TABLE OF CONTENTS

Day 1: 04 November 2015

S 01: M	S 01: Micro Grid and Distributed Generation Management in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 01.1	Multi Criteria Decision Analysis for Optimum DG Placement in Smart Grids Syed Ali Abbas Kazmi ¹ , Syed Faraz Hasan ² , Dong Ryeol Shin ¹ ¹ Sungkyunkwan University, South Korea ² Massey University, New Zealand	New Zealand	020		
S 01.2	Cooperative Sequential Reconfiguration for Distribution Networks Zhenyu Du, Xiaodong Chu, and Wen Zhang Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), China	China	085		
S 01.3	Scheduling of Virtual Power Plant with High Penetration of Distributed Generation Marie Grace Karthrynn M. Balatbat and Michael Angelo A. Pedrasa	Philippines	179		
S 01.4	University of the Philippines Diliman Coordination Strategies for Distributed Resources as Frequency Containment Reserves Antti Alahäivälä and Matti Lehtonen	Finland	234		
S 01.5	Aalto University, Espoo, Finland Hybrid Quadratic Programming and Compact Formulation Method for Economic Dispatch With Prohibited Operating Zones and Network Losses	China	170		
S 01.6	 Z.L. Wu¹, Q.H. Wu¹, X.X. Zhou², and M.S. Li^{1*} ¹School of Electric Power Engineering South China University of Technology, Guangzhou, China. ²China Electric Power Research Institute State Grid Corporation of China, Beijing, China. Optimal Distributed Generation Allocation using Evolutionary Algorithms in Meshed Network Dhivya Sampath Kumar¹, Han Tianyi¹, Dipti Srinivasan¹, Thomas Reindl², and U.J. Shenoy³ ¹Department of Electrical and Computer Engineering National University of Singapore 	Singapore	221		
S 01.7	 ²Solar Energy Research Institute Singapore National University of Singapore, Singapore ³Department of Electrical Engineering Indian Institute of Science, Bangalore, India Generation Adequacy Assessment Incorporating Equivalent Probabilistic Models of Virtual Power Plants Arijit Bagchi, Lalit Goel, and Peng Wang School of Electrical and Electronic Engineering 	Singapore	233		
S 01.8	Nanyang Technological University, Singapore Decentralized Voltage Control Coordination of On-Load Tap Changer Transformers, Distributed Generation Units and Flexible Loads Aina Romani Dalmau, David Martinez Perez, Iker Diaz de Cerio Mendaza and Jayakrishnan R. Pillai Department of Energy Technology, Aalborg University, Denmark	Denmark	244		

S 02: A	S 02: Artificial Intelligence and Optimization in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 02.1	Stochastic Economic Dispatch Scheme with Distributed Loads using Group Search Optimizer <i>M.S. Li</i> ¹ , <i>Y. Hu</i> ¹ , <i>T.Y Ji</i> ¹ and <i>P.Z. Wu</i> ² ¹ South China University of Technology ² Shenzhen Institute of Advanced Technology	China	069		
\$ 02.2	Application of Swarm Mean-Variance Mapping Optimization on Location and Tuning Damping Controllers Jose Luis Rueda ¹ and Francisco Gonzalez-Longatt ² ¹ Department of Electrical Sustainable Energy Delft University of Technology, Delft, The Netherlands. ² Centre for Renewable Energy Systems Technology (CREST), Loughborough University, UK.	United Kingdom	077		
S 02.3	Heuristics for the Cost-Effective Management of a Temperature Controlled Environment Mohamed Arikiez, Floriana Grasso, and Michele Zito Department of Computer Science University of Liverpool, United Kingdom	United Kingdom	252		
S 02.4	Reference Point Based Non-dominated Sorting Approach for Multi- objective Optimization of Power Flow	China	157		

	Y.N. Kou, J.H. Zheng, M.S. Li, and Q.H. Wu		
	School of Electric Power Engineering		
	South China University of Technology, Guangzhou, China		
S 02.5	Discrete Reactive Power Optimization Considering Safety Margin	China	156
	by Dimensional Q-Learning		
	Xiaoya Shang ¹ , Mengshi Li ¹ , Tianyao Ji ¹ , Q.H. Wu and L.L. Zhang		
	¹ School of Electric Power Engineering		
	South China University of Technology, Guangzhou, 510641, China		
	² Shenzhen Institute of Advanced Technology, Chinese Academy of		
	Sciences, Institute of Biomedical and Health Engineering, Paul C.		
	Lauterbur Research Center for Biomedical Imaging, Shenzhen, China		
S 02.6	Improved Bees Algorithm for Dynamic Economic Dispatch	Thailand	119
	considering Prohibited Operating Zones		
	Mahesh Kumar Sharma, Prakornchai Phonrattanasak and Nopbhorn		
	Leeprechanon		
	Department of Electrical and Computer Engineering		
	Faculty of Engineering, Thammasat University, Thailand		
S 02.7	Particle Swarm Optimization for Demand Side Management in Smart	Singapore	126
	Grid		
	Dipti Srinivasan ¹ , T. Logenthiran ² and Ei Phyu ¹		
	¹ Department of Electrical and Computer Engineering		
	National University of Singapore		
	² School of Electrical and Electronic Engineering		
	Newcastle University, Singapore		
S 02.8	Chaos PSO Algorithm Based Economic Dispatch of Hybrid Power	Vietnam	290
	Systems Including Solar and Wind Energy Sources		
	Duy C. Huynh ¹ and Nirmal Nair ²		
	¹ Electrical and Electronic Engineering Department		
	Ho Chi Minh City University of Technology, Vietnam		
	² Electrical and Computer Engineering Department		
	The University of Auckland, New Zealand		

S 03: Modeling, Integration and Management of Renewable Energy in Smart Grid I			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 03.1	Wind Speed Forecasting using ANN, ARMA and AIC hybrid to Ensure Power Grid Reliability Diksha Sharma, Tek Tjing Lie, Nirmal Kumar C Nair and Brice Valles ¹ Auckland University of Technology, New Zealand ¹ Inland Revenue, New Zealand	New Zealand	005
S 03.2	Voltage Control by using PV Power Factor, Var Controllers and Transformer Tap for Large Scale Photovoltaic Penetration Shunsuke Aida ¹ , Takayuki Ito ¹ , Yuta Mori ¹ , Shinichi Iwamoto ¹ , Shingo Sakaeda ² , and Yukihiro Onoue ² ¹ Department of Electrical Engineering and Bioscience Waseda University Tokyo, Japan ² CHUBU Electric Power Co.,Inc., Nagoya, Japan	Japan	068
S 03.3	Operational Simulation of PV Generation System with Hybrid Batteries Toshikazu Yamamoto ¹ , Xu Yanbin ¹ , Sinya Hashimoto ¹ , Noboru Higuchi ¹ Koichi Nara ¹ , and Hirotaka Yasue ² ¹ Fukushima National College of Technology, Japan ² Hitachi Industry & Control Solutions. Ltd, Japan	Japan	080
S 03.4	Damping Subsynchronous Resonance in Series-Compensated Wind Farms by Adding Notch Filters toDFIG Controllers Huakun Liu ¹ , Xiaorong Xie ¹ , Yu Li ² , Hui Liu ² , and Yinghong Hu ² ¹ Department of Electrical Engineering Tsinghua University, Beijing, China ² North China Electric Power Research Institute, Beijing, China	China	087
S 03.5	Two Stage Stochastic Optimisation of Highly Distributed PV /Battery Microgrids with Grid Connection Mitchell Lennard and Abhijit Date School of Aerospace, Mechanical and Manufacturing RMIT University Melbourne, Australia.	Australia	116
S 03.6	An Accuracy Evaluation of PV Power Output Estimation Method Using Covariance between Solar Radiation Intensity and Power Flow <i>Kuzuhiro Yasunami¹ and Takashi Washio</i> ² ¹ R&D Center, The Kansai Electric Power Co., Inc., Hyogo, Japan ² The Institute of Scientific and Industrial Research Osaka University Osaka, Japan	Japan	215
S 03.7	Aggregate Wind Power Plant Collection Network Modeling – Error Sources and Magnitudes Sanna Uski	Finland	240
S 03.8	VTT Technical Research Centre of Finland Characteristics Evaluation of a μ-Synthesis H _∞ Controller for a Grid- Connected Three-Phase Photovoltaic System	Malaysia	093

M.A. Chowdhury ¹ , M.A. Mahmud ² and A.M.T. Oo ²
¹ Swinburne University of Technology Sarawak Campus, Malaysia
² Deakin University, Waurn Ponds Campus, Australia

	uilding and Home Energy Management in Smart Grid I	Country of	ISGT Asia 2015
Ref. No.	Title, Authors, Affiliation	Origin	reference code
S 04.1	Building HVAC Load Profiling Using Energy Plus Dong Wang, Abhisek Ukil and Ujjal Manandhar	Singapore	053
S 04.2	School of EEE, Nanyang Technological University, Singapore Multi-Stage Scheduling for a Smart Home with Solar PV and Battery Energy Storage – A Case Study Batchu Rajasekhar and Naran Pindoriya	India	079
S 04.3	Electrical Éngineering, Indian Institute of Technology Gandhinagar, India Intelligent Multi-Agent System for Smart Home Energy Management W. Li, T. Logenthiran and W.L. Woo School of Electrical and Electronic Engineering	Singapore	127
S 04.4	Newcastle University, Singapore An Intelligent Lighting Energy Management System for Commercial and Residential Buildings	Thailand	166
S 04.5	Siriporn Bannamas and Peerapol Jirapong Department of Electrical Engineering, Chiang Mai University, Thailand Laboratory Smart Home Energy Management System Ciprian Ionut PAUNESCU, Lucian TOMA, Mircea EREMIA Department of Electrical Power Systems	Romania	176
S 04.6	University POLITEHNICA of Bucharest, Romania Optimization of Energy Expenditure in Smart Homes under Time-of- Use Pricing	South Africa	251
	Omowunmi Mary Longe, Khmaies Ouahada, Suvendi Rimer and Hendrik C. Ferreira Electrical and Electronics Engineering Science University of Johannesburg, South Africa		
S 04.7	Effects of Home Energy Management Systems for Reduction of Renewables Output Curtailment Takashi Himeno and Takashi Ikegami	Japan	339
S 04.8	Graduate School of Bio-Applications and Systems Engineering Tokyo University of Agriculture and Technology, Koganei, Tokyo A High Resolution Model of Residential Internal Heat Gain - The Subtle Interdependencies Among Residential End Uses Merkebu Z. Degefa ¹ , Matti Lehtonen ¹ , Ken Nixon ² , and Malcolm	Finland	239
	<i>McCulloch</i> ³ ¹ Department of Electrical Engineering and Automation Aalto University, Espoo, Finland ² School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg, South Africa ³ Energy and Power Group, Department of Engineering Science University of Oxford, UK		

