suitable cows during 
early lactation that have a high likelihood of producing 
above a target milk yield (MY) at 305 d in milk (DIM). 
Therefore, our objectives were (1) to compare the suit-
ability of 3 commonly used lactation models for model-
ing extended lactations (Dijkstra, Wood, and Wilmink) 
in primiparous and multiparous cows under a variety 
of lactation lengths, and (2) to determine the amount 
of early-lactation daily MY data needed to accurately 
forecast MY at d 305 by using the most suitable model 
and determine whether this is sufficient for identify-
ing cows suitable for an extended lactation before the 
end of a typical voluntary waiting period (50–90 d). 
Daily MY data from 467 individual Holstein-Friesian 
lactations (DIM >305 d; 379 ± 65-d lactation length 
[mean ± SD]) were fitted by the 3 lactation models 
using a nonlinear regression procedure. The parameter 
estimates of these models, lactation characteristics 
(peak yield, time to peak yield, and persistency), and 
goodness-of-fit were compared between parity and dif-
ferent lactation lengths. The models had similar per-
formance, and differences between parity groups were 
consistent with previous literature. Then, data from 
only the first i DIM for each individual lactation, where 

i was incremented by 30 d from 30 to 150 DIM and by 
50 d from 150 to 300 DIM, were fitted by each model to 
forecast MY at d 305. The Dijkstra model was selected 
for further analysis, as it had superior goodness-of-fit 
statistics for i = 30 and 60. The data set was fit twice 
by the Dijkstra model, with parameter bounds either 
unconstrained or constrained. The quality of predic-
tions of MY at d 305 improved with increasing data 
availability for both models and assisting the model 
fitting procedure with more biologically relevant con-
straints on parameters improved the predictions, but 
neither was reliable enough for practical use on-farm 
due to the high uncertainty of forecasted predictions. 
Using 90 d of data, the constrained model correctly 
classified 66% of lactations as being above or below 
a target MY at d 305 of 25 kg/d, with a probability 
threshold of 0.95. The proportion of correct classifica-
tions became smaller at lower targets of MY at d 305 
and became greater when using more lactation days. 
Overall, further work is required to develop a model 
that can forecast late-lactation MY with sufficient ac-
curacy for practical use. We envisage that a hybridized 
machine learning and mechanistic model that incorpo-
rates additional historical and genetic information with 
early-lactation MY could produce meaningful lactation 
curve forecasts.
Key words: mathematical model, lactation persistency, 
decision support

INTRODUCTION

Dairy cows in modern intensive, confined dairy 
systems are frequently dried off while still producing 
significant quantities of milk. Similarly, modern grazing 
dairy systems use seasonal calving or batch calving to 
manage fluctuations in environmental conditions or feed 
availability, as in Ireland, New Zealand, and Australia. 
Regardless of the system, a 305-d lactation followed 
by a 60-d dry period has traditionally been considered 
economically optimal (Strandberg and Oltenacu, 1989; 
Inchaisri et al., 2011). To maintain a 305-d lactation, 
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dairy producers are tasked with maintaining a suitable 
voluntary waiting period (VWP), typically 50 to 90 d, 
before inseminating cows postpartum. This coincides 
with a period of high milk yield (MY) and usually neg-
ative energy balance of the cow, associated with high 
reproductive failure (Santos et al., 2009). In reality, 
over 50% of Holsteins in North America have lactations 
beyond 305 d (Tsuruta et al., 2005; VanRaden et al., 
2006), with the mean lactation lengths in the US dairy 
cattle population estimated as 366 and 357 d for 2007 
and 2017, respectively (Capper and Cady, 2020). This 
can be attributed to genetic and management factors 
and physiological challenges influencing reproduction, 
as reviewed in Walsh et al. (2011).

The mating period can be temporally separated from 
the period of high metabolic demand by intentionally 
delaying breeding beyond the typical VWP and sub-
sequently extending the lactation. Such an extended 
lactation strategy may reduce the number of calves, 
decrease breeding costs, increase cow longevity within 
a herd, and improve animal welfare on-farm (Knight, 
2001; Niozas et al., 2019b). However, the inherent vari-
ability between individual cows in their ability to main-
tain an extended lactation is well documented (Kolver 
et al., 2007; Butler et al., 2010; Niozas et al., 2019a; 
van Knegsel et al., 2022), and thus not all cows are 
suitable for an extended lactation. Some of the most 
significant types of data used by producers to evalu-
ate herds or individual cows for extended lactations 
in the Netherlands and Denmark include BCS, MY, 
peak yield (PY), DIM, milking frequency data (in au-
tomatic milking systems), and persistency (Lehmann 
et al., 2017; Burgers et al., 2021b). Therefore, imple-
mentation of an extended lactation strategy on-farm 
could benefit from a decision support system that can 
identify suitable cows during early lactation that have 
a high likelihood of producing above a target MY at 
305 DIM. Previously, MY in early lactation has been 
positively correlated with the MY in extended lacta-
tions (Lehmann et al., 2017). Machine learning models 
have been used to predict herd-level MY over different 
time horizons (Murphy et al., 2014) and to interpolate 
and predict missing MY data in individual lactations 
(Liseune et al., 2020) or predict the entire MY curve 
of individual cows based on previous lactation informa-
tion (Liseune et al., 2021). Furthermore, discriminant 
analysis of lactation curve model parameters has been 
used to classify cows as having either a low (<20 kg/d) 
or high (>35 kg/d) MY at d 305 using daily MY data 
from the first 90, 120, or 150 DIM (Manca et al., 2020). 
However, these methods require large training data sets 
and generate predictions stochastically.

In contrast, deterministic models of lactation data 
are commonly used to predict future MY, persistency, 

and PY of a lactation. Use of such models is common 
in various farm management software and genetic 
evaluation tools, even when only monthly test-day 
data are available. However, many commonly used 
lactation models have been created and optimized for 
traditional lactation lengths, and their ability to fit 
individual extended lactations needs to be evaluated. 
Previously, Grossman and Koops (2003) developed a 
specific multiphasic approach to modeling extended 
lactations, linking a first ascending phase of MY with 
a series of 3 descending phases of yield. Dematawewa 
et al. (2007) used test-day data from a large database 
to evaluate various types of extended lactation mod-
els fitted to herd data, whereas modeling individual 
extended lactations has previously required the com-
bination of the Wilmink (1987) lactation model with a 
linear or squared function (Otwinowska-Mindur et al., 
2021). Therefore, the first objective of this study was to 
compare the suitability of 3 commonly used lactation 
models for modeling extended lactations in primipa-
rous and multiparous cows under a variety of lactation 
lengths. The Dijkstra et al. (1997) mechanistic model 
and the Wood (1967) and Wilmink (1987) empirical 
models—herein referred to as Dijkstra, Wood, and 
Wilmink, respectively—were selected for analysis due 
to their small numbers of parameters, frequency of use 
within literature, and flexibility and high accuracy to 
fit a wide range of lactation shapes. The second objec-
tive of our study was to determine the amount of early-
lactation daily MY data needed to accurately forecast 
MY at d 305 by using the most suitable model from the 
first objective and determine whether this is sufficient 
for identifying cows suitable for an extended lactation 
before the end of a typical VWP (50 to 90 d).

