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Summary

� Stem respiration constitutes a substantial proportion of autotrophic respiration in forested

ecosystems, but its drivers across different spatial scales and land-use gradients remain poorly

understood. This study quantifies and examines the impact of logging disturbance on stem

CO2 efflux (EA) in Malaysian Borneo.
� EA was quantified at tree- and stand-level in nine 1-ha plots over a logging gradient from

heavily logged to old-growth using the static chamber method.
� Tree-level results showed higher EA per unit stem area in logged vs old-growth plots

(37.0� 1.1 vs 26.92� 1.14 g C m�2 month�1). However, at stand-level, there was no differ-

ence in EA between logged and old-growth plots (6.7� 1.1 vs 6.0� 0.7Mg C ha�1 yr�1) due

to greater stem surface area in old-growth plots. Allocation to growth respiration and carbon

use efficiency was significantly higher in logged plots. Variation in EA at both tree- and

stand-level was driven by tree size, growth and differences in investment strategies between

the forest types.
� These results reflect different resource allocation strategies and priorities, with a priority for

growth in response to increased light availability in logged plots, while old-growth plots priori-

tise maintenance and cell structure.

Introduction

Tropical forests play a major role in the global carbon balance, cap-
turing c. 72 Pg C from the atmosphere each year, which is c. 60%
of the global photosynthesis (Beer et al., 2010), but they also release
a similar amount back into the atmosphere through respiratory
processes in the ecosystem by plants, animals, microorganisms and
fungi (Malhi, 2012; Sitch et al., 2015). Understanding the balance
between carbon uptake and release in tropical forests requires
knowledge of all components of the carbon budget. Respiration
from tree stems remains one of the most understudied aspects of
the carbon budget despite being a substantial proportion of auto-
trophic respiration, and c. 12–25% of total ecosystem respiration
(Chambers et al., 2004b; Cavaleri et al., 2006; Malhi et al., 2009).
Stem respiration is CO2 produced by respiration inside the stem
that diffuses out radially (Bowman et al., 2008) and is associated
with the metabolic activity of plant growth and maintenance

(Malhi et al., 2009). As tree stems consist of several tissues (bark,
cortex, phloem, cambium and xylem), which all contain living cells
that respire, it can be difficult to measure the respiration rate of
individual tissues beneath the stem surface (Teskey et al., 2008;
Trumbore et al., 2013). Woody stem CO2 efflux (EA) to the atmo-
sphere, which is the flux measured at the stem surface, is widely
used as a proxy for stem respiration for methodological simplicity,
and it is largely a measure of the in situ autotrophic respiration of
the biologically active outer layer of the stem (Robertson
et al., 2010). It is, however, widely acknowledged that there is some
uncertainty in the origin of the CO2 emitted from the stem (Sal-
omón et al., 2024). For example, CO2 respired inside the
stem may be transported away from the origin site upwards in the
xylem (Hölttä & Kolari, 2009), and CO2 originating elsewhere,
such as the root system, can also be transported upwards and dif-
fused out within the stem and upper canopy (Teskey et al., 2008;
Trumbore et al., 2013).
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As stems are the largest contributor to forest biomass, their
respiratory consumption has the potential to considerably affect
carbon budgets in forest communities (Ogawa, 2006). EA in tropi-
cal forests has been shown to be driven by a multitude of factors,
with a positive relationship with tree diameter (Meir &
Grace, 2002) and growth rate (Katayama et al., 2016; Jardine
et al., 2022), and a negative relationship with tree age (Ryan
et al., 2004, 2006). As EA is highly reflective of tree metabolism, it
can provide vital insights into allocation strategies and response to
environmental conditions, particularly if partitioned into its growth
and maintenance components. For example, the proportion of
maintenance respiration to growth respiration has been found to
increase during drought (Rowland et al., 2018). EA has also been
shown to decline over elevational gradients (Zach et al., 2008,
2010; Robertson et al., 2010), driven largely by changes in tem-
perature (while also acknowledging the changes in soil nutrients
and species composition and structure; Robertson et al., 2010). It
is, however, unclear how EA would respond to other environmen-
tal gradients such as that of logging disturbance.

In the tropics, most studies on EA have been conducted within
old-growth forests (Cavaleri et al., 2006; Katayama et al., 2016;
Jardine et al., 2022) with little to no research within logged or
degraded tropical forests, despite logged tropical forests being
more prominent than old-growth forests across the tropics (Laur-
ance et al., 2014). Gaps left following logging increase light pene-
tration into the canopy, which has been shown to increase
competition for this newly available subcanopy light and
increase the growth rate of remaining trees (Figueira et al., 2008),
and encourage the establishment of pioneer species (DeArmond
et al., 2022). Logging removes the larger and more commercially
valuable trees, leaving a younger and smaller sized population,
changing canopy structure and forest species, age and size compo-
sition of the forest. This can cause a shift towards fast-growing
light-demanding species from a community dominated pre-
viously by slow-growing, conservative and shade-tolerant species
(Bischoff et al., 2005). Pioneer species have low-density and
low-cost stems (King et al., 2006) with vessel traits displaying
resource-acquisition strategies that support fast growth (Jotan
et al., 2020). Logging also impacts soils via removal of mineral
nutrients through exported logs, soil erosion and leaching (Cleve-
land et al., 2006) as well as via soil removal, inversion and com-
paction (Pinard et al., 1996). Such changes have the potential to
impact respiratory consumption through a shift in forest struc-
ture and growth rate, and subsequently investment strategies. For
example, old-growth tropical forest plots have higher values
for plant functional traits related to structural stability and persis-
tence, whereas logged plots have greater values for traits that drive
carbon capture and growth (Both et al., 2019). Similarly, forest
disturbance leads to a higher allocation of carbon towards growth
and increased carbon use efficiency (Kunert et al., 2019). Given
how expansive logged tropical forests now are, it is imperative to
quantify the impact of logging activities on their respiratory
fluxes and determine the mechanisms responsible for any
observed changes and shifts in respiratory behaviour.

