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Abstract: We herein report successful syntheses of both nickel cobalt sulfide (NCS) and its composite
with zeolite (NCS@Z) using a solvothermal method. Techniques such as EDX analysis, SEM, and
molar ratio determination were used for product characterization. The incorporation of NCS sig-
nificantly changed the surface roughness and active sites of the zeolite, improving the efficiency
of methylene blue degradation and its reusability, especially under UV irradiation. In comparing
the pseudo-first order rates, the highest degradation efficiency of methylene blue was achieved
with NCS-2@Z, having a degradation extent of 91.07% under UV irradiation. This environmentally
friendly approach offers a promising solution for the remediation of methylene blue contamination
in various industries.
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1. Introduction

Dyes are compounds that are known for their bright colors; this property arises be-
cause of the existence of a chromophore, allowing such compounds to absorb light in the
visible spectrum, typically between 400 and 700 nanometers. When incorporated into mate-
rials, these compounds provide a wide range of long-lasting colors that tend to withstand
exposure to water, light, oxidizing agents, perspiration, and microbial interactions [1]. This
versatility has led to their use in various settings, including the textile industry [2–4], the
leather industry [5], hair dyeing [6], and even the food industry [7]. In addition, dyes
are also commonly employed in agricultural research [8], light harvesting arrays [9], and
photoelectrochemical cells [10], and also play a central role in fields such as medicine, elec-
tronics, and the non-impact printing industry [11]. However, the widespread production
of synthetic dyes, estimated at around 10,000 tons per year worldwide, is fraught with
environmental concerns [12]. One notable problem is their longevity in the environment
due to their recalcitrant nature, which leads to difficulties in biodegradation and removal.
As these dyes are water-soluble, they pose a contamination risk if they enter water bodies
in an untreated form, which can adversely affect aquatic life, animals, and humans [12,13].