MATERIALS AND METHODS

Because no human or animal subjects were used, this 
analysis did not require approval by an Institutional 
Animal Care and Use Committee or Institutional Re-
view Board.

Data Source

Data were collected from lactating Holstein-Friesian 
cows housed in a freestall barn at the Trouw Nutri-
tion Dairy Research Facility, located in Boxmeer, the 
Netherlands. Cattle were milked twice daily and fed a 
forage-based partial mixed ration ad libitum with ad-
ditional access to concentrate feeders within the barn. 
The daily amount of concentrate allocated to each cow 
increased with higher milk production, and the alloca-
tion for primiparous cows began at a lower MY than 
multiparous cows. Cows were dried off 6 wk before calv-
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ing by removing concentrate allocations by 2 wk before 
dry off while maintaining twice-daily milking until dry 
off. The data set consisted of cow identification num-
ber, parity, DIM, and daily MY collected between June 
2011 and October 2015. The data set was filtered to re-
tain single lactations with a maximum DIM >305, MY 
records for >150 d of the lactation, and with at least 1 
record before 10 DIM. Observations of MY with an ab-
solute residual ≥3 standard deviations (SD) from the 
mean residual following smoothing (loess function from 
“utils” package in base R: span = 0.25 and surface = 
“direct”) were removed as extreme points. Overall, 467 
lactation curves were retained with a maximum DIM 
>305 d (Table 1). The R scripts used for all analyses 
are deposited at https: / / doi .org/ 10 .5683/ SP3/ 4QVI0O 
(Innes et al., 2023) and maintained at https: / / github 
.com/ CNM -University -of -Guelph/ forecasting -extended 
-lactation, including a simulated lactation data set used 
as a reproducible example.

Model Fitting

The 3 lactation models described in Table 2 were 
fitted to individual lactation curves using a nonlinear 
regression procedure with the Levenberg-Marquardt 
algorithm, which was implemented using the nlsmult-
start function from the “nls.multstart” package in R 
(Padfield and Matheson, 2020). Initial search grids for 
the parameters were based on ranges of the parameters 
found in the literature and are included in the supple-

mentary code, with bounds put in place for the Dijkstra 
model to ensure the parameters remained biologically 
plausible: a ≥ 0, 0 ≤ b ≤ 1, 0 ≤ b0 ≤ 1, and 0 ≤ c 
≤ 1. Convergence was determined based on changes 
in the residual sum of squares (RSS) between succes-
sive iterations, with the intent to minimize total RSS. 
Convergence was declared when changes per iteration 
yielded differences in the relative offset less than 1.5 × 
10−6.

Daily MY and time to peak yield (PT) were cal-
culated using the equations in Table 2, and PY was 
calculated by solving daily MY equations for t = PT. 
Because the post-peak decline in MY does not follow 
the same pattern in all 3 models, an overall persistency 
was calculated from curve fits as the difference in MY 
between PT and the end of lactation (tend), divided by 
the time interval:

Persistency  kg/d per d
MY PY

PT
end

end
( ) =

−( )
−( )

t

t
.

Missing daily MY values (15.7%) were linearly inter-
polated using the na.approx function from the “zoo” 
package in R (Zeileis and Grothendieck, 2005) for the 
purpose of estimating observed total 305-d MY and 
MY at d 305 independently from any model fitting. 
Total 305-d MY for each lactation was calculated as the 
sum of observed MY between 10 and 305 DIM, as there 
was very low frequency of observed MY data below 10 
DIM. The MY at d 305 of lactation was estimated as 
the mean daily observed MY from 303 to 307 DIM.

Goodness-of-fit for the 3 models was assessed for 
each lactation curve with the square root of the mean 
square prediction error (RMSPE):

RMSPE =
−( )

=∑ i

n
i iO P

n
1

2

,

where n = number of observations within the lactation, 
Oi are observed MY values, and Pi are predictions. The 
RMSPE is indicative of the SD of the unexplained vari-
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Table 1. General description of the data sets used for full model fits 
and incremental model fits with forecasting

Variable

Fitting

Full Incremental

Number   
 Cows 262 229
 Lactations 467 365
 Primiparous 146 121
 Multiparous 321 244
 305 to 399 d in length 367 286
 >400 d in length 100 79
Records per lactation   
 Mean 310 310
 SD 50 49
Lactation length (d)   
 Mean 379 379
 SD 65 65
 Minimum 306 306
 Maximum 670 669
Milk yield at d 3051 (kg/d)   
 Mean 21.9 22.0
 SD 6.4 6.1
 Minimum 2.0 5.6
 Maximum 40.9 40.9
1Calculated as the mean of daily milk yield from 303 to 307 DIM.

Table 2. Equations for estimated daily milk yield (kg/d) and time to 
peak yield (d) for the 3 lactation curve models used1

Model reference  
Estimated daily  
milk yield  Time to peak yield

Wood, 1967  atb e−ct  b/c
Wilmink, 1987  a b ctb t− −−e 0  ln(b∙b0/c)/b0

Dijkstra et al., 1997  a
b b ctb t

e
e1 0

0−( ) −− /
 ln(b/c)/b0

1t is DIM, and a, b, b0, and c are model parameters.

https://doi.org/10.5683/SP3/4QVI0O
https://github.com/CNM-University-of-Guelph/forecasting-extended-lactation
https://github.com/CNM-University-of-Guelph/forecasting-extended-lactation
https://github.com/CNM-University-of-Guelph/forecasting-extended-lactation


345

Journal of Dairy Science Vol. 107 No. 1, 2024

ance, with a smaller RMSPE indicating a better model 
fit. Additionally, the mean absolute error (MAE) was 
calculated as follows:

MAE =
−

=∑ i

n
i iO P

n
1 .

Although it is similar to RMSPE in that it reports aver-
age prediction error on the same scale as the dependent 
variable and that a smaller value is indicative of an 
improved fit, the MAE does not place heavier weight 
on larger residuals through squaring. Therefore, MAE 
is a closer estimator of the expected prediction error 
on average that is not as heavily influenced by larger 
outliers. The RMSPE and MAE values were expressed 
as a proportion of mean observed MY values.