Plot-level studies that use bottom-up field measurements to
quantify components of the carbon budget are crucial for

validating and extrapolating respiratory component estimates of
forest ecosystems derived from remote sensing or eddy covariance
techniques (Robertson et al., 2010). Yet, these field studies are
limited due to the technical challenges of sampling continuously,
in both space and time (Han et al., 2017). Here, this study
reports EA in nine 1-ha forest plots and investigates EA along a
gradient from heavily logged to old-growth forest in Sabah,
Malaysian Borneo, using EA as a proxy for stem respiration. This
study investigates EA at both tree-level and stand-level and
focusses on the spatial patterns of EA across these two scales,
rather than on temporal variability. By contextualising EA in
logged forests, this study adds to the growing pool of research on
autotrophic respiration, the least studied component of forest
carbon dynamics (Robertson et al., 2010) within this expanding
land-use type. Specifically, this study aimed to:
(1) quantify EA at tree-level and stand-level and determine
whether they differ between logged and old-growth plots;
(2) determine whether allocation of stand-level EA to growth
and maintenance respiration, and stem carbon use efficiency dif-
fers between logged and old-growth plots;
(3) investigate the key drivers of tree-level EA in logged and old-
growth, including growth rate, tree size and plant functional
traits and vessel traits; and
(4) investigate the key drivers of stand-level EA in logged and
old-growth, including carbon allocation, forest structure and
composition, and soil nutrients.

Materials and Methods

Study sites

Sampling was conducted within nine 1-ha intensive global ecosys-
tem monitoring (GEM) plots (Marthews et al., 2014; Malhi
et al., 2021) in lowland, dipterocarp dominated, humid tropical
forest within Sabah, Malaysian Borneo, which captured a gradient
of logging intensity from old-growth to heavily logged forest
(Table 1). This region is a hotspot for deforestation and
forest degradation, with a history of widespread exploitation via
selective logging for timber (Pinard et al., 1996; Jomo et al., 2004).
The climate is a seasonal, with a mean daily temperature of 26.7°C
and c. 2600–2700mm of precipitation annually (Walsh & Newb-
ery, 1999; Kumagai & Porporato, 2012).

Logged plots (five plots) were located within the Stability of
Altered Forest Ecosystems (SAFE) Project in the Kalabakan For-
est Reserve (Ewers et al., 2011) (Table 1). These plots have been
logged two (moderately logged; SAF-03 and SAF-04) or four
(heavily logged; SAF-01, SAF-02, SAF-05) times; however, the
exact logging history of the plots is not explicitly documented
(Struebig et al., 2013; Pfeifer et al., 2015). The first round of log-
ging took place in the mid-1970s, with subsequent rounds during
the late 1990s to 2000s (Fisher et al., 2011; Struebig et al., 2013;
Pfeifer et al., 2015). Approximately 150–179 m3 ha�1 of timber
was removed during this time (Struebig et al., 2013), which is
comparable to the mean extraction rate of 152 m3 ha�1 across
Sabah (Fisher et al., 2011). As this area was set to be converted to
oil palm plantation, the usual logging conventions and 60-year
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rotation period were not followed. As a result, large parts of this
area were left highly degraded (Reynolds et al., 2011), and the
current aboveground carbon stocks are now estimated at c. 70%
and c. 25% of the prelogging 1970 0s aboveground carbon stocks
in moderately and heavily logged plots, respectively (Riutta
et al., 2018). As the data from this study are derived from contin-
uous measurements between 2011 and 2019, the heavily logged
plot estimates represent c. 10-yr recovery and moderately
logged at c. 20-yr recovery. Within these logged plots, pioneer
species (determined based on Köhler et al. (2000) and Saner
et al. (2012); see footnote of Table 1) contributed 30% of basal
area on average (Table 1). Old-growth plots were located within
Maliau Basin Conservation Area (two plots) and Danum Valley
Conservation Area (two plots) (Table 1). Within these plots,
there is no evidence of direct human disturbance or logging. Pio-
neer species contributed c. 0.7% of basal area. For more detailed
site and plot descriptions, including species composition, stem

diameter distribution, soil properties and a map, see Riutta
et al. (2018).

Stem CO2 efflux measurements

Stem CO2 EA was measured with a static chamber technique
using standardised techniques from the GEM protocol
(Marthews et al., 2014; Malhi et al., 2021). Campaigns were con-
ducted approximately monthly between 2011 and 2019 for
SAFE Project and Maliau Basin Conservation Area plots, and
between 2015 and 2019 for plots in Danum Valley. These cam-
paigns were, however, intermittent due to various issues with
access, staffing and equipment. Approximately 50 trees were
sampled per 1-ha plot, and these were of various sizes and species,
and distributed evenly around the plot (Supporting Information
Figs S1, S2). Not all trees were measured in each campaign due
to fallen respiration collars and mortality. Once a year, new trees

Table 1 Characteristics of study plots including plot code as it appears in the forestplot.net database, site and coordinates, logging intensity, soil type and
topography, basal area (m2 ha�1), number of stems, number of big trees, percentage of pioneer species and three most abundant genera.