One of the most widely used synthetic dyes is 3,7-bis(dimethylamino)-pheno-thiazine
chloride tetramethylthionine chloride, commonly known as methylene blue (MB), a water-
soluble cationic aromatic heterocyclic-based dye with a pKa of ~3.8 [14,15]. The structure
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of cationic MB is a combination of several valence bond resonance forms, as shown in
Figure 1 [16]. Upon reduction, MB adopts a colorless leuco form (Figure 1), which has a
higher pKa (5.8), as well as a particularly low ionization potential at physiological pH. The
redox properties of MB result in it possessing desirable pharmacological properties. For
example, in addition to being investigated for use in the treatment of Alzheimer’s disease,
it is also employed as an antimalarial agent, as well as an antimicrobial, chemotherapy,
and blood disinfection agent [17,18]. In contrast to the use of MB in medicine, where it
is administered at particularly low concentrations, the concentrations used in industry,
where it is used to dye materials such as textiles and cosmetics, are significantly greater.
Consequently, due to industrial activity, industrial effluent containing large quantities of
MB may be discharged into water bodies (such as the ocean, rivers, or lakes), which poses a
significant environmental challenge. Untreated or poorly treated effluent containing higher
concentrations of MB can cause a number of problems in humans, including, for example,
cyanosis, tissue necrosis, the formation of Heinz bodies, vomiting, jaundice, dyspnea, shock,
methemoglobinemia, and tachycardia [14].
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The urgency of addressing these environmental challenges requires the rapid imple-
mentation of efficient remediation methods using economically viable approaches and
materials. Conventional methods such as flocculation, sedimentation, and adsorption have
proven to be ineffective due to the solubility and stability of dyes, such as MB, and often
only lead to a transfer of compounds between phases without significant degradation of
the dye itself. In response to this, photocatalysis is proving to be a promising solution that
enables sustainable and effective degradation of organic compounds upon exposure to
visible or ultraviolet (UV) light. Nanoparticles (NPs) play a central role in this process and
are divided into three generations [19]. The first generation includes NPs made of metals or
metal oxides such as Ag, Au, Pd, TiO2, and ZnO, while the second generation includes bi-
nary and ternary metal oxides [20,21]. The third generation, however, is the most promising
as it contains a mixture of NPs or combines them with different materials such as polymers,
carbon-based materials, metal–organic frameworks, and naturally occurring zeolites [22].
These customized combinations provide a significant surface area, increasing the catalytic
activity for efficient dye degradation. Among the composites, zeolites have proven to be
particularly advantageous due to their inherent physical and chemical properties. In this
regard, the fact that zeolites consist of an aluminosilicate crystal framework renders them
particularly useful in wastewater treatment, while the fact that they are also relatively
cheap materials means that their use in water treatment is economically advantageous.
The modification of zeolite structures can further improve their adsorption capacity, mak-
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ing them very efficient in wastewater treatment [23,24]. Furthermore, the incorporation
of semiconductor materials into zeolite frameworks can further enhance their photocat-
alytic capabilities. For example, Bagale and colleagues [25] found that a zeolite-supported
CdS/TiO2/CeO2 composite material was able to degrade MB with an efficiency of 99.9%,
whereas a bare ternary photocatalyst achieved <80% degradation. In another study, a
zeolite/TiO2/Ni nanocatalyst was able to degrade dyes with an efficiency of 99.8% [26].
Ternary photocatalysts have great potential for the degradation of dyes, but also have some
drawbacks, including the need for complicated synthetic procedures, optimization prob-
lems, and interfacial compatibility issues. These shortcomings contribute to the high cost of
their application. However, overcoming these hurdles is crucial to advancing sustainable
solutions in photocatalysis. One promising approach is to explore binary transition metal
complexes, which are abundant in the Earth’s crust, as alternatives. These materials can
be obtained via simpler synthetic routes and may offer improved compatibility, as well
as lower production costs, all the while maintaining their effectiveness in environmental
remediation. Nickel cobalt sulfide (NCS) and its composites with zeolites are proving to be
particularly promising photocatalysts for the degradation of dyes. Research has shown that
composites based on NCS exhibit enhanced photocatalytic activity due to their superior
electrical conductivity and unique crystal structures [27,28]. NCS@MXene composites in
particular have shown exceptional stability and efficacy in degrading dyes under visible
light [29]. In addition, co-catalysts such as NiCo2S4/CdS [30], NiCo2S4@Zn0.5Cd0.5S [31],
and NiCo2S4/g-C3N4 [32] have been shown to be effective in the generation of hydrogen by
photocatalysis under visible light, highlighting the broad potential of NCS-based materials
in various photocatalytic applications. Moreover, NiCo2S4 micro-particles were synthe-
sized via a solvothermal method and then applied as noble-metal-free catalysts in a CO2
photoreduction system [33]. In this context, the synthesis of NCS and its composites with
zeolite using solvothermal methods was proven to be a promising route for efficient dye
degradation. This present study aimed to explore the application potential of NCS-based
photocatalysts, focusing on the degradation of MB, and provides insights into sustainable
strategies to mitigate synthetic dye wastes.

2. Results and Discussions

The catalytic performance of Ni/Co/S can be affected by various factors, including the
specific synthesis method for different Ni/Co/S compositions. Researchers have found that
altering these compositions leads to variations in specific capacitance values [34–37]. This
observation led us to examine how these compositional differences influence the material’s
catalytic performance. In this study, we investigated Ni/Co ratios of 2:1 and 1:2 to explore
their effects, herein labeled as NCS-1 and NCS-2, respectively.

2.1. Characterization of the NCS-1 and NCS-2 Catalysts

The morphological surface properties of nickel cobalt sulfide (NCS) were investigated
using scanning electron microscopy, as illustrated in Figure 2a,c. Corresponding elemental
analyses were conducted through energy dispersive X-ray spectroscopy, with the results
shown in Figure 2b,d. Both NCS-1 and NCS-2 exhibited tiny spherical shapes that clustered
together to form larger spherical structures. Notably, NCS-2 formed smaller clusters
compared to NCS-1. This difference resulted in a larger surface area for NCS-2, which
typically enhances photocatalytic activity by providing more active sites for reactions.
Additionally, smaller clusters may improve light scattering and absorption efficiency,
potentially leading to superior photocatalytic performance. The EDX spectra confirmed
that the synthesized materials contained the intended elements, with any carbon detected
attributable to the conductive carbon adhesive tape used during sample mounting.