To assess both the accuracy and precision of model 
fits, Lin’s (1989) concordance correlation coefficient 
(CCC) was calculated as r × Cb where r is the Pearson 
correlation coefficient and Cb is the bias correction fac-
tor. To test for the presence of first-order autocorrelation 
among residuals, the Durbin-Watson (DW) coefficient 
(Durbin and Watson, 1950) was calculated using the 
durbinWatsonTest function from the “car” package in R 
(Fox and Weisberg, 2019). This test statistic can range 
from 0 to 4, with a value of 2 indicating no autocorrela-
tion and values toward 0 indicating positive correlation 
among consecutive residuals. After models were fitted 
to individual lactation curves, parameters and statistics 
were averaged and compared between primiparous and 
multiparous groups, and between lactations grouped 
by maximum DIM. Differences between group means 
within a model were identified with Student’s t-test.

Forecasting Milk Yield at 305 Days in Milk

To determine the most suitable model for forecast-
ing, data from only the first i DIM for each individual 
lactation, where i was incremented by 30 d from 30 
to 150 DIM and by 50 d from 150 to 300 DIM, were 
fitted by each model to forecast MY at d 305. Fit-
ting attempts that did not converge on parameter 
estimates for any of the models using the full data set 
resulted in removal of the entire lactation from the 
data set of observations so that the same number of 
fits was compared across all i values and models. This 
data set was fitted by each model using parameter 
bounds matching those used above (unconstrained). It 
was determined that, although the Dijkstra and Wood 
model had similar 305-d MAE (%) and CCC values, 
the Dijkstra model performed better with the 30- and 
60-DIM thresholds (Supplemental Figure S1, https://

doi.org/10.5683/SP3/4QVI0O; Innes et al., 2023). 
Therefore, the Dijkstra model was used for subsequent 
analyses.

The full data set was re-filtered to keep only lactations 
where parameter estimates converged for the Dijkstra 
model, which resulted in a revised data set of 365 lacta-
tions (Table 1). This data set was fitted twice by the 
Dijkstra model for each incremented DIM threshold, 
first with parameter bounds matching those used above 
(unconstrained) and second with the b and b0 param-
eter constrained to the mean ± 1.0 SD for all lactations 
in the revised data set (n = 365) when all DIM were fit-
ted, and the c parameter constrained to the mean ± 1.5 
SD after removal of outliers (c > 0.006): 1 × 10−8 ≤ b 
≤ 0.10924; 0.01725 ≤ b0 ≤ 0.08723; and 0.00087 ≤ c ≤ 
0.00449. These thresholds were determined from visual 
inspection of histograms to represent the range of most 
meaningful values (Supplemental Figure S2, https://
doi.org/10.5683/SP3/4QVI0O; Innes et al., 2023).

To account for uncertainty in prediction, the prob-
ability (Prob) that MY at d 305 would be above a 
certain target X305 (kg/d) for each incrementally fitted 
lactation curve was estimated from a cumulative one-
tailed t-distribution (TDIST) with n − 4 degrees of 
freedom to account for the 4 parameters of the Dijkstra 
model:

Prob     TDIST  n
pred

P X
X P

305 305
305 3051 4≥( ) = −
−

−










s
, ,,

where P305 is the predicted MY at d 305. The standard 
deviation of the prediction, spred, was estimated as RM-
SPE (kg/d) adjusted by n − 4 instead of n.

RESULTS

Extended Lactations Grouped by Parity

The Wood, Wilmink, and Dijkstra models were fitted 
to each individual lactation and then summarized by 
parity (primiparous or multiparous). The primiparous 
lactations had observed mean daily MY of 27.3 kg/d 
and total 305-d MY of 8,477 kg compared with 31.3 
kg/d and 10,060 kg, respectively, for multiparous lac-
tations, but both groups had similar mean lactation 
lengths of 367 and 371 d, respectively, and MY at d 305 
of 22.3 and 21.7 kg/d, respectively.

The rise to PY is represented by parameters a, b, 
and b0 in the fitted models, whereas the c param-
eter represents the declining phase of the lactation. 
The Wood, Wilmink, and Dijkstra models had mean 
MY scaling parameters, a, that were 23, 41, and 31% 
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lower, respectively, in the primiparous compared with 
the multiparous lactations (Table 3). Similarly, initial 
rates of mammary cell proliferation, represented by 
parameter b, were 8, 52, and 27% lower, respectively. 
The mean decay parameter, b0, was higher in the 
primiparous lactations compared with multiparous 
lactations in the Dijkstra model but was lower in 
the primiparous lactations in the Wilmink model. 
The Wood, Wilmink, and Dijkstra models had mean 
declining phase parameters, c, that were 32, 63, and 
41% lower, respectively, in the primiparous compared 
with the multiparous lactations. The lower mean a, 
b, and c parameters in the primiparous lactations are 
consistent with their lower PY, longer PT, and higher 
persistency compared with multiparous lactations, 
from fits to all 3 models (Table 3). The mean esti-
mated PY was consistently between 22 and 23% lower 
in primiparous lactations across all models.

The CCC was lower from primiparous lactations com-
pared with multiparous lactations (P ≤ 0.05), largely 
due to poorer correlation (r) between predicted and 
observed values, which is a measure of model precision. 
Despite this, the mean overall residual error, estimated 
by RMSPE and MAE and expressed as a percentage 
of observed MY, were lower for primiparous lactations 
(P ≤ 0.05). Plots of the individual fits with the lowest 
(Figure 1a) and highest (Figure 1b) mean MAE show 
how CCC could be lower in lactations with perturba-
tions (e.g., 752_4 in Figure 1b) but also higher when 
MAE was also high (e.g., 884_2 in Figure 1b).

Extended Lactations Grouped by Lactation Length

The extended lactation fits by the Wood, Wilmink, 
and Dijkstra models were also summarized by lacta-
tion length: 305 to 399 DIM (shorter group, S; n = 
367), and ≥400 DIM (longer group, L; n = 100). The 
group S lactations had an observed mean lactation 
length of 346 d, MY at d 305 of 20.5 kg/d, and total 
305-d MY of 9,401 kg compared with 457 d, 26.8 kg/d, 
and 10,166 kg, respectively, for group L lactations. 
The 2 groups had similar mean daily MY of 30.1 and 
30.0 kg/d, respectively. The a, b, and c parameters of 
group S in the Wood model were distinct from group 
L, whereas none of the parameters were different 
between group S and group L for the Wilmink and 
Dijkstra models (Table 4). Mean PY was not different 
between groups, but persistency was higher in group L 
for all models. The CCC indicated a poorer fit by the 
Wood model in group S, but there were no differences 
in MAE, RMSPE, and DW between groups for all 
models (Table 4).