S 05: Electricity Markets, Incentives, Regulation and Pricing I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 05.1	Real-Time Pricing via Distributed Negotiations between Prosumers	Japan	035	
	in Smart Grids			
	Kazunori Sakurama and Masashi Miura The Graduate School of Engineering, Tottori University, Tottori ,Japan			
S 05.2	Co-benefit and Profit Sharing Model for Operation of Neighboring	China	044	
0 00.2	Industrial PV Prosumers	Offind	0-1-1	
	Jing Zhao ¹ , Nian Liu ¹ , and Jinyong Lei ²			
	¹ School of Electric and Electronic Engineering			
	North China Electric Power University, Beijing, China			
	² Electric Power Research Institute			
S 05.3	China Southern Power Grid, Guangzhou, China Madalling Multi Resource Regulatory Incentives in Expansion	Iran	046	
3 05.5	Modelling Multi-Resource Regulatory Incentives in Expansion Planning Problem	IIdii	040	
	A. Sheikhi Fini ¹ , S. Bahramara ² , M. Parsa Moghaddam ² , and M.K.			
	Sheikh-El-Eslami ²			
	¹ Engineering Faculty, Hormozgan University, Bandar Abbas, Iran			
	² Electrical and Computer Faculty			
0.05.4	Tarbiat Modares University (TMU), Tehran, Iran	Demonstrate	407	
S 05.4	Industrial Consumers' Acceptance to the Smart Grid Solutions: Case Studies from Denmark	Denmark	107	
	Zheng Ma, Bo Nørregaard Jørgensen, and Alla Asmussen			
	Center for Energy Informatics			
	University of Southern Denmark, Odense, Denmark			
S 05.5	A Multi-Scale Energy Demand Model suggests sharing Market	Netherlands	269	

0.05.0	Risks with Intelligent Energy Cooperatives Georgios Methenitis, Michael Kaisers, and Han La Poutré CWI, Amsterdam, Netherlands	Australia	0.44
S 05.6	Strategic Bidding and Transmission Rights Purchase for Generator's Payoff Maximisation	Australia	341
	Harivina Gunnaasankaraan, Keshava Dilwali, Aparna Viswanath and Kaushik Mahata		
	School of Electrical Engineering and Computer Science University of Newcastle, Australia		
S 05.7	Application of Bi-level Programming for Profit Maximization by Transmission Investors	Australia	388
	Harivina Gunnaasankaraan, Aparna Viswanath, and Kaushik Mahata School of Electrical Engineering and Computer Science		
	University of Newcastle, Australia		0.40
S 05.8	A Comparison of Direct Worth And Relative Worth Studies for Outage Cost Estimations in Industry Sectors	Finland	243
	Sinan Küfeoğlu and Matti Lehtonen		
	School of Electrical Engineering, Aalto University, Espoo, Finland		

S 06: In	S 06: Integration and Management of Electric Vehicle in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 06.1	EV Charging Station Design with PV and Energy Storage Using	Australia	018		
	Energy Balance Analysis				
	Md Shariful Islam ¹ , N. Mithulananthan ¹ , Krischonme Bhumkittipich ² , and				
	Arthit Sode-yome ³ ¹ School of Information Technology and Electrical Engineering				
	The University of Queensland, Brisbane, Australia				
	² Department of Electrical Engineering				
	Rajamangala University of Technology Thanyaburi Thailand.				
	³ Power System Control and Operation Division				
	Electricity Generating Authority of Thailand, Bang Krua, Thailand				
S 06.2	Optimal Location and Optimum Charging of Electric Vehicle based	India	050		
	on Sensitivity Indices Sulabh Sachan and Nand Kishor				
	Electrical Engineering Department, MNNIT Allahabad India				
S 06.3	Multi-Party Energy Management for EV Charging Station	China	084		
	Cooperated with PV Systems in Smart Grid	onnia	001		
	Fuqiang Zou, Nian Liu, Qifang Chen				
	School of Electric and Electronic Engineering				
	North China Electric Power University, Beijing, China				
S 06.4	Revenue Valuation of Aggregated Electric Vehicles Participating in	India	245		
	V2G Power Service Prateek Jain, Dilkhush Meena, and Trapti Jain				
	Discipline of Electrical Engineering				
	Indian Institute of Technology Indore, India				
S 06.5	Electric Vehicle Charging Scheduling and Analysis on Impact to	Norway	293		
	Electric Vehicle Owners' Comfort				
	Kornschnok Dittawit and Finn Arve Aagesen				
	Department of Telematics				
0.00.0	Norwegian University of Science and TechnologyTrondheim, Norway	Cinganana	100		
S 06.6	Joint Shaping and Altering the Demand Profile by Residential Plug- in Electric Vehicles for Forward and Spot Markets in Smart Grids	Singapore	138		
	Farshad Rassaei, Wee-Seng Soh and Kee-Chaing Chua				
	Department of Electrical and Computer Engineering				
	National University of Singapore, Singapore				
S 06.7	A Smart Scheduling Strategy for Charging and Discharging of	Singapore	203		
	Electric Vehicles				
	Anurag Sharma, Samson Shih, and Dipti Srinivasan				
	Department of Electrical and Computer Engineering National University of Singapore				
S 06.8	Model Predictive Control of EV Storage Battery with HEMS based on	Japan	350		
	Particle Swarm Optimization	oupun	000		
	Yuto Yoshimura, Tomoaki Kondo, Michihiro Kawanishi, and Tatsuo				
	Narikiyo				
	¹ Department of Advanced Science and Technology				
	Toyota Technology Institute, Aichi, Japan.				
	² Higashi-Fuji Technical Center, Toyota Motor Corporation Aichi, Japan				

S 07: Information, Communication and Metering Technologies in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 07.1	An Optimization Based Method for Topology Error Detection for State Estimation	India	054	

	Neeraj Kumar Sharma and Saikat Chakrabarti Department of Electrical Engineering Indian Institute of Technology Kanpur, India		
S 07.2	Power Grid Fault Detection using an AMR Network	Trinidad and	300
	Patrick Hosein, Stefan Hosein and Sanjay Bahadoorsingh	Tobago	
	Department of Computer Science		
0.07.0	The University of the West Indies St. Augustine, Trinidad and Tobago	0.	100
S 07.3	Hardware-Assisted Malware Detection for Embedded Systems in Smart Grid	Singapore	136
	Congmiao Li, Dipti Srinivasan, and Thomas Reindl		
	Solar Energy Research Institute of Singapore		
	National University of Singapore, Singapore		
S 07.4	Allocation of Power Meters for Online Load Distribution Estimation	Denmark	148
	in Smart Grids	Dominant	110
	Konstantinos Kouzelis, Iker Diaz De Cerio Mendaza, Birgitte Bak-Jensen,		
	Jayakrishnan R. Pillai, and Bishnu Prasad Bhattarai		
	Department of Energy Technology, Aalborg University, Denmark		
S 07.5	Implementation of a Routing Protocol for Smart Grid's Low-Power	Philippines	158
	and Lossy Network		
	Kyle Christopher L. Melchor, Christopher D. Obniala, and Jhoanna		
	Rhodette I. Pedrasa		
	Electrical and Electronics Engineering Institute		
	University of the Philippines Diliman, Philippines		

S 08: Po	S 08: Power System Protection and Fault Diaganosis in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 08.1	Coordinated and Comprehensive Protection Scheme for the Transitional Period with Increasing DG Incorporation LIN Xia ¹ , Yuping Lu ² , LI Yao ¹ , G.B. Zou ³ , and Meng Xu ³ ¹ Shandong Zaozhuang Power Supply Company, Zaozhuang, China ² Department of Electrical Engineering Southeast University, Nanjing,China ³ School of Electrical Engineering, Shandong University, China	China	049		
S 08.2	A Settings Tracking and Providing Scheme for Differential Protection Based on Machine Learning Yujie Feng ¹ , Bin Duan ² , Cheng Tan ² , and Zili Yao ² ¹ College of Information Engineering Xiangtan University, Xiangtan, Hunan, China. ² Cooperative Innovation Center of Wind Power Equipment and Energy Conversion, Xiangtan, China	China	062		
S 08.3	A Risk Evaluation Method for Cascading Failure Considering Transmission Line Icing Xin Feng ¹ , Jun Yang ¹ , Chao Luo ¹ , Yuanzhang Sun ¹ , Mingsong ² , and Liu Yong Tang ² ¹ School of Electrical Engineering Wuhan University, Wuhan, Hubei,China ² China Electric Power Research Institute, Beijing,China	China	066		
S 08.4	A Weighted Mathematical Morphological Method for the Identification of Transformer Sympathetic Inrush A. Q. Zhang ¹ , T.Y. Ji ¹ , M.S. Li ¹ , Q.H. Wu ¹ , and T. Wu ² ¹ School of Electrical Power Engineering South China University of Technology, Guangzhou, China ² China Xi'an Satellite Control Center, Xi'an, China	China	072		
S 08.5	Ubiquitous UHF Monitoring System for Partial Discharge Detection and Trending Jeffrey C. Andle ¹ , Jonathan P. Murray ¹ , Maly Chap ¹ , and Elkin Baquero ¹ , Jeffrey T. Jordan ² ¹ IntelliSAW, Inc., Andover, MA USA ² Energy Division, Schneider Electric, Smyrna TN, USA	USA	081		

S 09: Power System Automation and Control in Smart Grid I			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 09.1	A New Islanding Detection Technique for Distribution System during DG Interconnections	India	002
	Karan Sareen, Bhavesh Bhalja, and R.P. Maheshwari Department of Electrical Engineering Indian Institute of Technology Roorkee, Uttarakhand, India		
S 09.2	BEMOSS: An Agent Platform to Facilitate Grid-Interactive Building Operation with IoT Devices	USA	027
	Manisa Pipattanasomporn, Murat Kuzlu, Warodom Khamphanchai, Avijit Saha, Kruthika Rathinavel, and Saifur Rahman Virginia Tech – Advanced Research Institute, Arlington, VA, USA		
S 09.3	Design and Analysis of PID and Fuzzy-PID Controller for Voltage	India	031

	Control of DC Microgrid		
	Rajeev Kumar Chauhan ¹ , B.S. Rajpurohit ¹ , Robert E. Hebner ² , S.N.		
	Singh ³ , and F.M.G. Longat ⁴		
	¹ School of Computing and Electrical Enginering		
	Indian Institute of Technology Mandi, India		
	² Center for Electromechanics, University of Texas, Austin, USA		
	³ Department of Electrical Engineering, IIT Kanpur, India		
	⁴ Department of Electrical Engineering,University of Loughborough, UK		
S 09.4	Assessment of Power System Black-start Schemes Based on	China	043
0 00.4	Improved Analytic Hierarchy Process and Fuzzy Comprehensive	Onina	040
	Evaluation		
	Xu Hui ² , Liu Jian-kun ¹ , Zhou Qian ¹ , Lin Sha ² , and Zheng Ran ²		
	¹ Department of Power Network		
	Jiangsu Electric Power Company Research Institute, Nanjing, China		
	² School of Automation		
	Nanjing University of Science and Technology, Nanjing, China		
S 09.5	Novel Controller Design for DC Link Voltage Control of Grid	Japan	075
0 00.0	Connected PV System and Optimized PI Response Analysis with	oupun	0/0
	Improved Transients		
	Ravi Nath Tripathi and Tsuyoshi Hanamoto		
	Graduate School of Life Science and System Engineering		
	Kyushu Institute of Technology, Kitakyushu, Japan		
	Ryacha montate of Feelmology, Rhanyaona, Supan		