The crystallographic structures of NCS-1 and NCS-2 were evaluated by examining
the diffraction peaks in the XRD spectra, as depicted in Figure 3. This figure showcases
distinct peaks observed in the synthesized samples at 2θ values of 26.7◦, 31.5◦, 38.2◦,
50.2◦, and 55.2◦, corresponding to the crystalline planes (220), (311), (400), (511), and (440),
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respectively, from a cubic NiCo2S4 (JCPDS card no. 020-0782) [38]. Remarkably, both 2:1
and 1:2 Ni/Co molar ratios yielded the same product with no noticeable shifts, consistent
with the observations from other studies [34,36].
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2.2. Dye Degradation Investigations on NCS-1 and NCS-2 Catalysts
2.2.1. Effect of Light Conditions

In the investigation of the degradation of MB by H2O2 alone, the initial tests showed
minimal degradation when 1 mL of 30% H2O2 was applied. The effect of the different
light conditions on the degradation process was then investigated using the synthesized
materials. This study included the effects of UV light (254 nm), light, and darkness, each
at different contact times from 2 to 15 min and a catalyst dosage of 15 mg. Assuming
pseudo-first order kinetics for MB degradation, the rate constant, k1, was calculated using
the natural logarithmic plot of (A/Ao) versus time, as shown in Equation (2).

ln
(

A
Ao

)
= −k1t (1)

In addition, a pseudo-second order kinetic model was tested using Equation (3),

t
At

=
1

k2 A2
e
+

t
Ae

(2)

where Ae represents the equilibrium extinction of the dye. The rate constant, k2, was derived
from the square of the slope divided by the intercept of the t/At versus t plot. The resulting
data are summarized in Table 1 and the corresponding plots are shown in Figure 4. To
determine the best fit to the experimental data, the linear regression coefficients (r2) were
compared for all catalysts under the different light conditions. It is noteworthy that the rate
constants obtained with the pseudo-first order model exceeded those of the pseudo-second
order model, indicating a faster reaction rate under the conditions assumed by the former.
The pronounced pseudo-first order linearity became evident when the mixture was exposed
to either UV radiation or light, indicating specific wavelengths or energy levels within these
light sources that favored this behavior. This observation is generally due to the addition of
H2O2 in the system, which creates a photo-Fenton-like environment. In this system, H2O2
decomposes in the presence of a catalyst and generates hydroxyl (•OH) radicals.

Table 1. Rate parameters for the degradation of MB by NCS-1 and NCS-2 catalysts under different
light conditions.

Light
Condition

Catalyst Pseudo-1st Order Pseudo-2nd Order
r2 k1 (min−1) r2 k2 (min−1)

Dark
NCS-1 0.944 0.108 0.925 −0.041
NCS-2 0.977 0.078 0.911 −0.027

UV
NCS-1 0.934 0.171 0.899 −0.078
NCS-2 0.984 0.174 0.743 −0.065

Light NCS-1 0.990 0.089 0.896 −0.028
NCS-2 0.984 0.100 0.885 −0.033

2.2.2. Effect of Amount of Catalyst

Table 2 and Figures 5 and 6 clearly demonstrate that the degradation efficiency (DE)
of MB significantly increased with higher amounts of the NCS-1 and NCS-2 catalysts.
However, the effectiveness of the catalysts was influenced by the prevailing light conditions.
When NCS-1 and NCS-2 were exposed to both light and UV, they exhibited a similar
trend under these conditions, yet their degradation efficiencies differed markedly. Under
light, the degradation efficiencies for NCS-1 and NCS-2 were approximately 74.6% and
79.7%, respectively, while under UV illumination, these figures rose to 92.2% for NCS-1
and 92.9% for NCS-2. This suggests that UV illumination provides the most effective
environment for degradation. When MB is exposed to 254 nm UV light, it primarily
undergoes photodegradation through direct photolysis, resulting in the generation of
highly reactive •OH radicals from the photolysis of water molecules in the solution.
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Table 2. Rate and degradation parameters for the photooxidation of MB using different amounts of
the catalysts under different light conditions.