Analysis of Residuals

The DW statistics (Tables 3 and 4) indicate that all 
fits contained strong positive autocorrelation among 
residuals. The mean daily residuals from all groups 
and all models exhibited a consistent cyclic pattern, 
oscillating between negative and positive values 
throughout the lactation cycle, indicating stages of 
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Table 3. Mean parameters and statistics of fits of Wood, Wilmink, and Dijkstra models to individual lactation 
curves >305 d in length of primiparous (PP; n = 146) and multiparous (MP; n = 321) cows1

Item

Wood

 

Wilmink

 

Dijkstra

PP MP PP MP PP MP

a 15.8a 20.4b 37.4a 63.0b 19.3a 28.1b

b 0.23a 0.25b 18.7a 38.7b 0.11a 0.15b

b0   0.040a 0.049b 0.047a 0.039b

c 0.0030a 0.0044b 0.032a 0.087b 0.071a 0.120b

Peak yield (kg/d) 32.6a 42.4b 32.7a 42.1b 33.0a 42.4b

Time to peak (d) 76.0a 57.1b 75.9a 57.6b 74.6a 61.3b

Persistency (kg/d per day) −0.044a −0.080b −0.051a −0.088b −0.047a −0.083b

MAE (%)       
 Mean 6.39a 7.16b 5.71a 6.22b 6.00a 6.77b

 SD 1.58 1.75 1.18 1.31 1.34 1.56
RMSPE (%)       
 Mean 8.11a 9.10b 7.35a 7.99b 7.68a 8.63b

 SD 2.02 2.18 1.58 1.70 1.75 1.93
CCC 0.85a 0.93b 0.88a 0.95b 0.86a 0.94b

 r 0.86a 0.93b 0.88a 0.95b 0.88a 0.94b

 Cb 0.98a 1.00b 0.99a 1.00b 0.99a 1.00b

Durbin-Watson 0.68 0.72 0.80a 0.90b 0.75 0.79
a,bDifferent superscripts within a model and row indicate significantly different means (P ≤ 0.05).
1a, b, b0, and c = model parameters; MAE = mean absolute error (% of mean observed milk yield); RMSPE = 
square root of mean square prediction error (% of mean observed milk yield); CCC = concordance correlation 
coefficient; r = Pearson correlation coefficient (precision); Cb = bias correction factor (accuracy).
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Figure 1. The (a) 6 best and (b) 6 worst individual lactations based on the mean of mean absolute error (MAE) values for the fitted Dijkstra, 
Wilmink, and Wood models. Subplot titles are in the format “ID_parity” (e.g., 839_3 is cow 839 in her third lactation). The MAE (% of observed 
mean milk yield) and concordance correlation coefficient (CCC) for each model is displayed for each lactation. Lower values of MAE and higher 
values of CCC indicate a better goodness-of-fit.
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lactation when milk production was over- and under-
predicted (Figure 2). Notably, the residuals in late 
lactation (>~200 DIM) from the Wilmink model fits 
were closer to 0 than those from the other 2 models. 
All 3 models produced similar patterns that were 
repeated across parity and lactation-length groups ex-
cept for at the very start of lactation, where the Wood 
residuals were positive (but declining), indicating 
underestimation of MY, and Wilmink and Dijkstra 
were negative, indicating overestimation of MY. After 
this, the residuals rapidly increased and became posi-
tive, indicating that MY was underestimated as cows 
approached PY. After PY was reached, the residuals 
declined and increased again, tending to be negative 
between 80 and 200 DIM and positive between 200 
and 300 DIM. This repeated oscillation between posi-
tive and negative errors throughout the groups indi-
cates that these models cannot capture all the local 
features of a lactation curve. The increased variability 
between days toward the end of the longer lactations 
can be attributed to the fewer number of lactations 
represented in each average point (Supplemental Fig-
ure S3, https://doi.org/10.5683/SP3/4QVI0O; Innes 
et al., 2023). However, it appears that the majority 
of residuals at the immediate ends of the lactation 
tend to be negative, indicating an overprediction of 
milk production from the models at this time. This 
is consistent with some of the lactations in Figure 1b 
that had a very fast decline in MY at the end.

Relationship Between Early-Lactation Information 
and Predictions of MY at Day 305

Overall, the goodness-of-fit statistics between the 
models were numerically and practically similar in 
Table 3 and 4. However, the Dijkstra model was se-
lected for the forecasting analysis because it allowed 
for a mechanistic interpretation of its parameters and 
an initial comparison of forecasting 305-d MY with 
each model found that the 305-d MAE (%) and 305-d 
CCC were superior for the Dijkstra model when us-
ing 30- and 60-DIM thresholds (Supplemental Figure 
S2). When the parameters of the Dijkstra model were 
unconstrained, the predicted MY at d 305 was biologi-
cally realistic when the DIM threshold was ≥60 DIM 
(Table 5). However, the large values for mean b and 
c parameters (Supplemental Table S1, https://doi.
org/10.5683/SP3/4QVI0O; Innes et al., 2023), as well 
as time to PY and forecasted persistency, indicated 
considerable error in the predictions, whereas these val-
ues were much closer to biologically realistic values for 
all DIM thresholds when the parameters of the model 
were constrained (Table 5). The predicted MY at d 305 
was compared with observed using RMSPE, MAE, and 
CCC, which were all better for the constrained model 
when DIM threshold was ≤150.

The distribution of the observed MY at d 305 of the 
extended lactation data used for the incremental fit 
analysis is represented by the blue violin plots in Fig-
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Table 4. Mean parameters and statistics of fits of Wood, Wilmink, and Dijkstra models to individual lactation 
curves with a length of 305 to 399 d (group S; n = 367) and ≥400 d (group L; n = 100)1

Item

Wood

 

Wilmink

 

Dijkstra

<399 d ≥400 d <399 d ≥400 d <399 d ≥400 d

a 18.5a 20.8b 57.7 44.9 25.2 25.7
b 0.25a 0.22b 35.2 22.4 0.15 0.12
b0   0.046 0.048 0.041 0.044
c 0.0042a 0.0032b 0.073 0.056 0.113 0.076
Peak yield (kg/d) 39.0 40.3 38.9 39.8 39.2 40.6
Time to peak (d) 61.9a 67.2b 59.6 81.2 65.2 66.6
Persistency (kg/d per day) −0.071a −0.059b −0.080a −0.062b −0.075a −0.060b

MAE (%)       
 Mean 6.90 7.00 6.01 6.25 6.49 6.68
 SD 1.79 1.52 1.30 1.24 1.57 1.41
RMSPE (%)       
 Mean 8.77 8.88 7.73 8.02 8.29 8.51
 SD 2.26 1.84 1.72 1.54 1.98 1.70
CCC 0.90a 0.92b 0.92 0.93 0.91 0.92
 r 0.91a 0.92b 0.93 0.94 0.92 0.93
 Cb 0.99a 0.99b 0.99 1.00 0.99 0.99
Durbin-Watson 0.72 0.68 0.88 0.82 0.79 0.73
a,bDifferent superscripts within a model and row indicate significantly different means (P ≤ 0.05).
1a, b, b0, and c = model parameters; MAE = mean absolute error (% of mean observed milk yield); RMSPE = 
square root of mean square prediction error (% of mean observed milk yield); CCC = concordance correlation 
coefficient; r = Pearson correlation coefficient (precision); Cb = bias correction factor (accuracy).