S 10: Stability and Security in Smart Grid I

S 10: Stability and Security in Smart Grid I					
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 10.1	Stability Enhancement of Hybrid Diesel Generator and Photovoltaic Generator based on Droop Control Muhammad Wardi Hadi ^{1,2,3} , Nanang Hariyanto ¹ , and Jaeho Choi ² ¹ School of Electrical Engineering and Informatics Institut Teknologi Bandung, Indonesia ² School of Electrical Engineering Chungbuk National University, Cheongju, Republic of Korea ³ PT. PLN (Persero), Jakarta, Indonesia	Indonesia	030		
S 10.2	A Multi-input Lead–Lag Power System Stabilizer with H∞ Control Performance Keisuke Suzuki, Junnosuke Kobayashi, Takato Otani, and Shinichi Iwamoto Department of Electrical Engineering and Bioscience Waseda University, Tokyo, Japan	Japan	045		
S 10.3	Effect of Communication Delay on Load Frequency Control Application In Autonomous Hybrid Power System Vijay P. Singh, Paulson Samuel, and Nand Kishor Department of Electrical Engineering, M.N.N.I.T, Allahabad, India	India	047		
S 10.4	Voltage Stability Assessment of Distribution Systems with Fixed Speed Wind Generating Systems <i>M.H. Haque</i> School of Engineering University of South Australia, Mawson Lakes, Australia	Australia	099		
S 10.5	Development and Application of a Wide Area Response Based Power System Transient Stability Detection Analysis and Simulation Software Yujie Zhang ¹ , Jinquan Zhao ¹ , Pan Zhang ¹ , Xiaoming Jin ² , Chao Fu ² , and Hongxin Li ² ¹ College of Energy and Electrical Engineering Hohai University, Nanjing, China ² Science Research Institute, China Southern Power Grid Co., Guangzhou, China	China	108		
S 10.6	TheveninEquivalentParameterTrackingforOn-lineVoltageStabilityAssessmentMohammadNazrulIslam and WeerakornOngsakulEnergyFoS, School of Environment Resources and DevelopmentAsianInstitute of Technology, Pathumthani, Thailand	Thailand	121		
S 10.7	Enhancement of the Stability and the Transient Response of Inverter Based Grid Forming DG unit in Micro-grids Ahmed H. Abde Razek, Amr M. Abdin, and Hamdy S.K. El-Gohary Electrical Power andMachines Department Faculty of Engineering, Ain Shams University, Cairo, Egypt	Egypt	285		
S 10.8	Analysis of Earth Currents in Medium-Voltage Distribution Network with Core Cables LIANG Zhengzhong and ZHU Guofang School of Electrical Engineering, Shandong University, Jinan, China	China	082		
S 10.9	Behavior of Different Distance Relay Characteristic on Lines Fed From Type-1 and Type-2 WTGU Connected Radially to Grid: A Case Study Sachin Srivastava ¹ , Abhinna Biswal ¹ , K.S.V. Phanindra ² , and U.J. Shenoy ²	India	103		

S 11: Evaluation and Enhancement of Power Quality and Reliability in Smart Grid I			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 11.1	Reliability Analysis of Modern Substations Considering Cyber Link Failures	USA	013
	Hangtian Lei, Chanan Singh and Alex Sprintson Department of Electrical and Computer Engineering Texas A&M University, College Station, TX, USA		
S 11.2	Power Quality Disturbance Detection Based on Morphology Singular Entropy Y. Chen, T.Y. Ji, M.S. Li, and Q.H. Wu School of Electric Power Engineering	China	091
S 11.3	South China University of Technology, Guangzhou, China Economic Power Flow Adjustment Technique using Series	Japan	098
	Capacitor and Generator Output Adjustment for Generation Configuration Change Fumihiro Nakatani ¹ , Yuta Mori ¹ , Takayuki Ito ¹ , Shinichi Iwamoto ¹ , Yo Suetsugu ² , and Tomoyuki Higashitani ¹ Department of Electrical Engineering and Bioscience Waseda University, Tokyo, Japan	capan	
S 11.4	² Tokyo Electric Power Co.,Inc.,Tokyo, Japan Power Disturbance Identification based on Transient Behaviors using Morphological Max-Lifting Scheme and Nonlinear Principal Component Analysis Y. Zhang¹, T.Y. Ji¹, M.S. Li¹, and Q.H. Wu^{1,2} ¹School of Electrical Power Engineering South China University of Technology (SCUT), Guangzhou, China. ²Department of Electrical Engineering and Electronics The University of Liversed U.K.	China	169
S 11.5	The University of Liverpool, U.K. A Probabilistic Approach for SVC Placement with Harmonic Control and Reactive Power Compensation <i>Hung-Lu Wang and Ming-Shan Lin</i> Bureau of Standards, Metrology and Inspection (BSMI) Ministry of Economic Affairs, Taiwan, R.O.C.	Taiwan	214
S 11.6	Placement of DSTATCOM in Radial Distribution Systems for the Compensation of Reactive Power Joseph Sanam ¹ , A.K. Panda ¹ and Sanjib Ganguly ² ¹ Department of Electrical Engineering National Institute of Technology, Rourkela, India ² Department of Electrical Engineering Indian Institute of Technology, Guwahati, India	India	206
S 11.7	Reliability Assessment of Smart Distribution Networks Hui Guo, Victor Levi, and Muhammad Buhari School of Electrical and Electronic Engineering	United Kingdom	188
S 11.8	The University of Manchester, United Kingdom LEACH-based Communication Network with a Modified Sleep Protocol Jhoanna Rhodette I. Pedrasa and Gregorio L. Ortiz III Electrical and Electronics Engineering Institute University of the Divisiona Divisiona Divisional	Philippines	184
S 11.9	University of the Philippines Diliman, Philippines Implementation of Communication Model and Web Services for Cluster-Based Power System Operation in Smart Grids S. Leksawat ¹ , A. Schmelter ¹ , E. Ortjohann ¹ , D. Holtschulte ¹ , J. Kortenbruck ¹ , and D. Morton ² ¹ South Westphalia University of Applied Science, Germany ² The University of Bolton, U.K	Germany	197

S 12: D	S 12: Demand Side Management in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 12.1	Multi-Objective Optimization Model for Energy Mangement of	China	060		
	Household Micro-grids Participating in Demand Response Wei Fan, Nian Liu, and Jianhua Zhang School of Electrical and Electronic Engineering North China Electric Power University, Beijing, China				
S 12.2	GIS as a Tool for Enhancing the Optimization of Demand Side Management in Residential Microgrid Monika ¹ , Dipti Srinivasan ¹ , and Thomas Reindl ² ¹ Electrical and Computer Engineering	Singapore	298		

	National University of Singapore ² Solar Energy Research Institute of Singapore		
S 12.3	The Study of Demand Response Participating in Spinning Reserve	China	071
	Coordinating Optimization Scheme		
	Zhou Xia ¹ , Zhang Chaohai ¹ , Lu Zhenzhen ² , and Dai Yuchen ²		
	¹ Harbin Institute of Technology, Harbin, China		
0.40.4	² Electrical Engineering School, Southeast University, Nanjing, China	China	104
S 12.4	Active Distribution Network Multiperiod Service Restoration Considering Flexible Load	China	104
	Daogui Shi, Lanlan Xing, Qi Chen, Wenxia Liu, and Zonggi Liu		
	School of Electrical and Electronic Engineering		
	North China Electric Power University, NCEPU, Beijing, China		
S 12.5	Multi-tier Incentive Scheme for Residential Customer Participation	Singapore	250
	in Demand Response Management Programs		
	Ali Shabbir ¹ , Naveed Ul Hassan ¹ , Chau Yuen ² , Ayaz Ahmad ³ , and Wayes		
	<i>Tushar²</i> ¹ Pakistan, LUMS, Lahore, Pakistan		
	² Engineering Product Development		
	Singapore University of Technology and Design (SUTD), Singapore		
	³ COMSATS Institute of Information Technology, Pakistan		
S 12.6	Optimal DR through HVAC Loads in Distribution Systems Hosting	Finland	257
	Large Wind Generation		
	Mubbashir Ali ¹ , Muhammad Humayun ¹ , Merkebu Degefa ¹ , Amir Safdarian ² and Matti Lehtonen ¹		
	¹ Department of Electrical Engineering and Automation		
	Aalto University, Espoo, Finland		
	² Department of Electrical Engineering, Sharif University, Tehran, Iran		
S 12.7	A Framework for Activating Residential HVAC Demand Response	Finland	231
	for Wind Generation Balancing		
	Mubbashir Ali ¹ , Muhammad Humayun ¹ , Amir Safdarian ² , Merkebu Degefa ¹ , Antti Alahäivälä ¹ and Matti Lehtonen ¹		
	¹ Department of Electrical Engineering and Automation		
	Aalto University, Espoo, Finland		
	² Department of Electrical Engineering, Sharif University, Tehran, Iran		
S 12.8	Variable Bandwidth Control of Tap Changers in Distribution Grids	Germany	095
	Eva-Maria Baerthlein ¹ , Marianne Hartung ¹ , Ara Panosyan ¹ , and Rolf		
	Witzmann ²		
	¹ GE Global Research, Munich, Germany		
S 12.9	² Technische Universität München, Munich, Germany Field Programmable Gate Array Based Speed Control of BLDC	India	131
0 12.0	motor	india	101
	Rajesh M Pindoriya ¹ , S. Rajendran ² and P.J. Chauhan ³		
	¹ Department of Electrical Engineering, Marwadi Education Foundation's		
	Group of Institutions, Rajkot, Gujarat, India		
	² Department of Electrical Engineering		
	Indian Institute of Technology Gandhinagar, Gujarat, India		

