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The first notification of SARS-CoV-2 
infections in Australia and New 
Zealand (NZ) 1 were 26 January and 

26 February 2020, respectively.2,3 The public 
health response to managing the pandemic 
in both countries involved the testing of 
individuals showing symptoms of SARS-
CoV-2 infection, isolating individuals with 
a positive polymerase chain reaction (PCR) 
test, and tracing and quarantining contacts. 
On a country scale, comprehensive physical 
distancing strategies were in place from 
28 March in Australia3 with people asked 
to remain at home other than for essential 
purposes and maintain a 1.5-metre distance 
between one another when in public; these 
had been lifted or re-imposed at varying 
times by states and territories since mid-May 
2020. In New Zealand, similar mass home 
quarantine was initiated on 26 March 2020,4 
which placed even tighter restrictions on 
individual movements than in Australia, with 
staged lifting commenced in mid-May.5 Both 
countries have ongoing enhancements of 
the health system capacity and continue (as 
of October 2021) extensive travel restrictions 
including the closure of country borders to 
non-residents and 14-day quarantine for the 
small number of international arrivals still 
permitted. For the state of Victoria, Australia, 
a second wave of infections sparked by 
hotel quarantine breaches occurred in July, 

which led to the implementation of ‘Stage 4’ 
restrictions through to late October 2020.

The public health response implemented in 
Australia and New Zealand initially focussed 
on suppression (‘flattening the curve’). Later, 

the New Zealand strategy explicitly became 
that of elimination.6,7 In Australia, the stated 
goal waxed between that of ‘suppression/
elimination’8 before transitioning to 
‘aggressive suppression leading to zero 
community transmission’.9 
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Abstract

Objective: In 2020, we developed a public health decision-support model for mitigating 
the spread of SARS-CoV-2 infections in Australia and New Zealand. Having demonstrated 
its capacity to describe disease progression patterns during both countries’ first waves of 
infections, we describe its utilisation in Victoria in underpinning the State Government’s then 
‘RoadMap to Reopening’.

Methods: Key aspects of population demographics, disease, spatial and behavioural dynamics, 
as well as the mechanism, timing, and effect of non-pharmaceutical public health policies 
responses on the transmission of SARS-CoV-2 in both countries were represented in an 
agent-based model. We considered scenarios related to the imposition and removal of non-
pharmaceutical interventions on the estimated progression of SARS-CoV-2 infections.

Results: Wave 1 results suggested elimination of community transmission of SARS-CoV-2 was 
possible in both countries given sustained public adherence to social restrictions beyond 60 
days’ duration. However, under scenarios of decaying adherence to restrictions, a second wave 
of infections (Wave 2) was predicted in Australia. In Victoria’s second wave, we estimated in 
early September 2020 that a rolling 14-day average of <5 new cases per day was achievable 
on or around 26 October. Victoria recorded a 14-day rolling average of 4.6 cases per day on 25 
October.

Conclusions: Elimination of SARS-CoV-2 transmission represented in faithfully constructed 
agent-based models can be replicated in the real world.

Implications for public health: Agent-based public health policy models can be helpful to 
support decision-making in novel and complex unfolding public health crises.
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A limitation of population-level macro-
simulation models that informed government 
decision-making in Australia and New 
Zealand in the early stages of the pandemic in 
2020 was their inability to efficiently combine 
the three major dynamics affecting disease 
progression: biomedical, social and spatial.10,11 
Modelling conducted in early 2020 by the 
Australian and New Zealand governments 
using the susceptible-exposed-infected-
recovered (SEIR) concept12,13 was useful in 
publicly communicating and comparing 
the health impact of unmitigated and/or 
suppressed pandemic scenarios. However, 
this simplified approach left important public 
health policy questions unanswered that may 
have benefitted from investigation through 
alternative methods able to more faithfully 
represent population heterogeneity and 
behavioural mechanisms driving disease 
transmission and progression through 
societies. For example, macro-simulation 
models could not easily capture the 
heterogeneity of individuals across important, 
interacting variables such as gender, age, 
health status, worker status, stage of infection 
or illness, infectiousness, social networks, 
illness duration, asymptomatic status, 
over-dispersion of contacts and forward 
transmission, compliance with public health 
directions, location, travel behaviour or other 
phenomena without quickly becoming 
intractable;14 yet these interacting factors 
remained no less important to understanding 
disease spread through a society and the 
likely success of public health interventions, 
whether they were easily modelled or not.15 
Similarly, although micro-simulation models16 
can capture some of the heterogeneity 
described above, they remain limited in their 
ability to represent both spatial phenomena 
and behavioural dynamics representative of 
interactions between individuals or between 
individuals and institutions,17 which are 
important in the consideration of practical 
public health policy delivery. At the time, our 
research group’s contention was that Agent-
Based Models (ABMs) that could represent 
small-scale interactions of individuals 
constructed in artificial or ‘synthetic’ 
populations might provide additional, useful 
insight into how behaviour affects disease 
progression and also how public health policy 
options available to government might affect 
the progression of infections and COVID-19 
cases. We considered that by modelling not 
just the disease dynamics, but the social and 
spatial elements that lead to its transmission, 
it would be possible to better understand 

