
ORIGINAL ARTICLE

Plasma lipopolysaccharide elevations in cattle associated
with early-stage infection by Fasciola hepatica

D Marendy,a* L Gabor,b SD George,b A Parkerb and E Doylea

Fasciolosis is an endemic zoonotic parasitic disease with signifi-
cant impacts on human health and both animal health and pro-
duction. Early post-infection impacts on the host remain unclear.
The objective of this study was to determine the changes, if any,
to levels of endotoxin in cattle plasma in response to early-stage
infection with Fasciola hepatica. Thirty-six (36) commercial bred
cattle were experimentally infected with approximately 400 viable
metacercariae. Plasma lipopolysaccharide (endotoxin) levels were
examined on 24 occasions from 0 h before infection to 336 h
after infection using the Limulus Amoebocyte Lysate chromo-
genic end point assay and compared with that of six (6) uni-
nfected control animals. Peak lipopolysaccharide levels in infected
animals were reached at 52 h after infection and returned to pre-
infection levels at time 144 h after infection. Infected animals had
significantly elevated lipopolysaccharide levels between 24 and
120 h after infection when compared to uninfected animals. The
mean change in endotoxin units (EU)/mL over time after infection
was statistically significant in infected animals. Elevations of lipo-
polysaccharide occurred in all infected animals suggesting a pos-
sible repeatable and titratable endotoxemia conducive to
therapeutic agent model development.
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Introduction

Fasciolosis is a disease affecting at least 50 countries worldwide
and resulting in an estimated economic cost of US$3.2B due to
loss of production.1 Data relating to the prevalence and inten-

sity of infection rates are extremely limited across district, regional,
and national scales.2 While the introduction and implementation of
flukicides has seen a reduced incidence of wide-scale mortality due to
liver fluke infection, it is also hypothesised that infection rates have
risen with an increase in grazing of irrigated land.3

Studies have highlighted the significant production impacts of
fasciolosis within the meat and livestock industry.3–5 Production losses
are clearly associated with migration of near-adult to adult flukes in

the hepatic parenchyma; however, little published evidence has specifi-
cally implicated the early phase of infection with production loss.
Orally ingested metacercariae excyst in the duodenum following diges-
tion of the cyst wall. The presence of subadult fluke in the hepatic
parenchyma has been demonstrated by 4–6 days6 where they develop
to sexual maturity7; however, juvenile flukes appear in the abdominal
cavity within 2 h of experimental ingestion, via direct penetration of
the duodenal mucosa.6 The migration through the intestinal mucosa
has been postulated to impact the integrity of the intestinal epithe-
lium, resulting in concomitant loss of integrity of the intestinal barrier.
The concept of low-level damage to the intestinal mucosa, with resul-
tant increase in permeability to luminal contents, has been postulated
to reflect a condition called ‘leaky gut syndrome’.

Lipopolysaccharide (endotoxin) is a major component of the outer
cell membrane of Gram-negative bacteria. The significance of ele-
vated levels of endotoxin, that is, endotoxemia, is profound to both
human and animal health. Endotoxin levels in circulating plasma are typ-
ically extremely low.8 For example, in a study of healthy human blood
donors, whilst always measurable, the range of levels was between 0.01
and 1.0 EU/mL.9 Similarly, in healthy cattle, endotoxin levels have been
shown to average at 0.7 EU/mL (range: 0–0.82 EU/mL).10 Endotoxemia
is a condition associated with high mortality in humans11,12 and signifi-
cant economic impact on production species.13–16

The presence of high endotoxin levels within the entire lumina of the
gastrointestinal tract reflects the ubiquitous presence of Gram-
negative bacteria. It also reflects the effectiveness of both the struc-
tural innate immune system (the gastrointestinal mucosal barrier)
and systemic inflammatory responses.17 The host immune response
to fluke infection in domestic sheep and cattle has been examined in
previous studies; however, impact of infection on host plasma endo-
toxin levels have not been reported.18–22 The objective of this study
was to determine the changes, if any, to levels of endotoxin in cattle
plasma in response to early stage infection with Fasciola hepatica.

Materials and Methods

Animals and parasite
Uninfected animals. Six (6) castrated beef cross-bred cattle
4 months of age with an average body weight of 167 kg (�6 SD)
were enrolled in the uninfected control treatment group. On Day
0, each animal received a sham infection of water. Uninfected ani-
mals were handled and maintained the same as infected animals to
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ensure that any changes in biomarkers were a true result of the infec-
tion and not a result from stress from handling.