S 13: M	icro Grid and Distributed Generation Management in Sma	rt Grid II	
Ref. No.	Title, Authors, Affiliation	Country of	ISGT Asia 2015
S 13.1	Jointly Optimization and Distributed Control for Interconnected	Origin China	reference code 096
5 15.1	Operation of Autonomous Microgrids	China	090
	Yansong Li, Nian Liu, and Jianhua Zhang		
	School of Electrical and Electronic Engineering		
	North China Electric Power University, NCEPU		
S 13.2	Effective Power Sharing Approach for Islanded Microgrids	Australia	183
	M. I. Azim ¹ , M.A. Hossain ¹ , H.R. Pota ¹ , and M.J. Hossain ²		
	¹ School of Engineering and Information Technology		
	The University of New South Wales, Canberra, Australia ² Griffith School of Engineering, Griffith University, Queensland, Australia		
S 13.3	Efficiency Comparison of DC and AC Microgrid	Singapore	114
0 10.0	Ujjal Manandhar, Abhisek Ukil, and Tan Keng Kiat Jonathan	Singapore	114
	School of EEE, Nanyang Technological University, Singapore		
S 13.4	Modeling and simulation Framework for Techno-Economic Analysis	New	246
	of Large City Low-Voltage Distribution Network	Zealand	
	Zhongwei Jake Zhang ¹ , Nirmal-Kumar C. Nair ¹ , and Sean Cross ²		
	¹ Electrical and Computer Engineering Department		
	University of Auckland, New Zealand		
S 13.5	² Vector Limited Auckland, New Zealand Optimal Sizing and Placement of Power-to-Gas Systems in Future	Denmark	247
5 15.5	Active Distribution Networks	Deninark	247
	Iker Diaz de Cerio Mendaza ¹ , Bishnu P. Bhattarai ¹ , Konstantinos		
	Kouzelis ¹ , Jayakrishnan R. Pillai ¹ , Birgitte Bak-Jensen ¹ , and Allan		
	Jensen ²		
	¹ Department of Energy Technology, Aalborg University, Denmark		
	² HEF Net A/S, Aalborg, Denmark		
S 13.6	Droop Control Incorporated Power Flow Method for Distribution and	Thailand	274
	Microgrid Systems		
	Nimal Madhu M., Watcharakorn Pinthurat, Jai Govind Singh, and Weerakorn Ongsakul		
	Energy FoS, School of Environment Resources and Development		
	Asian Institute of Technology, Pathumthani, Thailand		
S 13.7	Efficiency of DC Microgrid on DC Distribution System	India	299
	Rohan Sirsi ¹ and Yadnyesh Ambekar ²		
	¹ Dr. D.Y. Patil Institute of Engineering and Technology, Pune, India		
	² Trident Techlabs Pvt. Ltd., Pune, India		
S 13.8	Optimal Spinning Reserve under Load and Intermittent Generation	Thailand	331
	Uncertainty using Monte Carlo Simulation		
	Nit Petcharaks Faculty of Engineering, Dhurakij Pundit University, Bangkok, Thailand		
	r acuity of Engineering, Dhurakij Funult Oniversity, DangKOK, Malianu		

S 14: Power System Protection and Fault Diaganosis in Smart Grid II ISGT Asia 2015 Country of Ref. No. Title, Authors, Affiliation Origin reference code S 14.1 Reconfigurable Inverter: An Approach to Self-healing of Distributed China 149 Generation Wu Chen¹, Bin Duan², Hui Li², and Zhi Li² ¹College of Information Engineering, Xiangtan University, China ²Collaborative Innovation Center of Wind Power Equipment and Energy Conversion, Xiangtan, China S 14.2 A Generalised Fault Protection Structure for Unigrounded Low-Taiwan 309 Voltage AC Microgrids Duong Minh Bui¹, Shi-Lin Chen¹, Keng-Yu Lien², and Jheng-Lun Jiang³ ¹Department of Electrical Engineering Chung Yuan Christian University Chungli, Taiwan ²Department of Avionics China University of Science and Technology, Hsinchu, Taiwan ³Institute of Nuclear Energy Research, Hsinchu, Taiwan S 14.3 Influence of Burden of Current Transformer (IEC Standard) on the 334 Thailand **High Frequency Current Measurement** Komson Petcharaks and Oudom Siv Department of Electrical Engineering Chulalongkorn University, Bangkok, Thailand S 14.4 357 Performance Analysis of Q-f droop Anti-Islanding Protection in the Finland Presence of Mixed Types of DG Ontrei Raipala, Sami Repo, and Pertti Järventausta Department of Electrical Engineering Tampere University of Technology, Finland S 14.5 Adaptive Overcurrent Protection Considering Critical Clearing Time Thailand 118

	for a Microgrid System		
	N. Tummasit ¹ , S. Premrudeepreechacharn ¹ , and N. Tantichayakorn ²		
	¹ Department of Electrical Engineering,		
	Faculty of Engineering, Chiang Mai University, Thailand		
	² Substation and Power System Maintenance Department		
	Provincial Electricity Authority (PEA), Bangkok, Thailand		070
S14.6	Fault Detection and Classification on Transmission Line using	India	273
	Wavelet Based Alienation Algorithm		
	Bhuvnesh Rathore and Abdul Gafoor Shaik		
	Department of Electrical Engineering Indian Institute of Technology, Jodhpur, India		
S 14.7	Protection Schemes for Distribution Lines In DC Power Grid	China	284
5 14.7	Zaibin Jiao ¹ , Zhao Wang ¹ , Xiaobing Wang ¹ , Jiliang Jin ¹ , Wu Xing ¹ , and	China	204
	Chongxi Jiang ²		
	¹ School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China		
	² Zhejiang University, Hangzhou, China		
S 14.8	Fault Protection Solutions Appropriately Used for Ungrounded Low-	Taiwan	307
	Voltage AC Microgrids		
	Duong Minh Bui ¹ , Shi-Lin Chen ¹ , Keng-Yu Lien ² , and Jheng-Lun Jiang ³		
	¹ Department of Electrical Engineering		
	Chung Yuan Christian University Chungli, Taiwan		
	² Department of Avionics China University of Science and Technology		
	Hsinchu, Taiwan		
	³ Institute of Nuclear Energy Research, Hsinchu, Taiwan		

S 15: Power Electronics and its Applications in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 15.1	Simulation of DC/DC Converter for DC Nano Grid Integrated with	India	055	
	Solar PV Generation			
	Rajesh M Pindoriya, N.M. Pindoriya and S. Rajendran			
	Department of Electrical Engineering Indian Institute of Technology Gandhinagar, Gujarat, India			
S 15.2	Optimal Power Flow in VSC-HVDC Networks for DC-ISO: Constant	United	078	
	Current Operation	Kingdom	0.0	
	F. González-Longatt	0		
	School of Electrical, Electronic and System Engineering			
	Loughborough University, United Kingdom			
S 15.3	An Indirect Matrix Converter-based Unified Power Quality	Belgium	111	
	Conditioner for a PV inverter with enhanced Power Quality			
	functionality Thomas Geury ^{1,2,3} , Sonia Pinto ² , Johan Gyselinck ³ , and Patrick Wheeler ⁴			
	¹ F.R.I.A. (scholarship student)			
	² INESC-ID Lisboa, IST – ULisbon, Lisbon, Portugal			
	³ BEAMS Energy, EPB – ULB, Brussels, Belgium			
	⁴ Department of Electrical and Electronic Engineering			
	University of Nottingham, UK			
S 15.4	Design and Analysis of Current Controllers with Active Damped	India	205	
	LCL Filter for Three-Phase Grid Connected Solar PV System			
	lakshmanan Sorakka Arunagiri ¹ , Amit Jain ² , and B.S.Rajpurohit ¹			
	¹ School of Computing and Electrical Engineering Indian Institute of Technology Mandi			
	² Power Systems Division, CPRI			
S 15.5	Five-Level Multiple-Pole Multilevel Diode-Clamped Inverter Scheme	Singapore	142	
	for Reactive Power Compensation	<u>3</u>		
	Pinkymol Harikrishna Raj, Ali I. Maswood, Gabriel H.P. Ooi, and Hossein			
	Dehghani Tafti			
	School Electrical and Electronic Engineering			
	Nanyang Technological University, Singapore			
S 15.6	Coordinated Operation of a Microgrid with a Distribution Network	Singapore	322	
	Device T. John ¹ , Y. Wang ¹ , P.L. So ¹ , and K.T. Tan ²			
	¹ Nanyang Technological University			
	² Ngee Ann Polytechnic			
S 15.7	Performance Evaluation of Boost and Z-Source Converters for Fuel	Singapore	398	
	Cell Application	0.1		
	Muhammad M. Roomi, Ali I. Maswood and Hossein Dehghani Tafti			
	School of Electrical and Electronic Engineering			
0.45.0	Nanyang Technological University Singapore	0.	404	
S 15.8	Active/Reactive Power Control of PV Grid-tied NPC Inverter Using	Singapore	404	
	3-D Space Vector Modulation in abc Coordinate Hossein Dehghani Tafti, Ali I. Maswood and Muhammad M. Roomi			
	School of Electrical and Electronic Engineering			
	Nanyang Technological University, Singapore			

S 16: Battery and Energy Storage System in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 16.1	Load Levelling and Loss Reduction by ES in a Primary Distribution	Thailand	021	
	System with PV Units Junainah Sardi ¹ , N. Mithulananthan ¹ , Duong Quoc Hung ¹ and			
	Krischonme Bhumkittipich ²			
	¹ School of Information Technology and Electrical Engineering			
	University of Queensland, Brisbane, Australia			
	² Department of Electrical Engineering, Rajamangala University of			
S 16.2	Technology Thanyaburi, Thanyaburi, Thailand ANN based Optimized Battery Energy Storage System Size and	Japan	061	
5 10.2	Loss Analysis for Distributed Energy Storage Location in PV-	Japan	001	
	Microgrid			
	Thongchart Kerdphol, Ravi N. Tripathi, Tsuyoshi Hanamoto, Khairudin,			
	Yaser Qudaih, and Yasunori Mitani			
	Department of Electrical and Electronics Engineering			
S 16.3	Kyushu Institute of Technology, Fukuoka, Japan Characteristics Evaluation of an LMI-Synthesis H∞ Controller for a	Malaysia	094	
5 10.5	Superconducting Magnetic Energy Systems Applied in Power	Malaysia	034	
	Systems			
	M.A. Chowdhury ¹ , M.A. Mahmud ² and A.M.T. Oo ²			
	¹ Faculty of Engineering, Computing and Science			
	Swinburne University of Technology Sarawak Campus, Malaysia			
	² Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds Campus, Victoria, Australia			
S 16.4	Intelligent Energy Management of Distributed Energy Storage	Singapore	128	
• • • • • •	Systems in Microgrid	enigapere		
	N. Azieroh Arman, T. Logenthiran and W.L. Woo			
	School of Electrical and Electronic Engineering			
0.40 -	Newcastle University	0.	101	
S 16.5	Cost-Effectiveness Studies of the BESSs Participating in Frequency Regulation	Singapore	134	
	Tian Zhang ¹ , Hoay Beng Gooi ¹ , Shuaixun Chen ² , and Terence Goh ²			
	¹ School of Electrical and Electronic Engineering			
	Nanyang Technological University, Singapore			
	² DNV GL Energy (formerly KEMA), Singapore			
S 16.6	Application of HESS for PV System with Modified Control Strategy	Singapore	262	
	Ujjal Manandhar, Abhisek Ukil, Sathish Kumar Kollimalla, H.B. Gooi			
	School of Electrical and Electronics Engineering Nanyang Technological University, Singapore			
S 16.7	Variable Two Stage Rate-Limit Control for Battery Energy Storage	Singapore	312	
• • • • •	System	enigapere	0.1	
	Sathish Kumar Kollimalla, Abhisek Ukil, H.B. Gooi and Ujjal Manandhar			
	School of Electrical Engineering			
0.40.0	Nanyang Technological University, Singapore	0 11 44	1.10	
S 16.8	Battery Storage and Hybrid Battery Supercapacitor Storage	South Africa	140	
	Systems: A Comparative Critical Review Imran Chotia and Sunetra Chowdhury			
	Electrical Engineering Department			
	University of Cape Town, South Africa			