https://doi.org/10.5683/SP3/4QVI0O
https://doi.org/10.5683/SP3/4QVI0O
https://doi.org/10.5683/SP3/4QVI0O
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Figure 2. Mean daily residuals (observed milk yield [MY] minus predicted MY; kg/d) from individual lactation curves fitted by the Dijkstra, 
Wood, and Wilmink models and grouped by (a) parity: primiparous (n = 146) and multiparous lactations (n = 321); or (b) lactation length: 
group S (305 to 399 DIM; n = 367) and group L (≥400 DIM; n = 100).
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ures 3a and 3b. When compared with the incremental 
fits using only i number of days of data (orange violin 
plots), a clear, progressive improvement was revealed 
in the predicted values toward a tighter dispersion as 
i increased for both the unconstrained (Figure 3a) and 
the constrained fits (Figure 3b). The predicted MY at 
200-, 250-, and 300-DIM thresholds also had a tighter 
dispersion than the observed MY, which reflects the 
inability of the models to account for all of the varia-
tion in the observed MY even when sufficient data are 
available. When the parameters were not constrained, 
the 30-, 60-, and 90-DIM thresholds exhibited a high 
density of predicted MY at d 305 at or around 0 kg/d, 
as well as some very high predicted MY (Figure 3a). 
These outliers arose because, when the Dijkstra model 
was unable to fit the data well, it could decrease to 0 
kg/d very quickly or increase rapidly without achieving 
a meaningful PY, as observed in the example lactations 
in Figure 4a. In total, 117 (32%), 138 (38%), 46 (13%), 
8 (2%), and 2 (1%) predicted MY at d 305 were less 
than 1 kg/d from 30, 60, 90, 120, and 150 d of data, 
respectively, whereas the fits from 200, 250, and 300 d 
of data had none. In contrast, no predicted MY at d 
305 were less than 1 kg/d when the parameters were 
constrained, and distributions of predictions were simi-
lar to those observed when using 90 d of data or more 
(Figure 3b).

To further assess the relationship between early-
lactation information and MY at d 305, the constrained 
Dijkstra model was re-fitted using data incremented 
by 5 d from 30 to 305 DIM. The 305-d MAE (%) had 

a steep improvement between 30 and 65 d, followed 
by a more gradual, approximately linear improvement 
until 305 d (Figure 5a), whereas 305-d CCC had a 
clear improvement between 60 and 65 d followed by 
an approximately linear improvement until 305 d 
(Figure 5b). Although MY at d 305 was the observa-
tion of interest used to calculate goodness-of-fit in the 
incremental analysis (Table 5), the mean fitted MY 
curves up to 305 d appeared to improve with increasing 
data availability for the unconstrained (Figure 6a) and 
constrained models (Figure 6b). For the unconstrained 
model, the predicted curve increased off the chart when 
only up to 30 d were used (Figure 6a), which was also 
noted in the individual lactation examples (Figure 4a), 
whereas the constrained model predictions were more 
realistic (Figure 4b and 5b).

Probability of Day-305 Predictions  
Exceeding Targets

In addition to the 305-d goodness-of-fit statistics 
(Table 5) and distributions (Figure 3), the probability 
that MY at d 305 is greater than or equal to a tar-
get MY is a useful way to consider the risk associated 
with selecting cows in early lactation for an extended 
lactation strategy. Target MY of 15, 20, and 25 kg/d 
were selected to represent a useful range of MY at d 
305, and different levels of risk were represented by 
a probability of 0.50, 0.75, or 0.95 (Table 6). The 
proportions of lactations with observed MY at d 305 
greater than or equal to 15, 20, or 25 kg/d were 88, 62, 
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Table 5. Mean statistics of fits of Dijkstra model to individual lactation curves (n = 365) with data from 1 to i DIM, where i is the DIM 
threshold with either unconstrained or constrained parameters1

Item2

DIM threshold

30 60 90 120 150 200 250 300

Unconstrained parameter
 Peak yield (kg/d) 8.3 × 10+51 41.2 40.5 40.2 40.0 39.8 39.7 39.6
 Time to peak (d) 3.02 × 10+8 4.58 × 10+7 4.43 × 10+6 62.8 59.0 54.3 53.5 55.1
 Persistency (kg/d per d) 2.70 × 10+47 −0.107 −0.094 −0.083 −0.076 −0.067 −0.063 −0.066
 305-d mean predicted MY (kg/d) 444 20.6 17.2 19.4 21.0 23.0 23.7 23.2
 305-d RMSPE (%) 7,350 258 65.7 42.9 34.3 24.9 19.6 13.9
 305-d MAE (%) 1,990 103 52.0 33.2 25.8 19.1 14.9 10.2
 305-d CCC 0.0003 0.002 0.12 0.25 0.34 0.56 0.71 0.86
Constrained parameter
 Peak yield (kg/d) 47.5 41.0 40.2 40.1 40.0 39.8 39.6 39.6
 Time to peak (d) 89.2 61.1 55.4 54.8 54.5 54.2 54.3 55.4
 Persistency (kg/d per day) −0.059 −0.080 −0.080 −0.077 −0.073 −0.066 −0.064 −0.065
 305-d mean predicted MY (kg/d) 33.7 20.9 20.1 20.7 21.5 23.1 23.6 23.3
 305-d RMSPE (%) 114 51.1 38.3 32.3 28.7 23.6 19.6 14.4
 305-d MAE (%) 84.8 40.8 31.2 25.5 22.3 18.3 14.8 10.6
 305-d CCC 0.03 0.04 0.22 0.33 0.42 0.58 0.71 0.84
1The b, b0, and c parameters were either unconstrained or constrained as follows: 1 × 10−8 ≤ b ≤ 0.10924; 0.01725 ≤ b0 ≤ 0.08723; and 0.00087 
≤ c ≤ 0.00449.
2The 305-d concordance correlation coefficient (CCC), mean absolute error (MAE), and square root of mean square prediction error (RMSPE) 
compare the observed milk yield (MY) at d 305 and predicted MY at d 305 (both as the mean daily MY from 303 to 307 DIM), with the MAE 
and RMSPE expressed as a percentage of the mean observed MY at d 305 (22.0 kg/d).
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Figure 3. Distribution of predictions of milk yield at d 305 compared with the observed milk yield at d 305 (blue) after fitting the Dijkstra 
model to lactations with up to i DIM (where i is the DIM threshold; orange) and with either (a) unconstrained or (b) constrained parameters. 
Frequency of points at a given milk yield at d 305 (kg/d) is represented by the width of the violin plot line. The individual data points are also 
plotted but are partially transparent and randomly spread to a fixed width to help interpret density. Scale of y-axis limited to 120 kg/d, exclud-
ing 82 points in panel a, ranging from 121 to 15,751 kg/d, due to poor model fit. The b, b0, and c parameters of the Dijkstra model were either 
unconstrained or constrained as follows: 1 × 10−8 ≤ b ≤ 0.10924; 0.01725 ≤ b0 ≤ 0.08723; and 0.00087 ≤ c ≤ 0.00449.
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and 30%, respectively (Table 6). Within each target 
level, the proportion of lactations with a probability 
of predicted MY at d 305 greater than or equal to the 
target generally decreased as the probability threshold 