Infected animals. Thirty-six (36) castrated male beef cross-bred cat-
tle between the ages of 8 and 20 months and with an average body
weight of 265 kg (�45 SD) were enrolled into the infected treatment
group. Metacercariae were examined microscopically for viability on
storage petri dishes, prior to pooling and suspension in 0.4% carboxy-
methylcellulose. On Day 0, each animal was orally infected a final dose
of 10 mL containing approximately 400 metacercariae, generated from
a laboratory strain of triclabendazole-susceptible F. hepatica referred to
as ‘Palmers Oaky’. This strain was isolated in 2014 from sheep grazing
near Oberon, NSW, Australia. On Days 105–107 after infection, six
animals from the cohort were euthanised, and the total count of adult
flukes was calculated in accordance with WAAVP Guidelines to deter-
mine adequate infection.23 In short, intact livers and gall bladders were
recovered from cattle at necropsy. The gall bladder was removed and
examined for presence of adult F. hepatica. Bile ducts were massaged
to encourage adult flukes to emerge. The organ was than sliced into 1–
2 cm transverse segments, which were individually squeezed to encour-
age remaining parasites to emerge. These slices were than incubated in
warm saline at 37�C for a minimum of 2 h. Slices were then squeezed
once to recover any remaining parasites in the parenchyma. The saline
was sieved, and the remaining debris caught in the sieve was examined
for parasites. Intact, heads and tails of the recovered parasites were
counted. The final total comprised of the number of intact flukes and
whichever count was higher between heads and tails.

Maintenance of animals. Animals were confirmed as clinically
healthy by a veterinarian and enrolled in this study. Animals were
maintained in a feedlot facility and fed approximately 2% of body
weight/head/day with roughage mix and approximately 1% of body
weight/head/day with Lucerne pellets. Faecal samples from all ani-
mals collected 4 days prior to infection were examined by sedimen-
tation and confirmed free of F. hepatica eggs. It was anticipated that
minimal stress or discomfort would arise from the proposed proce-
dures. Animals were acclimatised to the facilities for a minimum of
1 week prior to the commencement of the study. All infections were
designed to be subclinical and were thus not anticipated to produce
any signs of parasitism. Had any cattle develop clinical signs of liver
fluke disease, such as impaired health, then that animal would have
been treated with an appropriate flukicide (e.g. triclabendazole) and
withdrawn from the study. All personnel were trained or accredited
to carry out the procedures they were allocated in order to reduce
stress on the animals. The cattle in each pen were inspected per at
least once daily throughout the study. At any stage, an animal could
be withdrawn from the study on animal welfare grounds at the dis-
cretion of the examining veterinarian or Animal Welfare Officer
(AWO). Animal Ethics was approved by the Elanco Animal Ethics
Committee under AEC number ELAVV200287 and ELAVV200260.

Venepuncture
Blood samples were collected at before infection on Day �4 (T = 0)
and after infection at 4, 8, 12, 24, 28, 32, 36, 48, 52, 56, 60, 72, 96, 120,
144, 168, 192, 216, 240, 264, 288, 312, and 336 h. Collection time
points were within �10 min for all time points on Day 0 and � 2 h
for time points thereafter. Blood samples were collected aseptically in

lithium heparin tubes. Specimens were centrifuged at approximately
4000�g for 15 min at 4�C. Plasma samples were then aliquoted into
three 1.5-mL cryovials and stored at �80�C within 4 h of collection.

Endotoxin (lipopolysaccharide) analysis
Plasma endotoxin (lipopolysaccharide) was determined using the
Limulus Amoebocyte Lysate (LAL) chromogenic end-point assay
according to manufacturer’s instructions (Hycult Biotech®, Wayne
PA, USA. HIT302). In brief, two replicates were analysed for each
sample, and the mean was compared with a standard curve pro-
duced on the plate from a serial dilution of the provided endotoxin
standard. Samples that read above the standard curve on the plate in
the initial reading were diluted in endotoxin-free water and the pro-
cess was repeated (n = 242), and the results were then corrected for
the appropriate dilution factor. Plate readings were accepted if the
R2 value of the calibration curve was ≥0.95. The sensitivity of the
described method was 0.04 EU/mL.