Plot
code Site and coordinates

Logging
intensity

Soil type;
topography

Basal area of
trees > 10 cm
DBH (m2 ha�1)

Number of
stems
> 10 cm
DBH

Number of
big trees
(DBH
> 50 cm)

Pioneer
species
(% of basal
area)

Most abundant
genera

MLA-01 Maliau Basin
Conservation Area,
Sabah (4.747°,
1176.970°)

Old-growth Clay; undulating 41.6� 3.59 397 47 0.2� 0.3 Dryobalanops,
Rubroshorea,
Eusideroxylon

MLA-02 Maliau Basin
Conservation Area,
Sabah (4.754°,
1176.950°)

Old-growth Clay; moderate
slope

34.7� 2.74 479 56 1.7� 1.2 Parashorea,
Mallotus,
Rubroshorea

DAN-04 Danum Valley
Conservation Area,
Sabah (4.951°,
117.796°)

Old-growth Clay; steep slope 32.0� 3.30 444 34 0.7� 1.0 Cleistanthus,
Diospyros,
Parashorea

DAN-05 Danum Valley
Conservation Area,
Sabah (4.953°,
117.793°)

Old-growth Clay; flat 30.6� 3.37 401 26 0.1� 0.0 Diospyros,
Aglaia,
Syzygium

SAF-03 SAFE Project, Sabah
(4.691°, 117.588°)

Moderately
logged

Clay; steep slope 19.6� 1.88 552 10 21.5� 5.0 Rubroshorea,
Macaranga,
Litsea

SAF-04 SAFE Project, Sabah
(4.765°, 117.700°)

Moderately
logged

Partly sandy loam,
partly clay; flat

19.3� 1.70 460 11 6.9� 2.2 Syzygium,
Vatica,
Macaranga

SAF-01 SAFE Project, Sabah
(4.732°, 117.619°)

Heavily
logged

Clay; mostly flat
with a moderate
slope on one edge

6.81� 1.00 318 1 28.1� 4.3 Rubroshorea,
Macaranga,
Dendrocnide

SAF-02 SAFE Project, Sabah
(4.739°, 117.617°)

Heavily
logged

Clay; undulating 11.1� 1.81 552 0 57.2� 5.8 Macaranga,
Rubroshorea,
Glochidion

SAF-05 SAFE Project, Sabah
(4.716°, 117.609°)

Heavily
logged

Clay; undulating 19.6� 1.88 391 6 34.5� 6.6 Dendrocnide,
Macaranga,
Parashorea

Values are mean� 1 SE. Species classified as pioneers (based on Köhler et al. (2000) and Saner et al. (2012)): Adinandra dumosa Jack, Cratoxylum
arborescens Blume, Dendrocnide elliptica Chew, Duabanga moluccana Bl, Endospermum peltatumMerr, Glochidion borneenses Boerl, G. lutescens
Blume, G. rubrum Bl, Ludekia borneensis Ridsdale,Macaranga spp. Thouars,Mallotus lackeyi Elmer,M. mollissimus Airy Shaw,M. paniculatusMüll.Arg,
Melicope lunu-ankenda T.G. Harvey, Neolamarckia cadamba Bosser,Octomeles sumatranaMiq, Pterospermum elongatum Korth, P. javanicum Jungh,
Symplocos fasciculata Zoll.
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were selected for sampling to replace trees in the sample that had
died. As the data collection was part of a long-term carbon moni-
toring campaign (Mills et al., 2023), and due to the accessibility
of the plots and battery life of the equipment, it was not possible
to quantify diurnal or vertical variation in EA within this
study. To control for temporal systematic error, sampling
was conducted within the same time frame across all plots
(09:00 h–14:00 h), and the trees were measured in different
orders across the visits.

On each sampled stem, a PVC collar with a 10.6 cm internal
diameter and 5 cm height was installed at 1.1 m height with sili-
cone sealant (Fig. S3). CO2 EA from the stem was then measured
with an IRGA (EGM-4; PP Systems) and soil respiration cham-
ber (SCR-1; PP Systems). A custom ring adapter of 11 cm dia-
meter and 3.5 cm height was fitted to the chamber to match the
diameter of the collars and enable an air-tight seal to avoid leak-
age (Marthews et al., 2014). Before commencing each measure-
ment, the chamber was flushed, and collar fanned to remove
stagnant air. Any mosses, epiphytes or insect nests were also
removed from the collar before each measurement. The chamber
was then placed onto the collar, CO2 EA was measured for 120 s,
and air temperature was measured at the stem surface. Over the
120 s, CO2 accumulates in the chamber and the uncorrected
CO2 flux (Ru; ppm s�1) is calculated by the IRGA by fitting a lin-
ear regression between CO2 concentration and time (mean
R2= 0.87). The CO2 flux is then calculated using the ideal gas
law (Marthews et al., 2014):

EA=
Ru �M � P � V

R � T þ 273:15ð Þð Þ �
TC

A

where Ru is the uncorrected flux (as volume fraction), M is the
molar mass of carbon (12.01), P is ambient pressure (Pa), V is
the volume m2 (total volume of the chamber, adapter piece and
respiration collar), R is gas constant (8.134), T is air temperature
near stem surface (°C), A is the area of the collar (m2) and TC is
time conversion, in this case from second to month to give EA of
each tree in g C m�2 Stem Area month�1. One measurement per
tree was taken, unless leakage was detected and then the measure-
ment was repeated, and campaigns were repeated monthly
throughout the measuring period. Data from 2016 were removed
from the dataset as the region experienced a strong El Niño event
during this year – the focus of this paper was spatial variability
across trees and plots, rather than temporal patterns. Ollech–
Webel seasonality test, performed using R package SEASTEST

(Ollech, 2021), found no significant interannual patterns in the
data from before or after 2016 (P= 0.6; P= 0.5, respectively).
Data were corrected to 25°C assuming a Q10 of 2.0 (Cavaleri
et al., 2006).

Tree-level EA and explanatory variables

Observed EA data were subject to quality control and outlier
detection, removing spurious data that were considered to be due
to mechanical issues, human error or to be outside logical
bounds. This included large negative values that indicated leakage

that was not detected during the measurements. Observations
outside the 2.5 and 97.5 percentiles within each plot were exam-
ined and removed if they were also outliers among the observa-
tions of that day, and for that particular stem across all
campaigns. EA observations of each tree were then averaged to
provide an estimate of tree-level EA over the course of the study.
Only trees with at least two repeated flux measurements and two
repeated forest censuses were included in the final dataset. The
final dataset following quality control consisted of 4381 indivi-
dual observations of EA from 347 trees, 189 of which were trees
from logged plots and 158 from old-growth plots. Each tree was
measured 13 times on average (range 2–33).