the impact of available public health policy 
options and likely patterns of disease 
progression across a society.

Our practical aim in these early stages was to 
demonstrate to public health decision-makers 
and policy-makers that the nature of existing 
macro-models excluded the consideration 
of potentially valuable policy options and 
strategies (e.g. elimination of local community 
transmission). Further, we contended that 
ABMs could assist policy-makers to more 
effectively investigate the effect of existing 
public health strategies, interventions, and/
or assist the exploration of strategies for when 
restrictions could be safely halted or partially 
removed in response to declining SARS-CoV-2 
infection numbers and/or the introduction of 
vaccination programs. 

We therefore provide here a historical account 
of the development and progression of two, 
linked research efforts that were aimed at 
informing Australia and New Zealand’s public 
health response to the pandemic. Firstly, we 
describe the construction and application of 
an ABM incorporating biomedical, social and 
spatial factors to estimate the probability of 
elimination of community transmission of 
SARS-CoV-2 under: i) strict distancing policies 
implemented in New Zealand and Australia 
on 26 and 28 March 2020, respectively, 
continuing indefinitely (counter to fact); 
and ii) the same policy, but with physical 
distancing decaying over 60 days post 26 and 
28 March (but ongoing border closure, testing 
and contact-tracing; crudely approximating 
policy that actually played out). Secondly, 
we describe the subsequent adoption and 
practical application of this model by the 
Victorian State Government, which used it to 
assist in developing its plan for exiting from 
a significant second wave of infections from 
July to October 2020.18,19

Methods

We created an agent-based, dynamic policy 
model similar in structure to those described 
elsewhere,2,11,20,21 but specifically designed 
to be conceptually transparent enough for 
comprehension by, and interaction with, 
policy-makers. We also built it to be flexible 
enough to be rapidly adapted and tuned to 
a broad range of domestic and international 
demographic and policy scenarios. All 
programming, documentation, data and 
details related to the calculations, estimations 
and assumptions for the Wave 1 model 
are available for download from the online 

repository (https://bit.ly/2XI3v3z). A brief 
model description covering key inputs and 
model design is included below, however, 
a comprehensive description of the model 
following the standards of the Overview, 
Design concepts and Details (ODD)22 protocol 
for ABMs is provided as a Supplementary File. 
This ODD protocol is not static and develops 
alongside the ongoing expansion and 
refinement of the model itself.

The model was scaled to the entire 
Australian (25 million) and New Zealand 
(5 million) populations and included a 
suite of parameters for the purposes of 
investigating the likelihood of SARS-CoV-2 
progression and/or elimination of community 
transmission in both countries under 
two primary public health intervention 
scenarios (e.g. enacting or relaxation of social 
restrictions). We determined the elimination 
of community transmission to be when 
zero cases of COVID-19 were observed in 
either modelled population. This modelled 
definition can be more certain than in a 
real-life context7 as the model user has 
perfect information about the presence of 
active cases in the model (in reality, New 
Zealand and Australia adopted an informal 
definition of 28 days without a case arising 
from community transmission as a working 
definition of local elimination). 