S 17: Electricity Markets, Incentives, Regulation and Pricing II			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 17.1	A Canonical Coalitional Game Theoretic Approach for Energy Management for Nanogrids	Singapore	249
	Wayes Tushar ¹ , Chau Yuen ¹ , David B. Smith ² , Naveed Ul Hassan ³ , and H. Vincent Poor ⁴		
	¹ Singapore University of Technology and Design (SUTD), Singapore. ² NICTA and Australian National University, Canberra, Australia. ³ Electrical Engineering Department, LUMS, Lahore, Pakistan.		
	⁴ School of Engineering and Applied Science, Princeton University, NJ, USA		
S 17.2	Online Optimal Power Management Considering Electric Vehicles, Load Curtailment and Grid Trade in a Microgrid Energy Market Vivek Mohan ¹ , Reshma Suresh M.P. ¹ , Jai Govind Singh ¹ , Weerakorn Ongsakul ¹ , and Boddeti Kalyan Kumar ² ¹ Energy FoS, School of Environment Resources and Development Asian Institute of Technology, Pathumthani, Thailand ² Department of Electrical Engineering Indian Institute of Technology Madras, Tamil Nadu, India	Thailand	275
S 17.3	Stochastic Optimal Regulation Service Strategy for a Wind Farm Participating in the Electricity Market Baohua Zhang, Weihao Hu, and Zhe Chen Department of Energy Technology	Denmark	342

	Aalborg University, Aalborg, Denmark		
S 17.4	Operation Optimization of CCHP-Type Microgrid Considering Units'	China	182
	Part-Load Characteristics		
	Z.X. Yuan, Z.X. Jing, R.X. Hu, and Q.H. Wu		
	South China University of Technology, Guangzhou, China		
S 17.5	Capacity Configuration Optimization for Island Microgrid with	China	353
	Wind/Solar/Pumped Storage Considering Demand Response		
	R. X. Hu, X.Y. He, Z. X. Jing, Z.X. Yuan and Q. H. Wu		
	South China University of Technology, Guangzhou, China		
S 17.6	Case Study on the Feasibility of Renewable Integration in the	India	191
	Temburong Island of Brunei		
	Manikandan Padmanaban ¹ , Jagabondhu Hazra ¹ , Kalyan Dasgupta ¹ ,		
	Ashish Verma ¹ , Sathyajith Mathew ² , and Iskandar Petra ²		
	¹ IBM India Research Lab., Bangalore, India		
	² Universiti Brunei Darussalam, Brunei Darussalam.		
S 17.7	Optimal Power Flow with Grid Scale Battery Storage	India	199
	Jagabondhu Hazra ¹ , Kalyan Dasgupta ¹ , Manikandan Padmanaban ¹ ,		
	Ashish Verma ¹ , Sathyajith Mathew ² , and Iskandar Petra ²		
	¹ IBM India Research Lab., Bangalore, India		
	² Universiti Brunei Darussalam, Brunei Darussalam		
S 17.8	Estimating Return on Investment for Grid Scale Storage within the	India	279
	Economic Dispatch Framework		
	Kalyan Dasgupta, Jagabondhu Hazra, Subendhu Rongali and		
	Manikandan Padmanaban		
	IBM Research, India		

S 18: Sr	nart Grid: General Concepts I		
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 18.1	Analyses of Smart Grid Technologies and Solutions from a System	Sweden	135
	Perspective		
	Sajeesh Babu, Jan Henning Jürgensen, Carl Johan Wallnerström, Lina Bertling Tjernberg, Patrik Hilber		
	School of Electrical Engineering		
	KTH Royal Institute of Technology, Stockholm, Sweden		
S 18.2	Impact of Feedback Interventions on Residential Electricity Demand	Australia	313
	in Australia's First Large Scale Smart Grid Project		
	H. Fan ¹ ,A.B. Sproul ¹ , and I.M. MacGill ²		
	¹ School of Photovoltaic and Renewable Energy Engineering		
	University of New South Wales, Sydney, Australia		
	² Centre for Energy and Environmental Markets and School of Electrical		
	Engineering and Telecommunications		
0.40.0	University of New South Wales, Sydney, NSW, Australia	Australia	0.40
S 18.3	Co-simulation Platform for Smart Grid Applications Bhagya Amarasekara ¹ , Chathurika Ranaweera ² , Ampalavanapillai	Australia	340
	Nirmalathas ² , and Rob Evans ²		
	¹ NICTA Victoria Research Laboratory, Department of Electrical and		
	Electronic Engineering, University of Melbourne, Australia		
	² Department of Electrical and Electronic Engineering		
	University of Melbourne, Australia		
S 18.4	Co-Simulation Framework based on Power System, Al and	Austria	381
	Communication Tools for Evaluating Smart Grid Applications		
	Ishtiaq Ahmad ¹ , Jawad Haider Kazmi ¹ , Mohsin Shahzad ¹ , Peter		
	Palensky ² , and Wolfgang Gawlik ³		
	¹ Energy Department, Austrian Institute of Technology, Vienna, Austria		
	² Electrical Engineering, Mathematics and Computer Science TU Delft, Netherland		
	³ Institute of Energy Systems and Electrical Drives, TU Wien, Austria		
S 18.5	SMART Centre of Excellence: A Tabletop Demonstration Kit	Singapore	154
0.010	C.P.S. Chew, T. Logenthiran, and W.L. Woo	olligaporo	
	School of Electrical and Electronic Engineering		
	Newcastle University, Singapore		
S 18.6	Alternative Power Source in Various Substation Applications	ABB	412
	David Xu, Nicholas S. Powers, Mathew Paul, Worawut Sae-Kok, and		
	Praditpong Suksirithawornkul		
	ABB		
S 18.7	MEA Smart Grid Roadmap and Initiation of the Smart District Office	Thailand	323
	Building Pilot Project		
	Att Phayomhom, Nattanont Chotiheerunyasakaya, Mutchimas Kheawkham, and Supakorn Songsit		
	Metropolitan Electricity Authority		
S 18.8	An Agent-based Open Source Platform for Building Energy	USA	112
0.000	Management	00/1	
	W. Khamphanchai, M. Pipattanasomporn, M. Kuzlu, and S. Rahman		
	Advanced Research Institute – Virginia Tech, Arlington, VA, USA		

S 19: Information, Communication and Metering Technologies in Smart Grid I				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 19.1	A Novel Zigbee-based Data Acquisition System for Distributed Photovoltaic Generation in Smart Grid Syed Zahurul ¹ , Norman Mariun ¹ , Leong Kah ¹ , Hashim Hizam ¹ , Mohammad Lutfi Othman ¹ , Izham Zainal Abidin ² , and Yap Norman ¹ ¹ Center for Advanced Power and Energy Research Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.	Malaysia	219	
	² Electrical Power Engineering Universiti Tenaga Nasional, Kajang, Malaysia			
S 19.2	New Security Features in DLMS/COSEM – a Comparison to the Smart Meter Gateway Stefan G. Hoffmann, Robin Massink, and Gerd Bumiller Germany, DNV GL, Hochschule Ruhr West	Germany	255	
S 19.3	Combined Electricity and Mobile Network Situation Awareness System for Disturbance Management Heidi Krohns-Välimäki ¹ , Jussi Haapanen ¹ , Pekka Verho ¹ , Joonas Säe ² , and Jukka Lempiäinen ² ¹ Department of Electrical Engineering Tampere University of Technology, Tampere, Finland ² Department of Electronics and Communications Engineering	Finland	296	
S 19.4	Tampere University of Technology, Tampere, Finland Secure Communication of Smart Metering Data in the Smart Grid Secondary Substation Peyman Jafary and Sami Repo Department of Electrical Engineering	Finland	324	
S 19.5	Tampere University of Technology, Tampere, Finland Review of Communication Technologies for Smart Homes/Building Applications <i>M. Kuzlu, M. Pipattanasomporn, and S. Rahman</i>	USA	230	
S 19.6	Virginia Tech – Advanced Research Institute, Arlington, VA, USA The Static Security Analysis in Power System Based on Spark Cloud Computing Platform <i>Gang Zhou, Dapu Zhao, Kexu Zou, Weida Xu, Xinjie Lv, Qian Wang, and</i> <i>Wenjun Yin</i> IBM Research - China	China	345	
S 19.7	Implementation of Rauch-Tung-Striebel Smoother for Power System Dynamic State Estimation in the Presence of PMU Measurements J.G. Sreenath ¹ and S. Chakrabarti ¹ and Ankush Sharma ² ¹ Indian Institute of Technology Kanpur, India ² Utility Center of Excellence, Tata Consultancy Services, Pune, India	India	092	

S 20: Po	S 20: Power System Protection and Fault Diaganosis in Smart Grid III			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 20.1	Recloser-Fuse Coordination Tool for Distributed Generation	Thailand	165	
	Installed Capacity Enhancement Autthaporn Supannon and Peerapol Jirapong			
	Department of Electrical Engineering, Faculty of Engineering			
	Chiang Mai University, Chiang Mai, Thailand			
S 20.2	A Directional Protection Scheme Based on Non-periodic Current for	China	171	
	Transmission lines			
	Y.K. Wang, M.S, Li, T.Y. Ji, and Q.H. Wu School of Electrical Power Engineering			
	South China University of Technology, Guangzhou, China			
S 20.3	Current Transformer Saturation Segmentation Using Morphological	China	175	
	Gradient-Based Detectors			
	L.L. Zhang, T.Y. Ji, M.S. Li, and Q.H. Wu			
	School of Electric Power Engineering South China University of Technology, Guangzhou, China			
S 20.4	Application of Discrete Wavelet Transform for Identification of	China	180	
	Induction Motor Stator Inter-Turn Short Circuit	011110		
	Y. Zhang ¹ , T.Y. Ji, M.S. Li ¹ , and Q.H. Wu ^{1,2}			
	¹ School of Electrical Power Engineering			
	South China University of Technology (SCUT), Guangzhou, China. ² Department of Electrical Engineering and Electronics			
	The University of Liverpool, Liverpool, U.K.			
S 20.5	A Phasor Measurement Algorithm Based on Mathematical	China	213	
	Morphology and Instantaneous Reactive Power Theory			
	L.L. Zhang, M.S. Li, T.Y. Ji, and Q.H. Wu			
	School of Electric Power Engineering			
S 20.6	South China University of Technology, Guangzhou, China Power Transformer Fault Classification by Combining Genetic	China	238	
0 20.0	Reduction with Optimized Multilayer Support Vector Machine	Onna	200	