Statistical analysis
Results were analysed by repeated measures ANCOVA (JMP® Ver-
sion 16). Statistical models were analysed for and selected by the
lowest Bayesian Information Criterion (BIC). To ensure the accuracy
of the results, plasma endotoxin levels were analysed for normality
using quantile plots and goodness-of-fit tests within collection time;
statistical outliers (values outside 1.5 interquartile range from greater
and lesser quartiles) were removed from the data set. This resulted
in a reduction of 8% in BIC, which was an indication that the
removal of outliers was appropriate. The linear relationship between
age and body weight (BW) was evaluated and determined to be posi-
tive (P < 0.001). Therefore, BW was used as a random variable for
the determination of mean endotoxin level for each time point. Mul-
tiple mean comparison was performed using Tukey’s adjustment; the
results are presented as least squared means � SE.

Results

Parasite infection
The mean total fluke count (�SD) of the 6 euthanised animals was
78 (�11). This represented a 19.5% take for the parasite infections,
above the recommended VICH guidelines24 for an adequate infec-
tion (μ = 20 fluke). No animals presented with clinical signs of
infection. All animals competed the study successfully.

Endotoxin (lipopolysaccharide) analysis
Low levels of endotoxin were detected before infection (least square
mean: 0.007; range: 0–0.28; 0.01 SEM). A rise in endotoxin in
infected animals was first detected at 12 h after infection (least
square mean: 3.03; range = 1.41–5.48; 0.09 SEM; P = 0.03). Their
peak endotoxin levels were reached at 52 h after infection (Figure 1,
least square mean: 23.64; range = 4.16–51.66; 2.25 SEM; P < 0.0001)
and returned to pre-infection levels at 168 h (least square mean:
1.24; range = 0.764–3.18; 0.10 SEM; P = 0.21). A second but smaller
endotoxin peak was detected at 216 h after infection (least square
mean: 3.42; range = 0.97–6.84; 0.25 SEM; P = 0.01). The mean
change in EU/mL over time (at all-time points after infection) was
statistically significant (P < 0.0001).
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There was no change in levels of endotoxin within uninfected ani-
mals over time (range: 0.86–1.43, 0.18 SEM). Infected animals had
significantly elevated lipopolysaccharide levels between 24 and 120 h
after infection when compared to uninfected animals (P < 0.05).
When comparing infected versus uninfected animals, time, treat-
ment and treatment * time where all statistically significant
(P < 0.0001).

Descriptions of hepatic lesions from recovered livers
Hepatic migration of F. hepatica resulted in clusters of varying sized
abscesses. The lesions were necrotic and cavitated and were consis-
tent with lesions frequently reported associated with fluke migration.
Numerous lesions frequently contained mummified adult worms.

Discussion

The ruminant gastrointestinal tract, by the nature of its fermentative
capabilities, contains high levels of luminal endotoxin.13,25,26 Endo-
toxin levels have been shown to increase markedly during feeding of
high grain diets.25,27 In more controlled diets associated with sub
clinical ruminal acidosis, concomitant elevations in plasma endo-
toxin are relatively modest (peak plasma endotoxin, 0.81 EU/mL). In
health, a functioning intestinal mucosa prevents absorption of signif-
icant endotoxin across the mucosal barrier17,28 and the low concen-
trations of endotoxin detectable in the portal circulation28 are
rapidly cleared by the normally functioning liver and acute phase
proteins,14 such as Lipopolysaccharide Binding Protein (LPS-BP).
The degree to which a functioning gastrointestinal barrier prevents
endotoxin leakage is impressive—peak ruminal endotoxin levels of
over 100,000 EU/mL following induced subclinical acidosis were
associated with plasma endotoxin levels of less than 1 EU/mL.26

The presence of endotoxin within the plasma is a significant immu-
nological challenge to the host.29,30 Egress of luminal endotoxin
beyond the intestinal lumen can occur via paracellular or tran-
scellular routes of transport.8 Irrespective of the route, systemic

translocation triggers an acute immune response with production of
pro-inflammatory cytokines following activation of TLR428,31 and an
entire cascade of acute phase responses, with clinical and production
consequences.13,14,32–37 This response elicits the clinical signs com-
monly associated with endotoxemia (including pyrexia, tachypnoea,
and vasodilation)14 and has been ascribed to pro-inflammatory
mediators such as TNF-α and IL-6. In the current study, no such
clinical signs were noted. This initial response to endotoxin is termed
the acute phase response. The levels of detectable endotoxin that
are associated with the acute phase response are low. In clinically
normal cattle, including those on high grain diets, circulating plasma
endotoxin is usually not detectable or, cited as less than 0.05
EU/mL.26,38,39