Model development context
In an unfolding pandemic, evidence can 
and does change rapidly and the time scales 
for critical public policy decision-making 
may be measured in hours or days rather 
than months.23 Therefore, the model was 
built using parameters from the pandemic 
in Australia and New Zealand understood 
at the time of construction and application. 
The model was/is capable of taking account 
of contemporary and dynamic evidence 
surrounding important factors that 
influence SARS-CoV-2 infection patterns 
such as physical distancing measures, 
school, workforce and public movement 
restrictions, as well as infection transmission 
characteristics, and the time it takes to 
recover from and clear infection. The model 
was built to simulate the dynamics of SARS-
CoV-2 at either a country, state or local level. 
More recent iterations also incorporate 
vaccine effectiveness and distribution 
strategies, though these functions were 
not used in the applications described 
here because, at the time of development, 
vaccines were not available. 
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For each selected jurisdiction (e.g. country 
or state), individual agents making up a 
synthetic population representing residents 
of either Australia, New Zealand or Victoria 
were produced. Each agent possessed 
demographic, behavioural, and social policy 
response characteristics uniquely assigned 
to them. Agents moved and interacted in 
the model environment based on stochastic 
processes and/or in response to policies 
reflecting exogenous restrictions or individual 
decisions. Their aggregate behaviour, 
experiences (for example of infection and 
recovery) and actions were used to assess the 
effect of SARS-CoV-2 disease progression and 
suppression strategies across populations.

The computing demands and development 
time required to build and run a 1:1 scaled 
agent-based model representing potentially 
millions of people can be considerable. This 
makes analysis associated with rapid changes 
in policies and time-critical decision-making 
difficult in an unfolding pandemic. Hence, 
published individual and agent-based models 
used to inform policy in the early stages of the 
pandemic in both the United Kingdom and 
Australia were often adapted from existing 
influenza models.2,24 Despite their influence 
and utility, they have also been criticised 
from the perspective of transparency (e.g. 
the model code is not available), scale (e.g. 
local vs. national dynamics), and limited 
incorporation of social and behavioural 
dynamics related to adherence that either 
facilitate or suppress SARS-CoV-2 spread.25 
Their ability to be easily applied outside their 
specific countries of origin is also limited. 

Therefore, instead of representing the entire 
population of individuals (e.g. 25,000,000 
for Australia), the total number of agents 
in the model did not change, however, the 
number of people that each agent in the 
model represented did. This dynamically 
aligned the scale of the model with the likely 
scale of public interest and public health 
policy decision-making at the time. For 
example, in the early and late stages of Wave 
1 infections in Australia and New Zealand, 
single identified COVID-19 cases (e.g. hotel 
quarantine workers, doctors, etc), exposure 
sites (e.g. hospitals) and circumstances were 
described by public health authorities in 
great detail, with infection control measures 
targeted at these manageable outbreak 
sites (e.g. localised testing and tracing, deep 
cleaning, etc). However, as daily reported 
infections reach(ed) 300 per day at the peak 
in Australia in around late March 2020, or 

upwards of 700 in Victoria during August 
2020, the scale of pattern description, policy 
and public interest similarly scales up; 
individual circumstances and cases are no 
longer policy-relevant and instead, broad-
based population health measures are 
described and required. At the tail-end of the 
epidemic curve, the model returns again to a 
small scale and representation of interest that 
identifies individual cases and locations (e.g. 
one infected agent represents one infected 
person).

Exploration of public health policy 
scenarios during Wave 1 in Australia 
and New Zealand
As the first wave of infections took hold in 
Australia and New Zealand, we explored two 
scenarios for each country, namely: i) strict 
physical distancing policies implemented 
in New Zealand and Australia on 26 and 28 
March, respectively, continuing indefinitely; 
and ii) the same policy, but with public 
adherence to physical distancing decaying 
over 60 days post-implementation (see Figure 
1) to a residual level of 20% of maximum, 
reflecting medium- to long-term behaviour 
shifts as a result of the pandemic but with 
continued tracking, tracing and isolation of 
infected individuals by the health system. All 
model iterations ran for 300 simulated days. 
Estimated median time to elimination with 
95% simulation intervals (SI) was reported 
for Australia and New Zealand, alongside 
estimated dates for elimination with 80 and 
90% likelihood. Because it is underpinned by 
stochastic processes, we analysed results from 
1,000 model runs.