	T. Qian ¹ , W.H. Tang ¹ , and Q.H. Wu ¹ ,H.Z. Lia ² , and S.X. Chena ²		
	¹ School of Electric Power Engineering		
	South China University of Technology, Guangzhou, China		
	² Foshan Power Supply, Bureau of Guangdong Province, China		
S 20.7	Evaluation of Fault Ride Through Capability Enhancement of DFIG-	Thailand	106
	Based Wind Turbine with Bi-2212 Superconducting Fault Current		
	Limiter		
	Sillawat Romphochai and Komsan Hongesombut		
	Department of Electrical Engineering		
	Kasetsart University, Bangkok, Thailand		

	odeling, Integration and Management of Renewable Energy	Country of	ISGT Asia 2015
Ref. No.	Title, Authors, Affiliation	Origin	reference code
S 21.1	A Study of Wind Power Curtailment Using Frequency Sensitivity	Japan	036
	and Transient Stability		
	Toshiki Takayama, Takato Otani, Junnosuke Kobayashi and Shinichi Iwamoto		
	Department of Electrical Engineering and Bioscience		
	Waseda University, Tokyo, Japan		
S 21.2	Evaluation of the Effects of Photovoltaic Inverter Controllers on	Malaysia	129
	Grid Injected Power with Local Dynamic Loads	-	
	Saidu Kumo Mohammed, Norman Mariun, Mohd Amran Mohd Radzi,		
	Noor Izzri Abdul, Wahab, Sabo Mahmoud Lurwan		
	Department of Electrical and Electronics Engineering		
0.04.0	Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia	Cinceren	100
S 21.3	Forecasting of Photovoltaic Power using Extreme Learning Machine	Singapore	130
	T.T. Teo, T. Logenthiran and W.L. Woo		
	School of Electrical and Electronic Engineering		
	Newcastle University, Singapore		
S 21.4	Voltage Sensorless Predictive Direct Power Control for Renewable	China	159
	Energy Integration Under Grid Fault Conditions		
	Y.K. Tao ¹ , Q.H. Wu ² , W.H. Tang ¹ , and L. Wang ¹		
	¹ School of Electrical Power Engineering		
	South China University of Technology, Guangzhou, China		
	² Department of Electrical Engineering and Electronics University of Liverpool, Liverpool, U.K		
S 21.5	Wind Power Forecasting Considering Wind Turbine Condition	China	161
0 1 1 0	Pei Yan ¹ , Qian Zheng ¹ , and Chen Niya ²	onnia	101
	¹ School of Instrument Science and Opto-electronics Engineering		
	Beihang University, Beijing, China		
	² ABB Corporate Research Center, Beijing, China		
S 21.6	Economic Operation of Smart Grid Based on The Statistics of	Japan	263
	Renewable Energy		
	Munkhbayasgalan Enkhtuvshin, Kang-Zhi Liu, and Tadanao Zanma Department of Electrical and Electronic Engineering, Chiba University		
S 21.7	Virtual Grid for Renewable Energy Society	Japan	276
521.7	Haruhisa Ichikawa ¹ , Yuusuke Kawakita ¹ , Kenji Sawada ¹ ,Ashir Ahmed ² ,	Japan	270
	Hiroshi Hanafusa ³ , Shinji Yokogawa ⁴ , Hirohide Mikami ⁵ , and Noriaki		
	Yoshikawa ⁵		
	¹ The University of Electro-Communications, Chofu, Tokyo, Japan.		
	² Kyushu University, Fukuoka, Fukuoka, Japan		
	³ NEC Corporation, Kawasaki, Kanagawa, Japan		
	⁴ Polytechnic University, Kodaira, Tokyo, Japan		
	⁵ Cyber Creative Institute, Shibuya, Tokyo, Japan		

S 22: A	S 22: Artificial Intelligence and Optimization in Smart Grid II			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 22.1	A Statistical Energy Efficiency Optimization Method for Coal-fired Power Generation Systems Ming Li, Fang Hou, and Qin Zhou Accenture, Beijing, China	China	271	
\$ 22.2	Economic Dispatch Integrating Wind Power Generation Farms Using Cuckoo Search Algorithm Duy C. Huynh ¹ and Nirmal Nair ² ¹ Electrical and Electronic Engineering Department Ho Chi Minh City University of Technology, Vietnam ² Electrical and Computer Engineering Department The University of Auckland, New Zealand	Vietnam	360	
S 22.3	Multi-objective Optimal Power Flow Using Stochastic Weight Trade- off Chaotic NSPSO Anongpun Man-Im ¹ , Weerakorn Ongsakul ¹ , Jai Govind Singh ¹ , Chanwit	Thailand	411	

	Boonchuay ² ¹ Energy FoS, SERD, Asian Institute of Technology, Thailand ² Department of Electrical Engineering Technology, Faculty of Industry and Technology, Rajamangala University of Technology Rattanakosin,		
S 22.4	Prachuap Khiri Khan, Thailand Optimal Wind Capacity Integration Considering the Possibilistic Uncertainty of Wind Resources <i>Can Sun¹, Min Xie¹, Zhaohong Bie², Jiangfeng Jiang², and Xiaobo Song³</i>	China	328
S 22.5	 ¹C ity University of Hong Kong, Hong Kong ²Xi'an Jiaotong University, China ³State Grid Tianjin Electric Power Company, China Optimal Selection of Location, Sizing and Power factor for Solar PV Plants using Differential Evolution Phung Dang Huy, Vigna K. Ramachandaramurthy and Mahmoud 	Malaysia	351
S 22.6	Pesaran H.A. Universiti Tenaga Nasional Feasibility Study of Photovoltaic (PV)-Diesel Hybrid Power Systems for Remote Networks	Australia	217
S 22.7	GM Shafiullah and Craig E. Carter Murdoch University, Australia Application of Improved GM(1,N) Models in Annual Electricity Demand Forecasting	China	052
	<i>Li Xiaobo, Jing Zhaoxia, and Wu Qinghua</i> South China University of Technology, Guangzhou, China		

S 23: Power System Automation and Control in Smart Grid II				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 23.1	Intelligent Distributed Smart Grid Network - Reconfiguration C.H. Ng, T. Logenthiran and W.L. Woo School of Electrical and Electronic Engineering Newcastle University, Singapore	Singapore	133	
S 23.2	An Effective Phase Tracking Method for Controlling Multi-terminal High Voltage DC Grids under AC Grid Contingencies Z. Xu and J. Zhu	China	216	
S 23.3	¹ Department of Electrical and Electronic Engineering The University of Nottingham China Campus, Ningbo, China ² State Grid Electric Power Research Institute (SGEPRI),Nanjing, China A Novel Active Splitting Strategy Search Method With Modularity- Based Network Partition	China	399	
	Yifan Zhou ¹ , Wei Hu ¹ , Qiangming Zhou ² , Hongqiao Yu ² , and Jian Pu ² ¹ State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University Beijing, China ² Hubei Electrical Power Company, Wuhan, China			
S 23.4	Field Validation of a Weather-Based Dynamic Rating System for Transmission Line Yuehao Yan ¹ , Weizheng Zhang ¹ , Hui Lin ¹ , Zhengrong Li ² , and Rui Tang ² ¹ State Grid Henan Electric Power Company	China	102	
S 23.5	Zhengzhou Power Supply Company, Zhengzhou, China ² Shanghai Haineng Information Technology Co., Ltd., Shanghai, China The Development of the Automatic Power Flow Control Station in Distribution Electric Network of a Low Voltage <i>E.N. Sosnina, A.B. Loskutov, A.I. Chivenkov, and A.V. Shalukho</i>	Russia	391	
S 23.6	Nizhny Novgorod State Technical University Active Power Control in an Islanded Microgrid using DC Link Voltage Status <i>M.A. Hossain</i> ¹ , <i>M.I. Azim</i> ¹ , <i>M.A. Mahmud</i> ² and <i>H.R. Pota</i> ¹ ¹ The University of New South Wales	Australia	338	
S 23.7	 ² Deakin University Reducing User Discomfort in Direct Load Control of Domestic Water Heaters Alexander Belov¹, Alexandr Vasenevy¹, Paul J.M. Havinga¹, Nirvana Meratnia¹, and Berend Jan van der Zwaagz² ¹University of Twente ²Adaptive Systems, Hengelo (O) 	The Netherlands	376	

S 24: In	S 24: Integration and Management of Electric Vehicle in Smart Grid II				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 24.1	Multi-objective Siting and Sizing of E Charging Stations in the Distribution System Anupam Trivedi, Bharat Menon, Dipti Srinivasan, Anurag Sharma and Wong Fong Dong Nicholas Department of Electrical and Computer Engineering National University of Singapore	Singapore	268		

S 24.2	Optimal Day Ahead scheduling of distributed EVs in a Smart	Thailand	305
	Distribution Network		
	Anand M.P, Vivek Mohan, Weerakorn Ongsakul, Reshma Suresh M.P.		
	School of Environment, Resources and Development		
	Asian Institute of Technology, Pathumthani, Thailand		
S 24.3	Incentivizing Electric Vehicles to Provide Regulation While	France	362
	Recharging		
	Wenjing Shuai , Patrick Maillé, and Alexander Pelov		
	Institut Mines-Telecom/Telecom Bretagne, France		
S 24.4	Optimal Electric Vehicle Scheduling in Smart Home with V2HV2G	USA	332
	Regulation		
	Dalong Guo, Peizhong Yi, Chi Zhou, and Jia Wang		
	Electrical and Computer Engineering Department		
	Illinois Institute of Technology, Chicago, Illinois		
S 24.5	Performance Analysis of Future PEA Distribution Network Under	Thailand	207
	High Penetration of PEVs Home Charging		
	Thongchai Klayklueng and Sanchai Dechanupaprittha		
	Kasetsart University, Bangkok, Thailand		
S 24.6			
S 24.7			