Light
Condition

Catalyst Mass of
Catalyst (mg) DE%

Pseudo-1st Order
r2 k1 (min−1)

UV

NCS-1
5 85.4 0.975 0.125

10 85.6 0.998 0.134
15 91.7 0.934 0.171

NCS-2
5 74.9 0.985 0.086

10 82.4 0.973 0.113
15 93.4 0.984 0.174

Light

NCS-1
5 49.8 0.965 0.043

10 66.2 0.989 0.071
15 75.6 0.990 0.089

NCS-2
5 49.8 0.965 0.043

10 67.4 0.970 0.069
15 78.8 0.984 0.100
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These •OH radicals serve as potent oxidizing agents that decompose organic com-
pounds like MB into smaller, less harmful molecules. In contrast, exposure to light leads
to photodegradation through a combination of direct photolysis and indirect mechanisms
such as photosensitization and reactions with oxygen and other environmental substances.
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Although direct photolysis under light can still produce •OH radicals, their formation
efficiency may be lower due to the broader spectrum of light compared to UV light at
254 nm. Additionally, light can generate other reactive species like singlet oxygen (1O2)
and superoxide radicals (O2

•−), which may compete with •OH radicals in reacting with
MB. These findings align with those reported by other researchers [36,37]. Regardless of
the lighting conditions, the NCS-2 catalyst consistently demonstrated a higher efficiency
than NCS-1.

2.3. Detection of Reactive Oxidative Species of NCS-2

In this study, a trapping experiment was conducted to assess the impact of scavenging
agents on the reactive species responsible for the degradation of methylene blue (MB).
The NCS-2 sample was chosen for investigation due to its superior efficiency compared
to NCS-1. The photocatalytic process was performed under UV light irradiation, as this
condition was most effective for MB degradation. Three scavenging agents were examined:
potassium iodide (KI) as a scavenger for photogenerated holes (h+), silver nitrate (SN) as a
scavenger for photogenerated electrons (e−), and tert-butanol (t-B) as a hydroxyl radical
scavenger (•OH). During the experiment, 1 mL of 1 mM solutions of each scavenging
agent was added to analyze their effects. Figure 7 illustrates the results of the scavenging
test, demonstrating that the presence of an electron scavenger significantly inhibited the
photodegradation rate of methylene blue. Silver nitrate, which captures the electrons
generated during the photodegradation process, reduces the number of electrons available
for MB degradation, resulting in the reactive species being predominantly responsible
for the photodegradation process of MB. Interestingly, when MB was exposed to h+ and
•OH scavengers, the rate of photodegradation increased. Typically, hydroxyl radicals
play a crucial role in methylene blue degradation. However, the observed increase in
the rate of degradation suggests that t-butanol might be interacting with other reactive
species or mechanisms that enhance the degradation process. Similarly, potassium iodide
captures the positive holes generated during photodegradation, which can lead to the
formation of iodine radicals. These radicals may further contribute to the degradation of
methylene blue, thereby increasing the overall degradation rate. Examining the surface
morphology of the impact of scavengers on the NCS-2 catalyst, as illustrated in Figure 8,
revealed some alterations or damage to the cluster formations. However, these structural
changes did not significantly affect the XRD spectra, as shown in Figure 9. The peaks still
corresponded to the cubic crystallographic structure of NiCo2S4, as indicated by JCPDS
card no. 020-0782 [38].
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2.4. Recyclability Experiments for NCS-2

A recyclability test was conducted to assess the practical application of the photocat-
alyst. The NCS-2 sample was recovered from the reaction mixture after the degradation
process under UV light. After the initial cycle of degrading the MB dye, the catalyst was
separated via centrifugation at 30,000 rpm for 10 min. The residue was washed twice with
distilled water, then with 0.01 M HCl to remove any excess MB dye, and finally rinsed three
more times with distilled water. The recycled catalyst was then dried in vacuo at 60 ◦C for
12 h.