In the current study, elevation of plasma endotoxin was noted within
12 h after infection. Peak endotoxin levels were reached at 52 h after
infection at an average of 23.64 EU/mL, with the highest individual
value reaching 51.66 EU/mL. Between time points 12 h and 120 h,
ALL individual infected animals had plasma endotoxin levels greater
than 5 EU/mL. As a comparison, when cattle where injected intrave-
nously with sufficient purified endotoxin to induce experimental
endotoxic shock (and in one case death), the maximum plasma
endotoxin detectable was 30.7 EU/mL (range, 1.6–30.7 EU/mL) and
control animals had undetectable plasma endotoxin by 15 min after
injection.38 Similarly, calves injected repeatedly with 5 ug/kg body
weight of endotoxin had undetectable plasma endotoxin within
3 min of injection,40 which suggests a rapid and effective clearance
mechanism. In stark contrast, the current study clearly demonstrated
plasma endotoxin levels an order of magnitude higher than uni-
nfected controls over prolonged periods of time. In the absence of
any infectious process other than the controlled oral infestation with
metacercariae, this is strong evidence that a localised compromise of
the gastrointestinal barrier has led to a demonstrable increase in gas-
trointestinal barrier permeability. Furthermore, numerous studies
have shown that various forms of liver injury including hepatitis and
hepatic lipidosis can decrease LPS clearance.38,41–45 In particular,
hepatocyte lesions have been shown to reduce the percentage of
hepatic LPS that the liver is able to clear.42 As juvenile fluke have
been shown to reach the liver parenchyma within 4–6 days, the
resulting lesions from parasite migration could explain why LPS con-
centrations did not return to baseline within the study period.

Helminth parasites are known to damage intestinal barrier function,
and specific mechanisms have been demonstrated in the case of
fascioliasis.6 The current study strongly supports existing evidence
that direct damage to the gastrointestinal barrier is associated with
the initial trans-intestinal migration phase of F. hepatica infection
and that a consequence of this (presumably) localised compromise is
also associated with endotoxin (LPS) levels more typically seen in
clinically aggressive endotoxemia models. Recent research efforts,
across multiple species, have focussed on numerous proteins pro-
duced by the excysted metacercaria or juvenile flukes, which have
been shown to significantly dampen local immune responses, both
innate and acquired.21,22,46–57 The current study raises the possibility
that localised immunomodulation by the parasite, presumably to
maintain a cryptic status, has a low-level immune modulation effect
which is systemic in its impact. This could be affirmed with the anal-
ysis of biomarkers from the acute phase response such as LBP,

Figure 1. Average concentration of lipopolysaccharide presented in
endotoxin units (EU) per mL over time. Coloured areas under the curve
indicate that the average value was significantly different (P < 0.05)
between infected and uninfected groups.
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haptoglobin, and Serum Amyloid. In the current model, this is
manifested both by the longevity of plasma endotoxin after infection
and also the lack of systemic clinical impact of endotoxemia. The
reduction in circulating LPS levels likely reflects the temporally finite
period in which juvenile fluke are viable within the gastrointestinal
lumen, leaving a short period of time for penetration of the intestinal
mucosa. The results suggest that any damage (or increased perme-
ability) of the tract is reversible.

With regard to production losses, the study suggests a significant
metabolic insult (endotoxemia). Acute endotoxemia in cattle has
recently been demonstrated to cause a significant and quantifiable
negative energy balance.58 It is possible that an extended period of
intestinal permeability following juvenile fluke damage, and the
resultant endotoxemia, accounts for a significant and persistent neg-
ative energy balance which would be difficult to address.

To the authors’ knowledge, this is the first demonstration of
endotoxemia associated with Fasciola infection. The longevity of the
response and the lack of systemic clinical impact on animals are in
contrast to the high levels of endotoxin detected. Additionally, there
is extensive research examining models attempting to induce an end-
otoxemic state (leaky gut in production animals and sub-acute rumi-
nal acidosis in ruminants), with mixed results.25,59,60 The current
study suggests a simpler, less clinically adverse model for systemic
endotoxemia in cattle. Its repeatability in other domestic ruminants
should be assessed and other biomarkers associated with elevated
endotoxin examined.
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