increased from 0.50 to 0.95 but increased with data 
availability from 90 to 300 DIM (Table 6). However, 
these predicted proportions are not directly comparable 
to the observed proportions, as the individual lacta-
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Figure 4. Four individual lactations with predicted milk yield lines from fitting the Dijkstra model with up to i DIM (where i is the DIM 
threshold) and with (a) unconstrained or (b) constrained parameters. Lactations were selected to represent different ways the Dijkstra model 
can respond when only 30 d of data are fitted. Subplot titles are in the format “ID_parity”; e.g., 516_10 is cow 516 in her 10th lactation. The b, 
b0, and c parameters of the Dijkstra model were either unconstrained or constrained as follows: 1 × 10−8 ≤ b ≤ 0.10924; 0.01725 ≤ b0 ≤ 0.08723; 
and 0.00087 ≤ c ≤ 0.00449. 
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tions with a predicted MY at d 305 greater than or 
equal to target may have had an observed MY at d 305 
less than target. Therefore, an accuracy was calculated 
as the proportion of all lactations that were correctly 
predicted; that is, when predicted and observed were 
both greater than or equal to target or both less than 
target. Overall, accuracy improved with increasing data 
availability from 90 to 300 DIM, and these were highest 
for the 15 kg/d target (Table 6). However, at a prob-
ability threshold of 0.95 we found higher accuracy in 
the 25 kg/d target compared with the 15 kg/d target at 
90 and 120 DIM data availability. At a risk level of 0.95 
with 90 d of data and a 15 kg/d target, we detected a 
50.1% accuracy, indicating only half of the lactations 
were correctly characterized as above or below the 15 
kg/d target, whereas this accuracy was 65.8% for the 
25 kg/d target.

DISCUSSION

Comparison of Models

Three traditional lactation models (Wood, Wilmink, 
and Dijkstra) were fitted to extended lactation data 
from high-producing Holstein-Friesian cows in the 
Netherlands. On average, each model showed a lower 
mean residual error in the primiparous lactations than 
in the multiparous lactations, but a poorer quality of fit 
(CCC) in the primiparous lactations. Overall, the mean 
MAE ranged from 5.7 to 6.4% (1.56–1.75 kg/d) of the 
mean daily MY for primiparous lactations, and 6.2 to 
7.2% (1.95–2.24 kg/d) for multiparous lactations. The 
mean residuals showed a cyclic pattern, indicating the 
models overestimated MY between 80 and 200 DIM 

and underestimated MY between 200 and 300 DIM. A 
similar pattern was also observed by Dematawewa et 
al. (2007) when fitting various models to an extended 
lactation data set, including the Wood, Wilmink, and 
Dijkstra models. Some of the Wilmink and Dijkstra 
fits did not converge, but their data are still included 
in Tables 3 and 4 to avoid bias in evaluating model 
performance. For example, the mean c parameter of the 
Dijkstra model appears higher than previously reported 
(Dijkstra et al., 2010), which can be attributed to large 
outliers from fits that did not converge (Supplemental 
Figure S2).

Parity

Lactation yields in primiparous cows are normally 
lower than in multiparous cows. Lactation models per-
taining to primiparous cows also exhibit a flatter, more 
persistent curve with lower PY across various breeds 
(Wood, 1969; Cole et al., 2009; Dijkstra et al., 2010). 
Likewise, primiparous cows had a total 305-d MY that 
was 15.7% lower than for multiparous cows (8,477 vs. 
10,060 kg) in the current analysis. Primiparous cows 
also showed lower PY, longer PT, and higher persis-
tency, which is consistent with the flatter shape of the 
mean daily observed MY curves (Supplemental Figure 
S3). In addition, the a parameter of primiparous lacta-
tions was significantly lower than for the multiparous 
lactations in all 3 models. Although the Dijkstra model 
is the only mechanistic model of the 3, the a parameter 
from each model is still relatable to the scale of initial 
MY, indicating that primiparous cows had a lower ini-
tial MY at the beginning of their lactations.

The Wilmink model had numerically lower RMSPE 
and MAE and higher CCC compared with the Dijkstra 
and Wood models in both the primiparous and multipa-
rous groups (Table 3); however, these mean values rep-
resent a broad range of lactation curves. The lactations 
with the lowest mean MAE (Figure 1a) showed model 
predictions that were almost identical, but lactations 
with the highest mean MAE had greater day-to-day 
variability and differences between the predictions from 
the 3 models (Figure 1b). Therefore, this poses a ques-
tion when highly variable lactation data are used to fit 
a lactation model, as is common in on-farm data: is the 
most useful model the one that is forced to look like a 
typical lactation curve or one that best minimizes the 
RSS? To use lactations 722_2 and 839_3 in Figure 1b 
as examples, the Wood model, with only 3 parameters, 
remains in a similar shape regardless of the variability 
in the data, whereas the Wilmink model, with 4 pa-
rameters, has the flexibility to better minimize RSS in 
later lactation at the expense of not showing a typical 
PY. The Dijkstra model may be a useful intermediate, 
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Figure 5. The (a) 305-d mean absolute error (MAE; %) and (b) 
305-d concordance correlation coefficient (CCC) after fitting the 
Dijkstra model to individual lactations (n = 365) with up to i DIM 
(where i is the DIM threshold incremented by 5 d from 30 to 305 
DIM). The MAE and CCC compare the observed milk yield (MY) at 
d 305 and predicted MY at d 305 (both as the mean daily MY from 
303 to 307 DIM), with the MAE expressed as a percentage of the mean 
observed MY at d 305 (22.0 kg/d).
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showing aspects of both models with the added benefit 
that it is a mechanistic model based on secretory cell 
dynamics.