Growth rate (cm yr�1) for individual trees was calculated from
diameter increase using diameter at breast height (DBH; at
1.3 m) from a biannual forest census (Riutta et al., 2018). Plant
functional traits (Both et al., 2019) and wood anatomy traits
(Jotan et al., 2020) were collected in a campaign in 2015
(Table S1) across eight plots; SAF-05 plot was not sampled. Leaf
and wood trait analyses followed standardised protocol (Pérez-
Harguindeguy et al., 2013). Briefly, mature undamaged leaves
were collected from fresh-cut branches and cleaned, and leaf
weight, area, thickness and dry matter content force to punch
and branch wood density were determined in a field laboratory.
Dried bulked and milled leaf material samples were used for
nutrient and isotope concentrations (Ca, K, Mg, P, C, N, δ15N,
δ13C, cellulose, hemicellulose and lignin), and analysis of phe-
nols, tannins and pigments was conducted on 0.7-cm-diameter
leaf discs from fresh leaves (for more information, see Both
et al., 2019). Wood anatomy and vessel trait measurements
involved analysis of branch sections using imagery of cross sec-
tions to determine anatomical traits such as vessel area, vessel
lumen fraction, vessel number per area, hydraulically weighted
diameter and potential hydraulic conductivity (for more informa-
tion, see Jotan et al., 2020). The dataset where both EA and func-
tional traits were available consisted of 86 trees, 45 were from
logged plots and 41 from old-growth plots.

Stand-level EA and explanatory variables

To quantify stand-level EA (Mg C ha�1 yr�1) for each 1-ha plot,
the mean EA of the sampled trees per month per plot was scaled
to the total stem surface area (m2) of each 1-ha plot, which is the
sum of surface area (SA) of trunks and larger branches of trees
> 10 cm in diameter, calculated using an allometric equation
based on stem diameter (Chambers et al., 2004b):

SA= 10�0:105�0:686Xþ2:208X 2�0:627X 3

where X= log10(DBH in cm), which is derived from tree census
data (Riutta et al., 2018). Total stem surface area index (SAI)
expresses stem area as unitless (m2 of stem area per m2 of ground
area).

Stand-level EA was partitioned into growth and maintenance
respiration (Mg C ha�1 yr�1) using a linear equation (Ryan
et al., 2009; Robertson et al., 2010). This method assumes that
woody stem CO2 EA represents woody respiration, and so
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tree-level EA (scaled to g C m�2 yr�1) is regressed against bio-
mass growth (g C m�2 yr�1) per individual tree within each plot.
Biomass growth was estimated by calculating aboveground
woody biomass of each stem from allometric equations for moist
tropical forest with diameter, height and wood density (Chave
et al., 2005), and calculating biomass gain between biannual for-
est censuses. Stand-level maintenance respiration was estimated
as the y-intercept of the linear equation, as this represents woody
respiration when the trees are not growing, and stand-level
growth respiration was estimated as the difference between
stand-level EA and maintenance respiration (Amthor, 1989).
The SE of maintenance respiration was estimated as the SE of the
y-intercept. Root sum of squares was used to calculate the error
of growth respiration using the error of the y-intercept and stand-
level EA SE (Robertson et al., 2010).

Stem carbon use efficiency (CUE) for each 1-ha plot was cal-
culated as NPPstem/(NPPstem+ stand-level EA), whereby NPPstem
is stand-level woody stem productivity (Mg C ha�1 yr�1), which
was estimated from the increase in aboveground woody biomass
between two subsequent censuses (Riutta et al., 2018; Mills
et al., 2023). Soil characteristics (total Mg, P, Ca, Na+, K+, Al+

and pH) for each plot were measured in the 0-to 10-cm soil layer
using three replicas per plot and following standardised RAIN-
FOR protocols (Table S1) (Quesada et al., 2010; Riutta
et al., 2021).

Statistical analyses

All statistical analyses were conducted in R (v.4.0.2; R Core
Team, 2024). To determine the difference in tree-level EA and
tree-level growth rate (cm yr�1) between forest types (old-growth
and logged), Wilcoxon signed-rank tests were applied. To investi-
gate the role of growth and tree size (DBH) on tree-level EA, a
generalised linear model (GLM) was applied with a gamma
family distribution (respiration value are positive, variance
increases with increasing mean), with logarithmic link function;
plot code as a random effect did not improve the model. To
examine whether EA differed between pioneer and nonpioneer
species (Table 1), when controlling for tree size, a linear mixed-
effect model between tree-level EA and pioneer status and DBH
with plot code as a random effect was applied, using the package
NLME (Pinheiro et al., 2023). This model was for logged plots
only, as the proportion of pioneers was negligible in the old-
growth plots (range: 0.1–1.7% of plot BA). The same model
structure was used with tree-level growth rate as the response vari-
able to determine the influence of the pioneer species on tree-
level EA and tree-level growth rate.