The model used for Australia and New 
Zealand’s Wave 1 was initially populated by 
2,500 people with 2,498 people susceptible. 
Time was scaled to one day per model time-
step. Two people were classified as infected 
with SARS-CoV-2 and could potentially 
infect others. In the early stages of model 
runs, people moved in random directions 
throughout the simulated community 
(i.e. this is a ‘drifting’ model, as opposed 
to constructions that include origins and 
destinations of specific types such as cafes, 
workplaces, or supermarkets).26 If an infected 
person encountered a susceptible person 
in any location, there was a probability of 
disease transmission from the infected to 
the susceptible person. This probability 
was tuned to produce early-stage (e.g. day 
10–30) country-level doubling patterns 
approximating those reported for SARS-
CoV-2 in each country and approximating 
a basic reproduction number (R0) value of 
between 2.2 to 2.7.27,28 The Wave 1 model 
also adjusted for infected overseas arrivals, 
the proportion of which ranged from 70% 
for New Zealand in the early stages of the 
pandemic, to 45% in the latter stages,4 and 
62% for Australia throughout the epidemic3 
(this feature was later disabled in modelling 
Victoria’s second wave as international arrivals 
were diverted away from Melbourne to ease 
pressure on its hotel quarantine system). 
Infected international arrivals (imported 
cases) began their illness duration in an 
advanced state compared with those who 
acquired their infection in the community, 
equivalent to their incubation period minus 
a mean of 1 day and standard deviation of 
0.5 days. This reflected the acquisition of 
the illness prior to arrival and appreciated a 

Figure 1: Representation of the 2 scenarios modeled for Australia and NZ during wave 1.
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few days in transit to Australia and/or New 
Zealand. Based on estimates of asymptomatic 
case proportions, 20% of cases were classified 
as asymptomatic7,29 and demonstrated a 
transmission likelihood that was one-third30 
that of symptomatic cases (the remaining 
80%). Testing regimes were not modelled. 

Infected people experienced a uniquely 
assigned incubation period (e.g. to symptom 
onset) drawn from a log-normal distribution 
with a mean (µ) of 5.1 days and standard 
deviation (σ) of 1.5 days.31 Infected people 
were also assigned a period of illness duration 
that followed a log-normal distribution 
with a µ of 20.8 days and σ of 2 days.29 If 
infected, each person had a likelihood of 
complying with isolation requests drawn 
from a beta distribution with a median of 
93.3% (α=28, β=2). Infected individuals also 
had a likelihood of death based on their age 
group.32 Deceased people were effectively 
‘hidden’ from interacting with the remaining 
susceptible, infected and recovered 
population. Effective reproduction number 
(Rt) values were calculated and reported on 
an individual basis for each person on the last 
day of their infectious period before either 
recovery or death.

The timing of the introduction of public 
health and physical distancing restrictions 
were mapped to that observed in each 
country. For Australia, Day 0 was estimated 
to be 16 January 2020, 10 days prior to the 
first reported case (i.e. incubation period 
for first case, plus three days for detection). 
For New Zealand, Day 0 was estimated to 

be 16 February. Physical distancing policies 
were enacted in the model for Australia on 
day 72 (28 March) and for New Zealand on 
day 39 (26 March).5 In anticipation of the 
application of restrictions, people began 
physical distancing measures 14 days prior to 
policy implementation up to the maximum 
settings for each country (see Table 1). The 
increase in physical distancing behaviours 
prior to policy implementation followed a 
power-law determined by the number of days 
between the current day (e.g. ti – 14) and the 
day of implementation and is consistent with 
observed mobility trends in Australia and 
New Zealand.33 Table 1 provides a summary 
of the parameters and ‘agent’ characteristics 
of this original conceptualisation (a more 
comprehensive table of parameters is 
available in the ODD protocol, section 2.1 to 
2.3). 