Figure 10a illustrates that the photocatalytic performance of the catalyst significantly
decreased with multiple reuse cycles. It achieved a performance of 92.9% in the first
cycle, but this dropped to 56.9% by the fourth cycle. This reduction in efficiency may
be due to sample loss during recovery and/or degradation of the catalyst, as evidenced
by changes in its morphology. Figure 10b shows the appearance of holes in the catalyst,
indicating physical changes. Additionally, the XRD pattern in Figure 10c confirmed that
while all peaks corresponding to NiCo2S4 were still detectable, there was a new peak at
23.1◦, suggesting that the catalyst had undergone slight changes.
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2.5. Optimization of NCS-2 with Zeolite

The practical use of this photocatalyst is heavily influenced by its reusability. Our find-
ings revealed that while NCS-2 performed impressively in a single cycle, its effectiveness
diminished significantly after multiple uses. To enhance its reusability, the study inves-
tigated incorporating zeolite as a matrix for the catalyst, leveraging its cost-effectiveness
and established use in wastewater treatment. Various samples were prepared with zeolite
amounts ranging from 10 to 50 mg to identify the optimal quantity for creating a composite
with both high and stable efficiency. As shown in Table 3, the degradation efficiency of the
optimized NCS-2 catalyst combined with zeolite—referred to as NCS-2@Z—was highest
with 20 mg of zeolite. This configuration achieved the greatest degradation efficiency
and reaction rate. In contrast, pure zeolite alone yielded only a 58.3% degradation effi-
ciency. Consequently, the NCS-2@Z formulation was chosen for further investigations into
reusability and scavenging.

Table 3. Rate and degradation parameters for the photooxidation of MB using different amounts of
zeolite in a composite with the catalyst (NCS-2@Z) under UV irradiation.

Mass of Zeolite (mg) DE%
Pseudo-1st Order

r2 k1 (min−1)

10 86.0 0.993 0.132
20 91.4 0.980 0.155
30 88.5 0.988 0.136
40 87.5 0.992 0.135
50 85.9 0.989 0.129

pure zeolite 58.3 0.963 0.054

2.6. Characterization of the Optimized NCS-2@Z Catalyst

The morphological surface properties of pure zeolite and the NCS-2@Z composite were
carefully examined by scanning electron microscopy, as shown in Figure 11. In Figure 11a,
the pure zeolite shows a distinct cube-shaped structure with a size of about 1 to 5 µm. In
contrast, Figure 11c illustrates the heterogeneous distribution of agglomerated NCS-2 on
the surface of the zeolite matrix. This distribution of NCS changed the surface roughness
of the zeolite, thereby increasing its surface area and active sites. These modifications are
very beneficial for promoting efficient dye degradation [26]. To determine the elemental
composition of the synthesized materials, a thorough analysis was conducted using electron
dispersive spectroscopy, as illustrated in Figure 11b,d for pure zeolite and the NCS-2@Z
composite, respectively. The analysis showed that the synthesized material contained only
the targeted elements—Ni, Co, and S—corresponding to the NCS compound. Additional
elements such as Na, Al, and Si were present due to the zeolite matrix. This indicates that
the synthesized materials have a complex composition, incorporating both the desired NCS
compound and components from the zeolite substrate.