Day 3: 06 November 2015

S 25: M	S 25: Micro Grid and Distributed Generation Management in Smart Grid III			
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code	
S 25.1	Optimal Design of Stand-Alone Microgrid Resources Based on	Iran	295	
	Proposed Monte-Carlo Simulation			
	Hamidreza Jahangir, Ali Ahmadian and Masoud Aliakbar Golkar			
	Faculty of Electrical Engineering			
0.05.0	K.N.Toosi University of Technology, Tehran, Iran	lueur	240	
S 25.2	Multi-Objective Sizing of Grid-Connected Micro-Grid Using Pareto Front Solutions	Iran	319	
	Hamidreza Jahangir, Ali Ahmadian and Masoud Aliakbar Golkar			
	Faculty of Electrical Engineering			
	K.N.Toosi University of Technology, Tehran, Iran			
S 25.3	Grid Connected-Induction Generator StartUp Sequence	Indonesia	368	
0 2010	Observation Using Laboratory Simulator	indonoold	000	
	F. Danang Wijaya, EkaFirmansyah, Sarjiya, M. Isnaeni B.S.			
	Department of Electrical Engineering and Information Technology			
	Faculty of Engineering, Universitas Gadjah Mada (UGM), Yogyakarta,			
	Indonesia			
S 25.4	The Development of Hybrid Power Source Based on SOFC for	Russia	200	
	Distant Electricity Consumers' Power Supply			
	Alexey Loskutov, Elena Sosnina, Alexandr Chivenkov, Evgeny Kryukov			
	Nizhny Novgorod State Technical University			
S 25.5	A Context Vector Regression based Approach for Demand	India	363	
	Forecasting in District Heating Networks			
	Subendhu Rongali , Anamitra R. Choudhury, Vikas Chandan and Vijay			
	Arya			
	IBM Research India			

S 26: Po	S 26: Power System Protection and Fault Diaganosis in Smart Grid IV				
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code		
S 26.1	Circuit Representation of Voltage Unbalance Emission Due to Line Asymmetry <i>Diego Bellan and Sergio A. Pignari</i> Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy	Italy	186		
S 26.2	Overcurrent Protection of Distribution Network with Distributed Generation Dinesh Kumar Jain, Pankaj Gupta, and Mohan Singh Indira Gandhi Delhi Technical University For Women, Dcrust, Murthal	India	192		
S 26.3	A Review of Active/Reactive Power Control Strategies for PV Power Plants under Unbalanced Grid Faults Hossein Dehghani Tafti ¹ , Ali I. Maswood ¹ , Ziyou Lim ² , Gabriel H. P. Ooi ¹ , PinkymolHarikrishna Raj ¹ ¹ School of Electrical and Electronic Engineering Nanyang Technological University, Singapore ² Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore	Singapore	204		
S 26.4	A New Fault Isolation and Automatic Energization Scheme for Inverter Interfaced Distributed Energy Resource using Autorecloser <i>M. P. Vinod, Durgesh Kumar Singh and Arinjai Gupta</i> ABB GISPL, Bangalore, INDIA	India	260		
S 26.5	 Method of Cable Incipient Faults Detection and Identification based on Wavelet Transform and Gray Correlation Analysis Chuan Zhou¹, Niancheng Zhou¹, Shu Pan¹, Qianggang Wang¹, Tiyin Li², Jing Zhang³ ¹State Key Laboratory of Power Transmission Equipment andSystem Safety and New Technology, Chongqing University, Chongqing, China ²Power Supply Bureau of Yuhang, Hangzhou, China ³Zhejiang Qunli Electric Co., Ltd, Hangzhou, China 	China	016		

S 27: M	odeling, Integration and Management of Renewable Energ	y in Smart	Grid III
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 27.1	Battery Integrated Solar Photovoltaic Energy Management System for Micro-Grid	Singapore	272
	Kannan Thirugnanam ¹ , See Gim Kerk ² , Chau Yuen ¹ and		
	Balasubramaniam Thirunavukarasu ¹		
	¹ Engineering Product Development Pillar, SUTD, Singapore ² Power Automation, Singapore		
S 27.2	Using Renewables to Reduce Peak Demand: Lessons from an	Australia	287
	Australian Experience		
	Arun Vishwanath ¹ , Sunil Ghai ¹ , Vikas Chandan ¹ , Tanuja Ganu ¹ , Zainul Charbiwala ¹ , Shivkumar Kalyanaraman ¹ , Charles Blake ²		
	¹ IBM Research, India, Australia		
	² Townsville City Council, Australia		
S 27.3	Understanding the Performance of Solar PV Systems Using Data-	Australia	289
	Driven Analytics		
	Sue A. Chen ^{7,4} ,Arun Vishwanath ¹ ,Saket Sathe ¹ , Shivkumar		
	Kalynaraman ² and Siyuan Lu ³ ¹ IBM Research - Australia		
	² IBM Research – India		
	³ IBM Thomas J. Watson Research Center		
	⁴ School of Mathematics and Statistics, University of Melbourne		
S 27.4	An Enhancement to Cumulant-based Probabilistic Power Flow	Vietnam	160
	Methodologies		
	Duong D. Le ¹ , Kien V. Pham ¹ , Duong V. Ngo ² , Ky V. Huynh ² , Nhi T. A. Nguyen ³ , Alberto Berizzi ³		
	¹ Department of Electrical Engineering		
	Danang University of Science and Technology		
	² The University of Danang, Danang, Vietnam		
	³ Department of Energy, Politecnico di Milano, Italy		
S 27.5	Design, Simulation and Implementation of a Grid Tied Solar Power	Bangladesh	383
	Controller Integrated with Instant Power Supply Technology		
	Masum Billah, Sanjoy Kumar Das, Md. Toriqul Islam, Md. Anamul Haque, Bishwajit Banik Pathik		
	Department of Electrical and Electronic Engineering		
	American International University-Bangladesh (AIUB), Dhaka		

S 28: Ba	attery and Energy Storage System in Smart Grid II		
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 28.1	On-Line Lithium-Ion Battery State of Health Estimation Using Aging-Related Impedance Identification with Optimization <i>Sho Ohtani</i> ¹ , <i>Junichi Miyamoto</i> ¹ , <i>Hiroshi Kajitani</i> ¹ , and <i>Shingo</i> <i>Takahashi</i> ² ¹ Smart Energy Research Laboratories NEC Corporation, Kawasaki, Japan	Japan	288
S 28.2	² NEC Laboratories Singapore, NEC Asia Pacific Pte. Ltd., Singapore Optimal Dispatch Strategy of Hybrid Power Generation with Battery Energy Storage System in Islanding Mode Noppasit Piphitpattanaprapt and David Bangerdpongchai	Thailand	401
S 28.3	Department of Electrical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand Sizing of Battery Energy Storage System for Sustainable Energy in	Thailand	410
	a Remote Area Kollawat Keskamol and Naebboon Hoonchareon Department of Electrical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand		
S 28.4	Optimizing Energy Cost via Battery Sizing in Residential PV/Battery Systems Elahe Doroudchi, Sudip Kumar Pal, Matti Lehtonen and Jorma Kyyrä Aalto University, Finland	Finland	256
S 28.5	Smart Frequency Control in Power Transmission Systems Using a BESS Jan Servotte ¹ , Enrique Acha ² and Luis M. Castro ³ ¹ Department of Electrical Energy Engineering, Systems and Automation, Ghent University, Gent, Belgium ² Department of Electrical Engineering, Tampere University of Technology (TUT), Tampere, Finland.	Finland	379
	³ Electrical Engineering Department at the National Autonomous University of Mexico (UNAM), Mexico City, Mexico		

E.

Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 29.1	A Versatile Solution for Continuous On-line PD Monitoring	Finland	301
	Bashir Ahmed Siddiqui, Pertti Pakonen, Pekka Verho and Antti Hilden		
	Department of Electrical Engineering		
S 29.2	Tampere University of Technology, Tampere, Finland On Possibilities of Using Smart Meters for Emergency Grid	Sweden	327
5 25.2	Management- Analysing the Effect on Power Quality	Sweden	521
	Yasir Arafat ¹ , Lina Bertling Tjernberg ² , and Per-Anders Gustafsson ³		
	¹ Division of Electric Power Engineering		
	Chalmers University of Technology Gothenburg, Sweden		
	² School of Electrical Engineering,		
	KTH Royal Institute of Technology Stockholm, Sweden		
	³ Göteborg EnergiNät AB Gothenburg, Sweden		
S 29.3	False Data Injection Attacks with Local Topology Information	Singapore	336
	against Linear State Estimation		
	Ying Sun, Wen-tai Li, Wentu Song and Chau Yuen Engineering Product Development		
	Singapore University of Technology and Design, Singapore		
S 29.4	Robust Snapshot Algorithm for Power Consumption Monitoring in	South Africa	377
0 10.1	Computationally Constrained Micro-Grids	oodanii anod	011
	Pacome L. Ambassa ¹ , Stephen D. Wolthusen ² , Anne V.D.M. Kayem ¹ ,		
	and Christoph Meinel ³		
	¹ Department of Computer Science		
	University of Cape Town, South Africa		
	² Norwegian Information Security Laboratory		
	Gjøvik University College Gjøvik, Norway		
S 29.5	³ Hasso Plattner Institute, University of Potsdam, Germany	Singanara	297
5 29.5	Real-Time Display of Data from a Smart Grid on Geographical Map Using a GIS Tool and its Role in Optimization of Game Theory	Singapore	297
	Monika ¹ , Dipti Srinivasan ¹ , and Thomas Reindl ²		
	¹ Electrical and Computer Engineering, National University of Singapore		
	² Solar Energy Research Institute of Singapore, Singapore		

S 30: D	emand Side Management in Smart Grid III		
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 30.1	Control Strategies for Demand-side Management in Smart Girds Part 1: Assessment Methodology Based on Reliability Franz M. Hanser	United Kingdom	211
S 30.2	Institute for Energy Systems, The University of Edinburgh, UK Control Strategies for Demand-side Management in Smart Girds Part 2: Developing the Control Strategy Franz M. Hanser	United Kingdom	212
S 30.3	Institute for Energy Systems, The University of Edinburgh, UK The Value of Online Information for Demand Response in Walrasian Electricity Markets Felix Claessen, Bart Liefers, Michael Kaisers, and Han La Poutré	Netherlands	137
S 30.4	CWI Netherlands Real-Time Scheduling of Time-Shiftable Loads in Smart Grid with Dynamic Pricing and Photovoltaic Power Generation <i>Congmiao Li, Dipti Srinivasan, Thomas Reindl</i> Solar Energy Research Institute of Singapore	Singapore	167
S 30.5	National University of Singapore Demand Response Optimization of Power Generation and Consumption in Energy Intensive Enterprise <i>Zhen Hu¹, Bin Duan², Yunke Xu², and Nengxue Li²</i> ¹ College of Information Engineering Xiangtan University, Xiangtan, China ² Collaborative Innovation Center of Wind Power Equipmentand Energy Conversion, Xiangtan, China	China	064

S 31: St	ability and Security in Smart Grid II		
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 31.1	Distributed Security Constrained Economic Dispatch	USA	330
	M. Hadi Amini ¹ , Rupamathi Jaddivada ¹ , Orkun Karabasoglu ¹		
	Sakshi Mishra ²		
	¹ Department of Electrical and Computer Engineering		
	Carnegie Mellon University, Pittsburgh, PA, USA.		
	² Energy Science, Technology and Policy, CIT interdisciplinary		
	Carnegie Mellon University, Pittsburgh, PA, USA.		
S 31.2	System Identification of an Interconnected Power System with an	Thailand	408
	Energy Storage System for Robust Stability Improvement		