The decay in adherence to physical distancing 
over the 60-day period in Scenario 2 followed 
a power-law determined by the number of 
days between the expected day the current 
public health response was removed (ti^) and 
the current day in each country (e.g. ti^ – ti). 
That is, as the date of removing restrictions at 
the end of Wave 1 approached, people began 
reducing their levels of physical distancing 
in anticipation of the date, returning to a 
residual baseline at day 60 of 20%, reflecting 
ongoing efforts or reduced opportunities to 
make contact in the period after restrictions 
had been eased. A period of 60 days was 
selected in accordance with what we (and 
other social and economic policy analysts 

at the time)34 regarded as a likely maximal 
tolerance for law-makers and the public to 
stay under social and economic restrictions. 
Rates of adherence over time in each scenario 
are depicted in Figure 2. It should also be 
noted that these exponential patterns of 
decay did not play out as expected. Instead, a 
more linear decline was observed.35 

The behaviour of simulated people in the 
Australian model in response to the use of 
physical distancing restrictions was that, 
where possible (i.e. 85% of the time in 
Australia), people avoided either being in 
or moving to locations occupied by other 
people. The remainder did not. In the New 
Zealand example, this was increased to 
90%, consistent with observed increased 
stringency measures at the beginning of the 
lockdown period.5 The selection of people 
who actively avoided others was updated at 
each time-step (i.e. there were no high- or 
low-adherence individuals who always acted 
pro- or anti-socially). Adherence resulted in 
an increased distancing between agents in 
the model, and a reduced movement and 
ability of people to transmit the virus. Under 
conditions of physical distancing, people 
only moved if others who did not observe 
distancing rules (e.g. through necessity or 
non-adherence) moved into the location 
they were currently occupying. In such 
circumstances, people adhering to the 
distancing policy moved away by identifying 
the closest unoccupied location in their 
surrounding area and moved to that location.

To initially calibrate/validate the model, 
we ran both an unmitigated scenario for 
Australia to compare against publicly 
available Commonwealth Government 
modelling and compared our model results 
to the SARS-CoV-2 infection data from 
Wuhan, Hubei Province, China. The primary 
parameters that were adjusted during this 
procedure to achieve a target reproductive 
rate approximating that observed in China 
(~2.5)28 were those that contributed to: a) the 
frequency of close contact between people 
(i.e. the ‘speed’ of agents in the environment); 
and b) transmission rates of the disease per 
close contact (i.e. the mean infectiousness of 
individuals); see ODD protocol, section 2.1. 
Details of the initial validation are reported in 
the online repository (https://bit.ly/2XI3v3z). 
Results reflected both the observed (China) 
and modelled (Australia) disease trajectories 
as reported in the literature.13,27,28 This target 
reproductive rate was higher, however, than 
observed in Australia and New Zealand, 

Figure 2: Modeled percentage of public adherence to physical distancing restrictions over time for Australia and NZ 
under each scenario.
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Table 1. Parameter estimates and ‘agent’ characteristics used in the wave 1 model (a full list of parameters and 
model description is available in the ODD protocol, section 2.1 to 2.322).a

Key Parameters Parameter Estimates (Australia) Parameter Estimates (NZ)
Physical distancing (% of people limiting 
movement and maintaining a distance of 1.5m 
(Aus) or 2.0m (NZ) in public) 5,33

85% 90%

Physical distancing - time (% of time that people 
successfully maintain a distance of 1.5m (Aus) or 
2.0m (NZ) in public) 5,33

85% 90%

Proportion of essential workersb 30% of working age-people 20% of working age-people
Mean incubation period (days, log-normal)31 m = 5.1, sd = 1.5 m = 5.1, sd = 1.5
Mean illness period (days, log-normal)29 m = 20.8, sd = 2 m = 20.8, sd = 2
Mean adherence with isolation of infected cases 
(%, beta distribution28,2,b

m = 0.93, sd = 0.05 m = 0.93, sd = 0.05

Super-spreaders as a proportion of populationc 10% 10%
Number of days after infection that new cases are 
publicly reportedb

8 8

Date of case 0 (Day 0) January 16th, 2020 February 16th, 2020
Days from case 0 to policy enactment 72 (March 28th, 2020) 39 (March 26th, 2020)
Asymptomatic cases (% of cases) 7,29 20% 20%
Infectiousness of asymptomatic cases vs 
symptomatic cases30