An interesting problem also exists for lactation 
curves with multiple peaks, such as in lactation 839_3 
in Figure 1b. The Dijkstra model appears to fit a PY 
between the 2 peaks, whereas the Wood model fits the 
PY on the first peak and the Wilmink model has the 
highest MY at the first day of lactation. In this case 
the Wilmink model may show a better prediction at 

d 305, but it is unlikely that this would be accurately 
forecasted when using only early-lactation data. Mul-
tiple peaks in lactation curves are particularly relevant 
when modeling extended lactations in grazing systems 
where seasonal changes in diet quality can cause a sec-
ond peak, as in New Zealand (Kolver et al., 2007) and 
Ireland (Butler et al., 2010). Lactation curves are also 
influenced by clinical and subclinical health events. It 
was recently found that only 1% of more than 50,000 
lactations had 0 perturbations, defined as 5 d of nega-
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Figure 6. Mean predicted milk yield after fitting the Dijkstra model to lactations with up to i DIM (where i is the DIM threshold) and with 
either (a) unconstrained or (b) constrained parameters. The y-axis is constrained to show 0 to 60 kg/d, focusing on the lactation curve but hid-
ing the very high predicted values for the 30-DIM predictions. The b, b0, and c parameters of the Dijkstra model were constrained as follows: 1 
× 10−8 ≤ b ≤ 0.10924; 0.01725 ≤ b0 ≤ 0.08723; and 0.00087 ≤ c ≤ 0.00449.
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tive residuals with at least 1 d where the daily MY is 
below 80% of the unperturbed fitted lactation model 
following Wood’s model (Adriaens et al., 2021). The 
authors chose these thresholds to identify health events 
such as mastitis during a lactation, but not day-to-
day errors due to equipment or estrus. In the context 
of forecasting extended lactations, these perturba-
tions will almost always occur, and it is important to 
quantify them, but forecasting them would rely on 
stochastic rather than deterministic models. Therefore, 
this risk factor must be incorporated into the decision 
process when attempting to select cows best suited for 
extended lactation. Moreover, in addition to forecasted 
milk production, other variables related to physiologi-
cal stage, including BCS and nonesterified fatty acid 
and insulin-like growth factor 1 blood levels, may help 
to select the most suitable cows (Sehested et al., 2019).

Lactation Length

The Wood model had a lower mean a parameter and 
higher mean b and c parameters in group S (<399 d) 
compared with group L (≥400 d; Table 4). The a and b 

parameters can be related to the initial rate of increase 
and decay, respectively, of the lactation curve, and the 
c parameter can be related to the rate of decline of 
the lactation curve. Therefore, these differences in pa-
rameters for the Wood model are consistent with the 
shorter PT (higher b parameter) and lower persistency 
(higher c parameter) in group S (Table 4). The addi-
tional parameters in the Wilmink and Dijkstra models 
are likely responsible for the greater variability between 
individual fits and, therefore, a lack of statistical differ-
ence between mean parameters, despite both showing 
greater persistency in group L (Table 4). Overall, the 
persistency values are consistent with data from the 
Netherlands (Burgers et al., 2021a), where cows that 
were assigned to a 200-d VWP had better persistency 
than cows assigned to a 50-d VWP (−0.05 vs. −0.07 
kg/d per day). However, the extended VWP of the 
cows in the current analyses were not due to intentional 
management decisions.

Forecasting Milk Yield at Day 305

Forecasting daily MY at d 305 is an important first 
step in developing a decision support tool for dairy pro-
ducers. To be most useful, this forecasting should use 
MY data available during the VWP. However, in our 
attempt using unconstrained parameters, meaningful 
predictions of MY at d 305 using the Dijkstra equation 
were not possible until at least 120 d of data were fit-
ted. Large variation in the predictions occurred when 
<120 d of data were available to the model (Figure 3a), 
despite the realistic mean predicted MY values at d 305 
for the 60- and 90-DIM thresholds (Table 5). However, 
these values were improved when the parameters of the 
Dijkstra model were constrained, and the similarities in 
values (Table 5) and distributions (Figure 3b) from 90 
to 300 d of data availability suggests that using 90 d of 
data to forecast MY at d 305 has potential to be useful. 
A machine learning model that used the parameters 
from various lactation models fitted to the first 90, 120, 
or 150 d of daily MY data of cows was able to correctly 
classify lactations as having a MY at d 305 <20 kg/d 
or >32 kg/d; however, no indication of the variation in 
the lactation model parameters was reported, and the 
reported errors of the predictions did not represent all 
possible errors that could occur (Manca et al., 2020). 
We also observed that when the Dijkstra model was 
fitted every 5 d, the 305-d MAE and CCC improved 
approximately linearly with increasing data availability 
from 65 d of data onward (Figure 5). This suggests 
that the largest improvements in the model could be 
achieved with 65 d of data; however, further refinements 
to the model would be required to improve the highly 
variable prediction of MY at d 305 for this threshold.
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Table 6. Proportion (%) of individual lactation curves (n = 365) with 
an observed or predicted milk yield at d 305 greater than or equal to 
a target of 15, 20, or 25 kg/d at different probabilities (prob) and with 
accuracy1 of predictions