A multivariate partial least squares regression (PLS-R) was
employed to investigate the drivers of tree-level EA and their
combined effects, conducted in R package MDATOOLS (Kucher-
yavskiy, 2020). PLS-R is a multivariate method recommended
for analyses where there are multiple explanatory variables and
multicollinearity is likely; it reduces the input variables into com-
ponents, while reducing the dimensionality of correlated vari-
ables, which are then used for the regression (Zema et al., 2023).
For this analysis, separate models were constructed for trees in

logged and old-growth plots, and growth rate (cm yr�1), DBH
(cm), subplot basal area (m2 per 20 m × 20 m subplot minus the
basal area of the target tree, as a proxy for competition), plant
functional traits that are associated with leaf nutrients (δ15N, Ca,
Mg, K, N, P), photosynthesis (δ13C, carotenoids, specific leaf
area) and structure (lignin, cellulose, hemicellulose and leaf thick-
ness) (Both et al., 2019), and wood anatomy and vessel traits
(wood density, vessel area, vessel lumen fraction, vessel number
per area, hydraulically weighted diameter and potential hydraulic
conductivity; Jotan et al. (2020)) were used as input variables
(Table S1). Leave-one-out cross-validation was used to select the
optimum number of components and root-mean-squared error
(RMSE) and the coefficient of determination (R2) was used to
evaluate model performance. Outlier detection and removal was
conducted (Rodionova & Pomerantsev, 2020), and variable
importance projection (VIP) scores were used for variable selec-
tion, with a criterion of > 1 (Trap et al., 2013; Xu et al., 2021).
All the variables were scaled to have a mean of 0 and a SD of 1,
thus allowing the comparison of variables of different units. Only
trees that were sampled in both the plant functional trait (Both
et al., 2019) and wood anatomy campaign (Jotan et al., 2020)
were included in the PLS-R model, resulting in 86 trees, 45 from
logged plots and 41 from old-growth plots.

Difference in stand-level EA, allocation to maintenance and
growth respiration, CUE and SAI between forest types (old-
growth vs logged) was determined using Wilcoxon signed-rank
tests and t-tests. Relationships between stand-level EA, forest type
and plot basal area (BA; m2 ha�1), and stand-level EA, forest
type and SAI, were investigated using multiple linear models.
The relationship between stand-level EA and CUE, and CUE
with BA and growth and maintenance respiration was investi-
gated using multiple linear models. The relationships between
stand-level EA and soil characteristics (total Mg, P, Ca, Na+, K+,
Al+ and pH) were investigated using multiple linear models, as
well as these soil traits with BA, SAI and woody stem NPP.

Results

Tree-level EA

This study quantified tree-level EA of 347 trees across both
logged and old-growth forests. Tree-level EA was higher in
logged (37.0� 1.1 g C m�2 month�1) than in old-growth
(26.92� 1.14 g C m�2 month�1) plots (W= 21 209,
P< 0.001; Fig. 1b), but there was no difference in tree-level EA
between moderately and heavily logged plots (P= 0.75). Logged
plots had higher growth rate than old-growth plots (W= 19 374,
p=<0.001) with an average of 0.78� 0.05 vs 0.47�
0.05 cm yr�1, respectively. A GLM with DBH, growth rate and
forest type (logged vs old-growth) explained 24% of the variation
in tree-level EA. Tree-level EA had a positive relationship with
DBH (P< 0.001) and growth rate (P< 0.001), with no interac-
tion between the variables (P= 0.58) (Fig. 2a,b). While EA was
higher in logged than in old-growth plots (P< 0.001), there
was no interaction between forest type and DBH (P= 0.37) or
forest type and growth rate (P= 0.15). Within logged plots,
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there was no difference in tree-level EA of pioneer species vs non-
pioneer species (P= 0.32) despite the higher growth rate of pio-
neer species (when controlling for tree size; t(187)= 2.14,
P= 0.03) of 0.96� 0.1 vs 0.70� 0.06 cm yr�1 of pioneers vs
nonpioneers in logged plots, respectively. In old-growth plots,
none of the sampled trees were pioneers as their average contribu-
tion to total basal area is only 0.7%.

The potential direct and indirect spatial drivers of tree-level
EA were examined using a PLS-R model. The PLS-R model for
logged forests had an R2= 0.51 with an optimum number of
components of 2, which explained 76.4% cumulative variance in
X and 51.0% cumulative variance in Y (Fig. 3a,b; Table 2).
Growth rate (cm yr�1) was significant in both components
(P= 0.02; P= 0.04) and had the highest coefficients and VIP
score. In Component 1, δ15N was significant (P= 0.02) and
total P was significant in Component 2 (P= 0.04). This model
had high contribution from variables that relate to vessel struc-
ture and wood anatomy (vessel lumen fraction, wood density and
number of vessels) as well as leaf strength and structure (tannins,
leaf thickness and cellulose) although these variables were not sig-
nificant (Table S2). Most variables displayed positive coefficients,
apart from δ15N, P, tannins and cellulose (Fig. 3a,b). The old-
growth PLS-R model had a lower R2 of 0.33 with an optimum
number of components of 1, which explained 73.8% cumulative
variance in X and 32.6% cumulative variance in Y (Fig. 3c,d;
Table 2). In this model, DBH (cm) and hemicellulose had the
highest VIP score and coefficients and were significant within
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Fig. 1 Stand-level stem CO2 efflux (EA) along the
logging gradient from old-growth (green) to
moderately (twice logged; light brown) and
heavily logged (four times logged; dark brown),
with EA partitioned into maintenance (dotted)
and growth (lines) respiration. There was no
difference in stand-level EA between logged and
old-growth plots (T-test; P= 0.59). Error bars
represent propagated SE of stand-level EA (a).
Mean tree-level EA, with SE, along the logging
gradient, whereby tree-level EA was significantly
higher in logged than old-growth plots (Wilcoxon
signed-rank test; P=< 0.001, b). Stem surface
area index (SAI) along the logging gradient with
error bars that represent surface area index error,
which was assigned as 10% based on the
uncertainty in allometry based on Robertson
et al. (2010). SAI was significantly higher in old-
growth than logged plots (T-test; P= 0.03, c).
Stand-level stem carbon use efficiency (CUE),
which was calculated as woody stem net primary
productivity/(woody stem net primary
productivity + stand-level EA), along the logging
gradient. Stem CUE was significantly higher in
logged than old-growth plots (T-test; P= 0.039).
Error bars represent propagated SE of stand-level
CUE (d). For plot codes, see Table 1.
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Fig. 2 Tree-level stem CO2 efflux is higher in logged than old-growth plots
(P< 0.001). Tree-level EA increases with increasing growth rate
(P< 0.001); (a) and with tree diameter at 1.3 m height (DBH; P< 0.001);
(b), as determined by a generalised linear model. Axes are shown with
logarithmic scaling. Brown line represents logged plots (moderately
logged–light brown triangles; heavily logged–dark brown squares) and
green line represents old-growth plots (green circles), with �95%
confidence intervals.
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the model (P= 0.002; P= 0.01). δ13C and N were also signifi-
cant variables within the model (P= 0.02; P= 0.03). This model
has a high contribution from variables related to leaf structure
and strength (hemicellulose, cellulose and lignin) and photo-
synthesis (N, δ13C) (Fig. 3c,d; Table 2), growth rate and subplot
basal area were also included in the model but were not signifi-
cant (Table S2). In common with the logged model, P had a
negative coefficient and, therefore, a negative influence on tree-
level EA.