33% 33%

Physical distancing anticipation time-window33 14 days 14 days
Decay in physical distancing adherence window34 60 days (May 26th)  60 days (May 28th)
Public compliance with isolation ordersb 95% 95%
Proportion of imported cases pre and post 
lockdown3,4

62% pre, 62% post 70% pre, 45% post

Agent Characteristics Definition
Infection status  Infected, susceptible, recovered, deceased 
Time now The number of days (integer) since an infected person first became infected 

with SARS-CoV-2
Age-range The age-bracket (categorical) of the person, calibrated to census data deciles 

from 0 to 100.
Risk of death The overall risk of death (float) for this person based on their age-profile 
Location The current location of the simulated person (agent) in the model interface
Pace The speed at which the person moves around the environment – higher 

speeds resulted in more close contact with other people (agents) in the model
Heading The direction of travel of the person at the current time-step. In conjunction 

with the scaling approach, the heading variable was used to create local 
communities and control interaction between and across communities

Contacts A count (integer) of contacts the person (agent) had interacted with in the 
past day as they moved within the model’s environment

Student Status A dynamic, Boolean variable that indicated whether people under 20 years of 
age were current students or not and might therefore return to face-to-face 
learning should schools be re-opened.

Essential Worker Status A dynamic, Boolean variable that indicated whether people of between 20 
years of age and 69 years of age were classified as essential workers or not and 
might therefore return to face-to-face work should industries re-open. 

Notes:
a: Additional parameter uncertainty was introduced into the model in subsequent representations and made available for the Wave 2 representation36
b: Assumed parameter based on expert opinion
c: 10% of the population potentially transmit infections widely through occasional travel to random locations.

requiring an associated reduction in modelled 
contact and infectiousness parameters to 
match observed early-stage case-load data. 
Observed differences in Australasia may have 
been due to a combination of social context 
(e.g. household structures), timing and 
vigilance (i.e. existing population knowledge 
of the risk having observed the overseas 
experience) and lower population density.

Wave 2 model description (Victorian 
outbreak)
In August 2020, the state of Victoria, 
Australia, entered a significant second wave 
of infections and metropolitan Melbourne 
entered a strict stage-4 lockdown involving 
school and business closures, night-time 
curfews, physical distancing, mandatory 
mask-wearing and stay-at-home orders, 
exceptions to which were limited to essential 
work, groceries, health service attention and 
limited periods (e.g. 1–2 hours) of exercise. 
The Victorian Department of Health and 
Human Services (now ‘Victorian Department 
of Health’) requested assistance from 
our research team to assist in estimating 
the likely trajectory of SARS-CoV-2 cases 
under variously eased public health policy 
settings using an adaptation of our Wave 1 
agent-based policy model, which had been 
since adapted to estimate the likelihood of 
achieving elimination in Victoria given various 
lockdown restrictions.37 The goal of this 
engagement with the Victorian Department 
of Health and Human Services was to assist 
in returning Victoria to a ‘COVID-Normal’ state 
that enabled suppression of new cases and a 
return of economic and social activities while 
preventing the emergence of a serious ‘third 
wave’ that would again require an extended 
lockdown.

Working with departmental representatives, 
we constructed a set of policy triggers that 
reflected various times and conditions that 
policy-makers might choose to either tighten 
or loosen social restrictions. For example, 
under a ‘loose suppression’ strategy, policy-
makers might decide to move from stage 4 
restrictions (most restrictive) to stage 3 when 
confirmed cases remained at 100 per day, and 
they might decide that any two-day period 
where that level is reached was adequate to 
ease restrictions. Conversely, pursuing more 
aggressive policy settings might dictate that 
restrictions should not be eased at all until 28 
days of no community transmission had been 
recorded. All options between such extremes 
were also available.