Naowarat Tephiruk and Komsan Hongesombut Department of Electrical Engineering Eaculty of Engineering Kasetsart University, Banakok, Thailand		
Development of Distribution Networks with Low Carbon Technologies	United Kingdom	177
Department of Electrical and Electronic Engineering The University of Manchester, United Kingdom	India	335
Improving Power System Security Sumi Soman ¹ ,Polly Thomas ¹ , Sherin Tom ¹ and John George ²	mula	335
² College of Engineering Adoor, India	la alla	001
Noopura S.P. ¹ , James Ranjith Kumar R. ¹ , Amit Jain ¹ , and Jayan. M.V. ¹ Central Power Research Institute, India	India	361
	Department of Electrical Engineering Faculty of Engineering, Kasetsart University, Bangkok, Thailand Development of Distribution Networks with Low Carbon Technologies Nurulafiqah Nadzirah Mansor and Victor Levi Department of Electrical and Electronic Engineering The University of Manchester, United Kingdom Forced Islanding and Restoration Scheme to Prevent Blackout for Improving Power System Security Sumi Soman ¹ , Polly Thomas ¹ , Sherin Tom ¹ and John George ² ¹ Saintgits College of Engineering, Kottayam, India ² College of Engineering Adoor, India Fast Decoupled State Estimation based on Current Equations Noopura S.P. ¹ , James Ranjith Kumar R. ¹ , Amit Jain ¹ , and Jayan. M.V.	Department of Electrical Engineering Faculty of Engineering, Kasetsart University, Bangkok, Thailand Development of Distribution Networks with Low Carbon United Technologies Kingdom Nurulafiqah Nadzirah Mansor and Victor Levi Experiment of Electrical and Electronic Engineering The University of Manchester, United Kingdom India Forced Islanding and Restoration Scheme to Prevent Blackout for India Improving Power System Security Sumi Soman ¹ , Polly Thomas ¹ , Sherin Tom ¹ and John George ² ¹ Saintgits College of Engineering, Kottayam, India India ² College of Engineering Adoor, India India Fast Decoupled State Estimation based on Current Equations India Noopura S.P. ¹ , James Ranjith Kumar R. ¹ , Amit Jain ¹ , and Jayan. M.V. India

0.02.1	ower System Protection and Fault Diaganosis in Smart Gr	Country of	ISGT Asia 2015
Ref. No.	Title, Authors, Affiliation	Origin	reference code
S 32.1	Preliminary Study on Adaptive Fast-tripping Current Protection for Microgrid	China	314
	Wenchao Fan ¹ , Zaijun Wu ¹ , Xiaobo Dou ¹ , Ye Shi ¹ , Yang Wang ¹ and Mingxing Zhou ²		
	¹ School of Electrical Engineering		
	Southeast University Nanjing, China		
	² Yinchuan Power Supply Company		
S 32.2	Designing and Research of a Novel Current Limiting DC Hybrid	China	393
	Circuit Breaker with the Combinatorial Electronic Switch		
	Huan Zheng, Hongyang Lin and Yi Du		
	Power Economic Technology Research Institute		
S 32.3	Fujian Electric Power Company, China A Smart and Adaptive Scheme for Generator Out of Step Protection	India	208
3 32.3	Nitesh Kumar D. ¹ , R. Nagaraja ¹ , and H.P. Khincha ²	IIIuia	200
	¹ Power Research and Development Consultant Pvt. Ltd, Bangalore,		
	India		
	² Indian Institute of Science Bangalore, India		
S 32.4	Adaptive Over Current Relay Coordination Algorithm for Changing	India	229
	Short Circuit Fault Levels		
	Manohar Singh and Vishnuvardhan Telukunta		
	Central Power Research Institute, Bangalore, India		
S 32.5	Interface Flow Limit Identification Using Focused Time Delay	Japan	151
	Network for MEPS Transmission		
	N.B. Salim ^{1,2} , Takao Tsuji ¹ , Tsutomu Oyama ¹ , and Kenko Uchida ³		
	¹ Yokohama National University, Japan		
	² Universiti Teknikal Malaysia Melaka, Malaysia		
	³ Waseda University, Japan		

	odeling, Integration and Management of Renewable Energ		
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 33.1	An Analytical Approach for Reliability Evaluation of Distribution Systems for Optimal Siting, Sizing and Type of Renewable Distributed Generators	Thailand	321
	Noppadol Kranjanaudom and Uthane Supatti Faculty of Engineering at Sri Racha Kasetsart University, Sri Racha, Chonburi, Thailand		
S 33.2	Improving Resiliency in Renewable Energy Based Green Microgrids Using Virtual Synchronous Machines Controlled Inverter Y.V. Pavan Kumar and Ravikumar Bhimasingu Department of Electrical Engineering Indian Institute of Technology Hyderabad (IITH), India	India	347
S 33.3	Optimal Direct Voltage Control of MTDC Grids for Integration of Offshore Wind Power Zhuang Xu ¹ and C. Zhang ² ¹ Department of Electrical and Electronics Engineering The University of Nottingham Ningbo China ² State Grid Electric Power Reserch Intitude (SGEPRI) Nanjing, China	China	355
S 33.4	Forecasting of Solar Irradiance for Solar Power Plants by Artificial Neural Network Siripong Watetakarn and Suttichai Premrudeepreechacharn Department of Electrical Engineering, Faculty of Engineering Chiang Mai University, Chiang Mai, Thailand	Thailand	395

S 33.5	Impact of Variable Solar PV Generation in MEA's Power Distribution System	Thailand	015
	Att Phayomhom, Nattachote Rugthaicharoencheep, Surachai		
	Chaitusaney, and B. Ainsuk		
	¹ Department of Power System Planning		
	Metropolitan Electricity Authority (MEA), Bangkok, Thailand.		
	² Department of Electrical Engineering, Faculty of Engineering		
	Chulalongkorn University (CU), Bangkok, Thailand.		
	³ Department of Electrical Engineering, Faculty of Engineering		
	Rajamangala University of Technology Phra Nakhon (RMUTP)		
	⁴ Special Project Department, Loxley Public Company Limited		

Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 34.1	Analysis of Different Scenarios for Residential Energy Management under Existing Retail Market Structure <i>M.N. Akter and M.A. Mahmud</i> School of Engineering, Deakin University, Australia	Australia	218
S 34.2	Decentralized Energy Management for a Group of Heterogenous Residential Customers Batchu Rajasekhar and Naran Pindoriya Electrical Engineering Indian Institute of Technology Gandhinagar, Ahmedabad, India	India	359
S 34.3	Smart Multi-Terminal DC µ-grids for Autonomous Zero-Net Energy Buildings: Implicit Concepts Francisco Gonzalez Longatt ¹ , Bharat Singh Rajpurohit ² , and Sri Niwas Singh ³ ¹ School of Electric, Electronic and Systems Engineering Loughborough University, United Kingdom. ² School of Electrical and Computer Science Indian Institute of Technology Mandi, Himanchal Pradesh, India. ³ Department of Electrical Engineering Indian Institute of Technology Kanpur, India	United Kingdom	059
S 34.4	Spatio-temporal Energy Profiling of Commercial Buildings Rohit Chintala, Vikas Chandan, Sunil K. Ghai, Zainul M. Charbiwala, and Deva P. Seetharam IBM Research - India	India	286
S 34.5	Response of Smart Residential Buildings with Energy Management Systems to Price Deviations Sebastian Kochanneck ¹ , Hartmut Schmeck ¹ , Ingo Mauser ² , and Birger Becker ² ¹ Karlsruhe Institute of Technology ² FZI Research Center for Information Technology	Germany	326

S 35: Evaluation and Enhancement of Power Quality and Reliability in Smart Grid II			Grid II
Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 35.1	An Hierarchical Control of AC Microgrid Composed of Distributed	China	074
	Power Resources Based on Voltage Source Converter		
	Bao Wei ¹ , Yan Yuehao ¹ , Chi Yuanhong ¹ , and Bao Weiyu ²		
	¹ Zhengzhou Electric Power Supply Company, Zhengzhou, China		
	² School of Electrical Engineering, Shandong University, Jinan, China		
S 35.2	Improving Network Reliability Through Effective Asset Management	Thailand	413
	Paul Blackmore ¹ and Nopbhorn Leeprechanon ²		
	¹ EA Technology Asset Management PTE Ltd., Singapore.		
	² Faculty of Engineering, Thammasat University, Thailand		10-
S 35.3	Design of a Transformer-less Single Switch-Mode Photovoltaic	Bangladesh	195
	Grid-Connected Boost Inverter with Immittance Conversion		
	Topology		
	Sajib Chakraborty ¹ , S. M. Salim Reza ² , Wahidul Hasan ¹ , M. Abdur Razzak ¹		
	¹ Department of Electrical and Electronic Engineering Independent University Bangladesh, Dhaka, Bangladesh		
	² Faculty of Science and Technology		
	Bangladesh University of Professionals, Dhaka, Bangladesh		
S 35.4	Modeling and Control of Thyristor Controlled Phase Shifting	China	343
3 33.4	Transformer	Ghina	545
	Yang Xiaonan ¹ , Chen Hongkun ¹ , Zhao Xiaochun ² , Wang Zhengfeng ² ,		
	Wu Xu ² , Song Yunting ³ , and Ding Jian		
	¹ Wuhan University, Wuhan, China		
	² State Grid Anhui Electric Power Company, Anhui, China		
	³ China Electric Power Research Institute, Beijing, China		
S 35.5	Analysis of Harmonics with Renewable Energy Integration into the	Australia	048
2	Distribution Network	Adotralia	010

G.M. Shafiullah ¹ and Amanullah MT Oo ²
¹ Murdoch University, Australia
² Deakin University, Australia

Ref. No.	Title, Authors, Affiliation	Country of Origin	ISGT Asia 2015 reference code
S 36.1	Short-Term Wind Speed Forecasting of Oak Park Weather Station By Using Different ANN Algorithms Rohan Singh, Kishan Bhushan Sahay, and Shubhankar Aseet Srivastava	India	390
	Madan Mohan Malaviya University of Technology, Gorakhpur, India		
S 36.2	Performance Comparison of PI and PI-Fuzzy Controller for Grid-	Malaysia	280
	Connected Fuel Cell Inverter System	-	
	N.A. Zambri ¹ , M.N. Ismail ¹ and Azah Mohamed ²		
	¹ Universiti Tun Hussein Onn Malaysia		
	² Universiti Kebangsaan Malaysia		
S 36.3	Decentralized Hamiltonian Control of Isolated AC Microgrids:	Morocco	380
	Theory & Design		
	Mohamed Toub ¹ , Ghassane Aniba ¹ , Mohamed Maaroufi ¹ , Rush D.		
	Robinet III ²		
	¹ Mohammed V University of Rabat, Morocco		
	² Michigan Technological University, United States		