Stand-level EA

There was no difference in stand-level EA between logged and
old-growth plots (P= 0.59), with an average of 6.0� 0.7Mg C
ha�1 yr�1 in old-growth plots and 6.7� 1.1 Mg C ha�1 yr�1 in
logged plots (Fig. 1a). Due to the higher tree-level EA (Fig. 1b),

logged plots exhibited similar stand-level EA to old-growth plots,
despite having reduced SAI (t(7)=�2.6, P= 0.03) (Fig. 1c) and
BA (m2 ha�1; t(6.5)=�4.8, P= 0.002; Table 1; Fig. S2). There
was no significant difference in the total number of stems
(> 10 cm DBH) between the two forest types (P= 0.94), but the
diameter distribution differed: Logged forest plots had signifi-
cantly more smaller 20–30-cm trees (t(6.7)= 2, P= 0.042) than
old-growth plot, and old-growth plots had significantly more lar-
ger trees of 60–70 cm (t(3.6)=�2.4, P= 0.041) and > 70 cm (t
(4.7)=�6, P= 0.001; Fig. S2).

There was a significant difference in how EA was allocated to
growth and maintenance respiration. Logged forest plots had
higher allocation to growth respiration (t(4.5)= 2.9, P= 0.04),
which was 21.7� 6.2% of stand-level EA relative to 8.9� 2.2%
within old-growth plots (Fig. 1a). Allocation of stand-level EA to
maintenance respiration ranged from 55.3 to 96.0% across all
study plots, with an average 91.0� 2.2% and 68.0� 6.2% in
old-growth and logged plots, respectively (Fig. 1a). Stem CUE
was higher (t(7)=�2.6, P= 0.039) in logged plots
(0.52� 0.11) than in old-growth plots (0.40� 0.11) (Fig. 1d),
with no significant linear relationship between stem CUE and
stand-level EA (P= 0.60).

Stand-level EA was positively correlated with forest type and
plot BA (R2= 0.51, P= 0.05; Fig. 4a) and SAI (R2= 0.61,
P= 0.026; Fig. 4b). For a given BA and SAI, EA was higher in
logged plots than in old-growth plots (Figs 4a,b, S4). Stem CUE
and maintenance respiration, on the other hand, showed a uni-
versal pattern across both forest types, as CUE negatively
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Fig. 3 Partial least squares regression (PLS-R)
variable importance projection scores (a, c) and
coefficients (b, d) for the variables that influence
tree-level stem CO2 efflux (EA) in logged (brown)
and old-growth (green) forest plots. Asterisk (*)
indicates variables that were significant within the
model as determined by Jack-knifing (P< 0.05),
solid outline represents coefficients from
Component 1 (b, d) and dashed outline
represents coefficients from Component 2 (b).
Trait acronyms and abbreviations are as follows,
whereby δ15N is foliar 15N isotope, Pm is foliar
phosphorus content, lumen fraction is vessel
lumen fraction, N. Vessels is number of vessels
within wedge, DBH is stem diameter at 1.3m
height, δ13C is foliar 13C isotope, subplot BA is
the basal area of trees in a 20 × 20m subplot
minus the basal area of the target tree (as a proxy
for competition) and Npa is foliar nitrogen.
Subscripts ‘pa’ and ‘m’ indicate units per leaf area
(mgmm�2) and per leaf dry mass (mg g�1),
respectively. Further variable descriptions can be
found in Supporting Information Table S1 and
output in Table S2.

Table 2 Summary of the best supported partial least squares regression
models for tree-level stem CO2 efflux (EA; g C m�2 month�1) within
logged and old-growth, whereby RMSE is root-mean-squared error of
prediction and CV is cumulative variance explained (%) (Supporting
Information Table S2).

Model
Optimum
components R2 CV in X CV in Y RMSE

Logged plots 2 0.51 76.4 50.9 9.02
Old-growth plots 1 0.33 73.8 32.6 11.1
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correlated with BA (R2= 0.53, P= 0.02; Fig. 4c) and mainte-
nance respiration positively correlated with stem SAI (R2= 0.59,
P= 0.009; Fig. 4d).

Soil Mg (log-transformed) and soil P displayed a negative rela-
tionship with stand-level EA (R2= 0.63, P= 0.02; Fig. 5a). Soil
Ca (log-transformed) also had a negative relationship with both
stand-level EA (R2= 0.46, P= 0.03) and with maintenance
respiration (R2= 0.73, P= 0.002; Fig. 5b). These relationships
with soil nutrients were not mediated via stand structure or
growth: Soil Mg, soil P and soil Ca were not correlated with BA
(P= 0.89; P= 0.86; P= 0.17), woody stem NPP (P= 0.21;
P= 0.35; P= 0.59) or SAI (P= 0.34; P= 0.73; P= 0.16). A
principal component analysis was conducted to assess whether
soil characteristics in combination (including N, P, Mg, Ca, pH,
Na+, K+, Al+) rather than individually would constitute a

stronger predictor for stand-level EA, but there was no significant
relationship with the strongest axis and stand-level EA (Fig. S5).