The Victorian model was initialised with a set 
of existing infections (scaled to 2400 as of 31 
August 2020) and seeded with a seven-day 
run of new infections that were estimated 
from a 14-day declining exponential curve 
leading into 1 September 2020 (244 * [0.914 
^ (ti + 15)]) where ti represents the current 
time-step of the model. Stages of restrictions 
from level 4 to 3 and 2 were also triggered 
in the Victorian model under various 14-day 

rolling averages to determine the likelihood 
of a resurgence in cases of >30 cases per 
day, leading to a third wave and possible 
re-imposition of ‘stage-3-like’ conditions 
prior to 25 December 2020. Stages of 
eased restrictions represented in the model 
were devised alongside Departmental 
representatives, accounting for gradual 
re-opening of schools and industry, of 
movement and interaction among citizens 

Thompson et al.	 Article



2022 vol. 46 no. 3	 Australian and New Zealand Journal of Public Health	 297
© 2022 The Authors

and between households, mask-wearing and 
mask efficacy, tracking and tracing efficacy, 
quarantine and isolation efficacy, movement 
and interaction of essential workers, and the 
extent of lockdown fatigue (characterised by 
non-compliance with stay-at-home orders) 
estimated among the population over 
time. Details of model assumptions were 
released publicly at the time the Roadmap 
was announced and were made available 
on the University of Melbourne’s website 
(https://msd.unimelb.edu.au/news/emerging-
from-lockdown-modelling,-outputs-and-
assumptions). These details as they were 
released to the public are also included in 
Supplementary File 1 alongside results from 
one-at-a-time sensitivity analyses related 
to major variables of interest including 
transmissibility, track and trace efficiency, 
mask-wearing, social/physical distancing 
adherence, essential worker classifications 
and illness period duration. 

Results

We present results in two parts. Firstly, we 
show results for Wave 1 in Australia and New 
Zealand as modelled and understood up to 8 
June 2020 using an initial conceptualisation 
of the presented model developed in early 
2020 as the pandemic unfolded. We then 
present results relating to Australia’s second 
wave of infections in which we describe how 
the model developed for Wave 1 was applied 

by the Victorian Government in planning its 
way out of lockdown through its ‘Roadmap 
to Reopening’.18 The findings for Wave 2, 
therefore, focus less on the quantitative 
analysis of the model and its predictions, and 
more so on the context in which this model 
was used for decision support and applied 
by government in planning and executing its 
public health response. 

At the time that our analysis of Australia and 
New Zealand first wave was conducted (8 
June 2020), there had been a total of 7,265 
confirmed SARS-CoV-2 infections in Australia, 
including a total of 102 deaths, 446 current 
infections and 6,708 recovered individuals.3 
In New Zealand, these figures were 1,151 
confirmed cases (1,504 confirmed and 
probable), 22 deaths, 0 current infections 
and 1,482 recovered individuals.4 To 8 June 
2020, 62% of reported cases in Australia had 
originated from outside country borders, 
arriving by air and sea.3 For New Zealand, this 
figure was 45%.4 Since that time (24 February 
2021), Australia recorded an additional 21,674 
COVID-19 cases and 807 deaths. More than 
70% of total cases and deaths had occurred in 
the southern state of Victoria. After achieving 
an initial period of 100 days without a 
recorded community transmission, New 
Zealand (as of 24 February) had recorded 
a total of 2,368 cases (2012 confirmed and 
probable) and a total of 26 deaths.4 At the 
time of writing (October 2021), both countries 
had maintained very low to negligible levels 

of community transmission until June 2021, 
when an outbreak that began in NSW seeded 
into Victoria and New Zealand, triggering 
a significant third wave. Prior to this time, 
both jurisdictions had avoided subsequent 
waves by quickly quelling small outbreaks 
generated from occasional quarantine 
facility breaches through effective tracking 
and tracing, and/or ‘snap’ local lockdowns of 
minimal duration.