Item

DIM threshold2

90 120 200 300

Target = 15 kg/d     
 Observed 88.2 88.2 88.2 88.2
 Predicted with prob >0.50 73.4 84.1 97.0 97.3
  Accuracy 69.3 79.5 89.6 90.4
 Predicted with prob >0.75 61.6 72.3 91.2 93.2
  Accuracy 61.4 72.1 87.7 92.3
 Predicted with prob >0.95 46.6 56.2 80.8 84.9
  Accuracy 50.1 59.7 80.5 92.3
Target = 20 kg/d     
 Observed 61.6 61.6 61.6 61.6
 Predicted with prob >0.50 38.9 47.1 70.4 74.2
  Accuracy 54.8 59.2 71.0 83.0
 Predicted with prob >0.75 32.9 40.3 59.5 61.6
  Accuracy 52.6 56.2 69.9 83.6
 Predicted with prob >0.95 31.0 31.0 45.5 45.5
  Accuracy 51.2 52.9 67.4 78.9
Target = 25 kg/d     
 Observed 30.1 30.1 30.1 30.1
 Predicted with prob >0.50 23.6 24.1 35.3 34.5
  Accuracy 66.0 69.9 74.0 85.8
 Predicted with prob >0.75 20.3 18.9 24.7 23.3
  Accuracy 65.5 70.1 76.4 87.7
 Predicted with prob >0.95 16.7 14.0 14.5 12.3
  Accuracy 65.8 70.7 76.2 81.6
1Accuracy is percentage of predictions that were correct.
2Data from 1 to i DIM, where i is the DIM threshold, fitted by the 
Dijkstra model with the b, b0, and c parameters constrained as follows: 
1 × 10−8 ≤ b ≤ 0.10924; 0.01725 ≤ b0 ≤ 0.08723; and 0.00087 ≤ c ≤ 
0.00449. 
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Despite the overall improvement in mean parameters 
(Supplemental Table S1), fit statistics (Table 5), and 
fitted values (Figure 6b) using a constrained Dijkstra 
model, it is difficult to estimate the likelihood that a 
prediction for MY at d 305 for an individual lactation 
is correct when only early-lactation data are available. 
Here we calculated RMSPE and MAE for the MY at 
d 305, but these calculations rely on knowing the real 
observed values, which are unknown when forecasting. 
Instead, if we were to calculate RMSPE or MAE using 
only the data available—for example, 90 d of data—
then the residual error embedded in the first 90 d is 
not a realistic estimate of the expected residual error 
at d 305. Likewise, the SD within the first i DIM is not 
a meaningful estimate of the expected SD at d 305. 
Therefore, calculating a prediction interval for the esti-
mated MY at d 305 without knowing the true SD of the 
predictions may not be an appropriate representation 
of the likelihood that the forecasted values are correct. 
Instead, we have attempted to estimate the probability 
that predicted values were above a target value (kg/d) 
using a Student’s t-distribution calculated with an ad-
justed RMSPE of the available data as the estimate 
of the SD (Table 6). Although this still has the same 
problems with the unknown forecasted SD, it allows 
an accuracy to be estimated for different levels of risk 
(probability threshold of 0.50, 0.75, or 0.95) at differ-
ent target MY (15, 20, or 25 kg/d). For example, if a 
producer wanted to select cows that would have a high 
probability (>0.95) of producing over 25 kg of milk on 
d 305, the current model would correctly classify about 
66% of all lactations if only 90 d of data were fitted, 
but this increases to 76% if 200 d of data were used. In 
other words, 30% of lactations had an observed MY at 
d 305 ≥25 kg, but 34% of lactations were also incor-
rectly classified as being under or over this threshold 
when predicted using 90 d of data, suggesting that level 
of accuracy in the current model is unlikely to be suf-
ficient for on-farm management decisions.

Challenges with Forecasting Beyond Day 305

Overall, using early-lactation data to predict late-
lactation MY is not yet reliable enough for practical use 
on-farm due to the high uncertainty of forecasted pre-
dictions. However, our successful attempt to assist the 
model fitting procedure with more biologically relevant 
constraints on parameters in the Dijkstra model (Table 
5) suggests that statistical approaches could further re-
fine parameter bounds for individual herds that could 
improve the reliability of the models. One of the key 
problems for the model when using only 30 or 60 DIM 
of data was that the PY and start of the descending 
phase of the lactation were not always included within 

that period. The PY in the Dijkstra model is calculated 
from PT which is a function of the b, b0, and c param-
eters. Therefore, it might be possible to improve model 
predictions if reasonable estimates of these parameters 
could be derived from previous data on either the indi-
vidual or the herd, although the repeatability of these 
parameters between consecutive lactations within a 
cow is not known. This approach is also challenging for 
primiparous cows with no prior lactation data, but a re-
cent machine learning approach to estimating MY from 
the MY of dams and paternal siblings of primiparous 
cows in a herd appears promising (Zhang et al., 2022). 
Machine learning models have also been used to forecast 
MY at a herd level (Murphy et al., 2014) and individual 
cow level (Liseune et al., 2021), but these do not allow 
for biologically relevant interpretation of model param-
eters and have goodness-of-fit values similar to those 
of the current analysis. In addition, the parameters of 
the Wood model for conventional lactations have been 
associated with temporal, geographic, and management 
factors using a mixed effects model approach (Li et 
al., 2022). Those authors also described a difference 
in second-lactation cows compared with third-lactation 
cows, which means actual parity number may make 
an important contribution to parameter estimation. 
Assessing the contribution of these other factors to 
the variance of forecasted parameters should also be 
included in future developments. These other factors 
could also be incorporated into a nonlinear mixed ef-
fects model of the herd’s data while also incorporating 
the individual cow variation. For example, including 
the random effect of cow improved fits by 3 (Wood, 
Milkbot, and diphasic) nonlinear lactation models 
(Piccardi et al., 2017). However, these statistical ap-
proaches of predicting future MY still require training 
with sufficient historical data. Overall, we envisage that 
the hybridization of machine learning and mechanistic 
models, where a machine learning prediction frame-
work may be augmented by parameters generated by 
a mechanistic model, or where biological bounds may 
be placed on parameters within a mechanistic model 
prediction framework with the mechanistic model for 
individual cows being parameterized using data driven 
methodology (Ellis et al., 2020), has the most potential 
for forecasting late-lactation MY.

An additional concern is that some of the lactations 
in the current analysis had a very fast decline in MY to-
ward dry off, most noticeably in the worst-fitting mod-
els (Figure 1b). This phenomenon was also observed in 
test-day records of extended lactations in Polish cows, 
where Otwinowska-Mindur et al. (2021) fitted a Wilm-
ink function to data from 0 to 305 DIM and a linear 
or squared function to the data >305 DIM to account 
for the faster decline in MY. Although this technique 
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may improve overall goodness-of-fit of historical data, 
it serves little use in forecasting the likelihood of a 
faster decline in MY at the end of a lactation. Future 
work will need to incorporate a correction for cows that 
may dry off more abruptly than others. Ideally, a bio-
logical mechanism explaining this phenomenon should 
be incorporated into an updated mechanistic model 
unique to extended lactations. Finally, modeling milk 
composition during extended lactations should also be 
incorporated into a decision support system, as the 
changes in composition of milk fat, protein, and lactose 
may have economic implications in the context of the 
whole-herd production.

CONCLUSIONS

The Wood, Wilmink, and Dijkstra models were fit-
ted to individual extended lactations with similar mean 
goodness-of-fit statistics, but the Dijkstra model was 
preferred because it is mechanistic and flexible enough 
to fit various lactation curve shapes that are typical 
on-farm. The differences in lactation characteristics 
and model parameters between parity groups were 
consistent with previous literature. When forecasting 
using early-lactation data, the Dijkstra model with 
parameters constrained within biologically relevant 
bounds improved the goodness-of-fit and predictions of 
MY at d 305 compared with an unconstrained model. 
Using 90 d of data, the model correctly classified 66% 
of lactations as being above or below a target MY at d 
305 of 25 kg, with a probability threshold of 0.95. The 
proportion of correct classifications became smaller at 
lower target MY at d-305 levels and became greater 
when using more lactation days. Overall, further work 
is required to develop a model that can forecast late-
lactation MY with sufficient accuracy for practical use. 
We envisage that a hybridized machine learning and 
mechanistic model that incorporates additional histori-
cal and genetic information with early-lactation MY 
could produce meaningful lactation curve forecasts.
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