Furthermore, the crystallographic structures of pure zeolite and NCS-2@Z were eval-
uated by examining the diffraction peaks in the XRD spectra, as depicted in Figure 12.
Here, peaks at 2θ values of 31.5◦, 38.2◦, 50.2◦, and 55.2◦ can be seen, corresponding to
the crystalline planes (311), (400), (511), and (440), respectively, from a cubic NiCo2S4
(JCPDS card no. 020-0782) [38]. Additionally, peaks at 15.9◦, 21.5◦, 23.8◦, 27.4◦, and 30.7◦

were attributed to the crystalline planes (311), (440), (537), (642), and (660), respectively, of
zeolite [39]. These peaks indicate the formation of NiCo2S4 on the zeolite composites.
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2.7. Recyclability Experiments for Optimized NCS-2@Z

To assess the stability and reusability of NCS-2@Z, a recyclability test was performed
using the same procedure as for NCS-2. Figure 13a illustrates that the catalyst’s photo-
catalytic performance experienced a slight decline after being reused three times. There
was a slight decrease from 91.4% to 84.1% after three cycles, whereas after the second
cycle, the performance of the pure NCS-2 already decreased to 76.2%. This shows that the
incorporation of zeolite into the NCS-2 framework significantly enhanced the catalyst’s
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stability and reusability. The presence of zeolite appears to provide additional structural
support and prevent the leaching or degradation of active sites, thus maintaining a higher
level of photocatalytic efficiency across multiple cycles. This improved performance sta-
bility indicates that NCS-2@Z is more robust compared to the pure NCS-2, making it a
more reliable choice for applications requiring repeated use. This enhancement in stability
is likely due to the improved dispersion of NCS within the zeolite matrix, as shown in
Figure 13b. To investigate if there were any changes in the crystallographic structure of
the matrix, the XRD pattern was analyzed, as depicted in Figure 13c. The analysis showed
that certain peaks were absent after the photocatalytic process, particularly the peaks at 537
and 642, which are characteristic of the zeolite matrix. This absence suggests that there had
been a structural change in the catalyst, potentially caused by the NCS covering the entire
surface of the zeolite. These changes in the diffraction peaks correspond with the observed
modifications in the material’s surface morphology, indicating that the surface structure of
the zeolite had been significantly altered by the process.
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3. Methodology
3.1. Materials

All chemicals and materials used in this study were of analytical grade and were not
further purified. These included cobalt (II) nitrate hexahydrate (99%, AppliChem GmbH,
Darmstadt, Germany), nickel (II) nitrate hexahydrate (97%, Sigma Aldrich, St. Louis, MO,
USA), thiourea (VWR International, Leuven, Belgium), zeolite (Sigma Aldrich, St. Louis,
MO, USA), methylene blue (MB dye, Sigma Aldrich, St. Louis, MO, USA), and ethanol
(Sigma Aldrich, St. Louis, MO, USA).

3.2. Synthesis of NCS and Its Composites

For the synthesis of NCS, a mixture of Ni(NO3)2·6H2O, Co(NO3)2·6H2O, and thiourea
with a Ni/Co/S ratio of 2:1:8 (in mmol) was dissolved in 15 mL of ethanol by sonication
for 30 min. The solution was then transferred to a Teflon-lined stainless-steel autoclave
and heated in a muffle furnace at 180 ◦C for 8 h. The mixture was then transferred to a
tube and centrifuged at 8000 rpm for 10 min. The product was then collected, washed,
filtered, and centrifuged with deionized water and ethanol. Finally, the solid product was
dried in a vacuum at 60 ◦C for 12 h; it is referred to in this paper as NCS-1. To evaluate the
effect of varying the molar ratio of Ni/Co on the photocatalytic performance for degrading
methylene blue (MB), Ni/Co with a molar ratio of 1:2:8 (in mmol) was prepared, which was
designated as NCS-2. Additionally, composites with zeolite were synthesized to investigate
its influence on the stability and reusability of the photocatalyst. For the synthesis of
NCS@Z, the same method was used for NCS but different amounts of zeolite (10, 20, 30,
40, and 50 mg) were incorporated into the solution, which was then sonicated for 30 min.
The sample with Ni/Co/S at ratios of 2:1:8 (in mmol) and 1:2:8 (in mmol) with zeolite were
designated as NCS-1@Z and NCS-2@Z, respectively.
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3.3. Characterizations