Discussion

This study quantified EA at tree-level and stand-level and
reported different patterns of EA along the logging gradient in
Bornean tropical forests. While tree-level EA was higher per unit
of stem area in logged plots, old-growth plots had higher total
stem surface area; thus, there was no observed difference in
stand-level EA between forest types. Average stand-level EA
across the study plots was similar to previous studies across the
tropics, including Puerto Rico (2.14–7.37Mg C ha�1 yr�1; Har-
ris et al., 2008), the Peruvian Amazon (6.45� 1.12Mg C
ha�1 yr�1; Robertson et al., 2010), the Brazilian Amazon
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(d)(c) Fig. 4 Linear model between stand-level stem
CO2 efflux (EA) and basal area (BA) by forest
type (old-growth, green; logged, brown)
(R2= 0.51, P= 0.05) (a). Linear model between
stand-level EA and stem surface area index (SAI)
by forest type (R2= 0.61, P= 0.026) (b). Stand-
level stem carbon use efficiency declines with
increasing BA (c; R2= 0.53, P= 0.02). Stand-
level maintenance respiration increases with
increasing stem SAI (d; R2= 0.59, P= 0.009).
Error band represent 95% CI and old-growth
plots are represented by green circles,
moderately logged plots by light brown
triangles, and heavily logged plots by dark
brown squares. For plot codes, see Table 1.
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Fig. 5 Stand-level stem CO2 efflux declines with
increasing soil magnesium and soil phosphorus
(a; R2= 0.63, P= 0.02), and maintenance
respiration declines with increasing soil calcium
(b; R2= 0.73, P= 0.002). Explanatory variables
are log-transformed, x-axes are shown with
logarithmic scaling and error bands represent
�95% confidence interval. Old-growth plots are
represented by circles, moderately logged plots
by triangles and heavily logged plots by squares.
For plot codes, see Table 1.
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(7.07� 0.72Mg C ha�1 yr�1; Rowland et al., 2018) and else-
where in Malaysian Borneo (7.06� 2.09Mg C ha�1 yr�1;
Katayama et al., 2016). Stand-level EA contributed 23–42% of
autotrophic respiration and 12–23% of total ecosystem respira-
tion (Mills et al., 2023), consistent with previous estimates in tro-
pical forests (Chambers et al., 2004b; Cavaleri et al., 2006; Malhi
et al., 2009).

Although there was no difference in stand-level EA between
the forest types, there was a difference in how EA was allocated
and, therefore, a difference in investment priorities. While main-
tenance respiration dominated in both forest types, old-growth
plots allocated more towards maintenance respiration than
logged plots. This was due to their higher SAI; the relationship
between maintenance respiration and SAI was consistent across
the forest types, indicating a similar fixed cost per unit stem area.
In logged plots, by contrast, there was increased allocation to
growth respiration and priority for growth, likely attributed
to the increased light availability following logging and trees
favouring wood production and prioritising vertical stem growth
to avoid becoming overtopped by their neighbours (Chen
et al., 2013; Riutta et al., 2018). Furthermore, higher stem CUE
was observed in logged vs old-growth plots; that is, production of
new woody tissue had a lower metabolic cost in logged plots.
This could be due to trees investing less into defence within
younger disturbed forests (Kunert et al., 2019) and due to the
higher abundance of fast-growing early successional species with
low wood density. The higher CUE in logged plots is also consis-
tent with the observed NPP allocation shift towards wood pro-
duction at the expense of leaf production (Riutta et al., 2018).
Figueira et al. (2008) also reported a marked increase in wood
carbon use efficiency in an Amazonian forest following logging,
particularly for small trees, although the values are not directly
comparable with this study, as they expressed wood CUE as the
ratio of wood production to GPP. The observed stem CUE for
old-growth plots in this study, 0.40� 0.11, is similar to that in
Central Amazonia of c. 0.43 (Chambers et al., 2004b).

This study also investigated the key drivers of EA at both tree-
level and stand-level. At both levels, EA was driven by differences
in investment strategies, which were induced by disturbance. At
stand-level, SAI and BA were strong predictors of EA for both
forest types, reflective of differences in forest structure. In logged
plots, there is an absence of larger trees and higher gap frequency
(Riutta et al., 2018), and most of their total BA is made up by
smaller and medium-sized trees (Fig. S2). These smaller and
medium-sized trees benefit from increased light availability
and decreased competition for resources following logging, and
so growth rate increases (Chambers et al., 2004a; Figueira
et al., 2008). Here, the effect of changes in forest structure and
investment strategies are interlinked, as increased allocation to
growth respiration in logged plots is likely associated with differ-
ences in forest structure and light availability that translate into
changes in species composition and growth rate that drive the
measured differences in EA. This indicates the presence of two
alternative metabolic states. In the ‘logged forest state’, growth is
prioritised by almost all trees, and in the ‘old-growth state’,

maintenance is prioritised, which is reflective of the growth and
maintenance respiration allocation observed (Fig. S4).