Energy dispersive X-ray spectroscopy (EDX) was employed to analyze the composition
of the materials, while scanning electron microscopy (SEM) was utilized to examine the
particle size and morphology of the resulting materials. A JEOL JSM-IT200 (Tokyo, Japan)
and ZEISS Crossbeam 540 (Jena, Germany) were utilized for the EDX and SEM analyses,
respectively. Before conducting the analysis, the powdered samples underwent gold
sputtering, employing a 20.0 mA sputter current, to a thickness of 5.0 nm and a tooling
factor of 5.0. The powder X-ray diffraction (XRD) pattern analysis was performed using
a Rigaku SmartLab system (Cedar Park, TX, USA) at 40 kV and 50 mA, ranging from 10
to 80◦ with a step size of 0.05◦, and an X-ray source of Cu Kα at room temperature. The
photocatalytic experiments were conducted utilizing an ASB-XE-175 fiberoptic light source
with a xenon illuminator (Toption, Xi’an, China). For the UV irradiation experiments, a
254 nm wavelength (UVP, 3UV-38, 8 W) was employed. The optical absorption spectrum
was recorded using an Avantes spectrometer (AvaSpec-ULS2048CL-EVO, Avantes B.V.,
Apeldoorn, The Netherlands) with a 25 µm slit size equipped with deuterium–halogen light
source with a TTL shutter (AVALIGHT-DHC, Avantes B.V., Apeldoorn, The Netherlands)
for the evaluation and monitoring of dye degradation.

3.4. Photocatalytic Experiments

In this study on the photocatalytic degradation of MB dye, three different conditions
were used to evaluate the effectiveness of the photocatalyst in H2O2-assisted degradation:
dark, UV exposure (254 nm), and simulation of artificial sunlight. To simplify the terminol-
ogy in this article, these conditions will be referred to as dark, UV, and light, respectively.

For H2O2-assisted oxidation/degradation, a certain amount (5, 10, and 15 mg) of
the synthesized catalyst was weighed and added to 25 mL of a 5 ppm MB dye solution
(pH = 7.32) while stirring at 600 rpm under the various conditions considered in this study.
After the addition of the catalyst, 1 mL of 30% H2O2 was added, and the mixture was
stirred continuously for 15 min. At 2-, 4-, 6-, 8-, 10- and 15 min intervals, 3 mL of the
samples was withdrawn. Each sample was then centrifuged at 3000 rpm for 1 min and
the absorbance spectra of the supernatant were collected and measured using an Avantes
UV–Vis spectrophotometer. The degradation percentage (DE%) of the MB dye by the
catalyst was calculated using Equation (1).

DE% =

(
Ao − At

Ao

)
100 (3)

where Ao and At are the area under the curve in the 400–800 nm region initially and at time
t, respectively. The area in the calculation was utilized instead of the common absorbance
at a specific wavelength to account for all the resonance forms present in the system.

4. Conclusions

In this study, the successful synthesis of NCS using various ratios, both alone and in
combination with zeolite, was demonstrated. The synthesized materials were characterized
using techniques such as EDX analysis, SEM, and molar ratio determination. The EDX
analysis confirmed the absence of impurities, while SEM revealed distinct morphological
differences between pure zeolite, NCS, and the composite. Incorporating NCS significantly
altered the surface roughness and active sites of the zeolite, enhancing the efficiency of dye
degradation and improving the catalyst’s reusability. The degradation of methylene blue by
the synthesized catalysts was evaluated under different light conditions. The pseudo-first
order kinetics indicated faster reaction rates, particularly under UV radiation and visible
light, suggesting that these light sources with specific wavelengths or energy levels promote
the degradation process. Additionally, a positive correlation was observed between the
amount of catalyst and the degradation rate. The highest degradation efficiency, along with
increased stability and reusability, was achieved with NCS-2@Z, reaching 91.4% under UV
irradiation. The study also identified e− species as the primary agents responsible for MB
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degradation. These findings suggest that NCS@Z composites have significant potential as
efficient catalysts for dye degradation, particularly under UV irradiation. Future research
could explore their application to the degradation of other pollutants and extend their use
in wastewater treatment and environmental protection.
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