At stand-level, EA was influenced by soil characteristics across
both forest types. The results show that stand-level EA decreased
with higher concentrations of Mg and P, with Mg playing a vital
role in the availability of P (Mam Rasul et al., 2011), and mainte-
nance respiration negatively correlated with soil Ca. Although
research into the direct relationship between EA and soil nutri-
ents is limited, these results would suggest higher stand-level EA
on nutrient-poor soils. Mg and K deficiency have been shown to
increase leaf dark respiration, likely due to upregulated mainte-
nance respiration and increased metabolism to counter the nutri-
ent deficiencies (Li et al., 2017; Rogiers et al., 2020). The scarcity
of soil P may result in higher metabolic cost of wood production,
and/or shift in NPP allocation towards wood at the expense of
leaf and fine root tissues, which have a higher P concentration
than woody tissue. Tree species that persist on low fertility soils
have denser wood and lower wood P concentration, which is
potentially a coordinated evolution of traits to facilitate survival
on low-resource habitats (Heineman et al., 2016). Ca depletion
inflicts significant stress on trees, which causes an upregulation in
water-use efficiency (Oulehle et al., 2023) as Ca contributes to
regulating stomatal aperture (Lanning et al., 2019). This may
suggest a higher metabolic cost of the upward transport of solutes
under Ca depletion, which could potentially contribute to the
increased stand-level maintenance respiration. Furthermore, Ca
is a key element in wood formation, affecting xylem structure,
cambial width and lignification (Fromm, 2010). As the exact
mechanisms for the link between EA and soil nutrients are not
well-understood or -studied, these are just a few proposed expla-
nations for the observed trends.

At tree-level, growth and tree size were moderate drivers of
tree-level EA in both forest types. Previous studies have reported
a decline in both EA and with increasing tree age and size, at the
scale of individual trees (Ryan et al., 2006) and tree stands (Ryan
et al., 2004). The reported decline in EA with tree size exceeded
the decline in growth and may be induced by a decrease in radial
diffusion through the bark and/or higher sapflow transporting
CO2 away from the origin site (Ryan et al., 2004) as stem allome-
try plays an important role in CO2 efflux due to differences in
relative fractions of metabolically active tissues between trees of
different diameter sizes (Pruyn et al., 2002, 2003; Rodrı́guez-
Calcerrada et al., 2015). However, within these study plots, a
decline in tree-level EA with size was not observed; rather, there
was a steady increase in both growth and tree-level EA with tree
size in both forest types. This supports the idea that some of the
very largest trees in a stand can still maintain a high growth rate
(Piovesan & Biondi, 2021). The model had fairly low predictive
power (R2= 0.24), which is consistent with previous studies in
Central (R2= 0.3, Jardine et al., 2022; R2= 0.35, Chambers
et al., 2004b) and Eastern Amazon (R2= 0.38, Rowland
et al., 2021), indicating that other variables influence both tree-
level EA and growth. For example, while pioneer species had
higher growth rate, there was no difference in tree-level EA
compared with nonpioneer species, likely attributed to the
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low-density, low-cost stems of the pioneers (King et al., 2006).
Post logging, pioneer species have been found to grow two to five
times faster than commercial species (DeArmond et al., 2022) –
this, however, does not translate into an equally large difference
in woody biomass production, due to their low wood density (c.
0.39 vs 0.53 g cm�3 for pioneer and nonpioneer species, respec-
tively, in the logged plots; species-specific wood density estimates
from Zanne et al., 2009). It is not, however, only pioneer species
that display increased growth rates, as species found in both forest
types grow significantly faster in logged than in old-growth plots
(Riutta et al., 2018). Previous research has also found no taxo-
nomic signal in stem respiration (Rowland et al., 2018) or growth
rate (Rowland et al., 2021), indicating that forest structure,
increased light and reduced competition are more important than
species identity for EA.

Differences in investment strategies are also present at tree-level.
In both PLS-R models, foliar P had a negative influence, indicating
a higher metabolic cost of wood production with depleted P. The
logged model had a high contribution from growth rate and from
traits related to wood anatomy and vessel structure. In Amazonia,
wood anatomy has been shown to be influenced by the environ-
mental conditions in disturbed vs undisturbed stands when com-
paring between the same tree species (Campbell et al., 2016).
Furthermore, pioneer species possess vessel traits that reflect the
need to capture and transport resources to support their faster
growth rates (Jotan et al., 2020). This may indicate that the link
between tree-level EA and wood anatomy could be a function of
investment strategies, that is to support faster growth. Additionally,
within the logged plots, foliar δ15N, tannins and cellulose have
negative coefficients. Since some of these traits relate to more
maintenance purposes (as tannins contribute to defence, cellulose
to leaf structure), this could indicate that trees in logged plots that
invested in such maintenance did so at a trade-off with growth,
and so had a lower EA, respectively.

Within the old-growth model, the most important variables
were tree size and traits that relate to leaf structure and strength
(foliar hemicellulose, cellulose and lignin), indicating that tree-
level EA in old-growth plots was a function of investment in
maintenance and cell structure, and increased with tree size.
Furthermore, photosynthetic traits of foliar δ13C and N were
important within the old-growth model but not present within
the logged model. As previous research has found lower δ13C in
leaves from shaded sites compared with lighter sites (Vitoria
et al., 2016), and given the importance of tree size in this model,
this could indicate increased EA from the largest trees with great-
est access to light. Subplot basal area, as a proxy for competition,
was also important within the old-growth model and had a posi-
tive coefficient, similar to stand-level with increased EA with
increasing basal area, but this was not significant within the
model. As the two models had different variables of importance,
the results show how logging activities impact investment priori-
ties. Given that independent trait patterns exist within both
logged and old-growth forest (Both et al., 2019), it is challenging
to disentangle whether the observed patterns are related to tree-
level EA or are reflective of underlying trait patterns within each
forest type. However, this may also be indicative of how the

difference in trait patterns is reflected in respiratory consumption
and suggests that leaf and wood anatomy traits can be used in
predictive models for EA.

This study quantified EA at both tree-level and stand-level
along a logging gradient in Malaysian Borneo and demonstrated
how the different investment strategies are reflected in both tree-
level and stand-level EA. This study provides one of the most
extensive records of EA in the tropics, to the best of our knowl-
edge. Thus, by contextualising EA in logged forests, these results
add to the growing pool of research on autotrophic respiration,
the least studied component of forest carbon dynamics within an
understudied, yet expanding, land-use.
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