Australia – Wave 1
The findings from our Wave 1 ABM reflected 
the SARS-CoV-2 infection experience in 
early June 2020 (see the comparison of 
estimated vs. observed data in ODD protocol 
section 4.4.1). We estimated that although 
elimination was possible given Australia’s 
then-current policy settings, it would be 
comparatively delayed when compared to 
New Zealand by virtue of: Australia’s deferred 
start to physical distancing restrictions 
from the date of identification of Case 0 (72 
days), a greater starting caseload prior to 
intervention, a greater number of ongoing 
imported cases as a proportion of total 
cases, and a less stringent lockdown regime, 
estimated to be 76% the strength of New 
Zealand’s. Nonetheless, the estimates from 
the model under consistent public adherence 
to physical distancing settings of 85%, 
suggested Australia’s median estimated date 
for elimination under the full adherence 
scenario 1 was 12 July (95%SI: 5 June to 28 
August) (see Figure 3). We estimated an 80% 
probability of elimination in Australia by 3 
August (95%SI: 30 July to 8 August) and 90% 
likelihood by 17 August (95%SI: 8 August 
to 30 August) (see Figure 5). Statistics for 
the non-adherence scenario 2 for Australia 
were not calculated due to the frequency 
of null values (i.e. multiple model runs 
where elimination did not occur by the 
end of the simulation). Comparison of the 
physical distancing adherence vs. decay 
scenarios showed an estimated likelihood 
of elimination at 100 days post lockdown in 
Australia (6 July) of 40% and 10%, respectively 
(see Figure 4).

In June 2020, we therefore estimated that 
Australia was far less likely to eliminate SARS-
CoV-2 from the population if adherence to 
physical distancing policies decayed over 
the 60-day intervention period (to 28 May) 
from an initial estimated 85% to 20% during 
the onset of the 60-day implementation 
period (see Figure 4). We predicted a 25% 
chance that Australia would eliminate local 

Figure 3: Estimated Australian disease progression under consistent adherence with physical distancing policies 
(average number of new daily (panel a) and current and cumulative (panel b) cases from 1000 simulations) with 
shaded areas representing 95% simulation intervals. Solid lines represent mean values.
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SARS-CoV-2 community transmission up to 
300 days post-initial lockdown under the 
decay adherence scenario 2. Moreover, at 
a 20% residual physical distancing level, a 
significant second wave of infections was 
estimated to occur (and did). For Australia 
to maintain a >80% chance of elimination in 
the simulated timeframe and avoid a second 
wave of infections, we estimated that physical 
distancing would need to remain at or above 
70% lower than the pre-pandemic baseline 
(see ODD protocol section 4.4.2).

New Zealand – Wave 1
Modelled results for New Zealand produced 
in early 2020 also demonstrated a pattern 
of disease progression consistent with that 
observed between 26 February and 8 June 
20204 (see ODD protocol, section 4.4.1.2). 
Prior to implementation of the New Zealand 
Government’s physical distancing policy 
on 26 March 2020, growth in new cases 
appeared exponential but flattened through 
to 5 April, whereupon the pattern became 
one of sharp decline. Growth in SARS-CoV-2 
infections was exacerbated by a significant 
import of cases from international arrivals.4 
These observed patterns were also reflected 
in the model results, providing confidence 
that the representation of disease transfer 
mechanisms between individuals, case 
import, and public health interventions 
such as physical distancing were reasonably 
represented by the behaviour of our 
modelled synthetic population. 

Based on consistent application of, and 
adherence to, physical distancing policies 
associated with New Zealand’s strategy, we 
estimated a median date for elimination 
under the adherence scenario to be 3 June 
2020 (95%SI: 4 May to 27 June). There was 
an estimated 80% probability of eliminating 
SARS-COV-2 in New Zealand by 14 June 
(95%SI: 12 June to 17 June) and a 90% 
likelihood of elimination by 21 June (95%SI: 
17 June to 28 June) (see Figure 5). Under 
conditions of gradual decay in adherence 
from 85% to 20% over the 60 days from the 
implementation of restrictions to 26 May, we 
estimated that New Zealand was still a more 
than likely (94% chance) of achieving local 
elimination of community transmission by 
the end of the simulation interval (300 days) 
(see Figure 6). Comparison of the physical 
distancing adherence vs. decay scenarios 
showed a likelihood of elimination 100 days 
post lockdown in New Zealand (4 July) of 99% 
and 68%, respectively. A summary of findings 

Figure 4: Estimated Australian disease progression with decay in adherence to physical distancing (average number 
of new daily (panel a) and current and cumulative cases (panel b) from 1000 simulations with 95% confidence 
intervals) with shaded areas representing 95% simulation intervals, estimated on June 8th, 2020. Solid lines 
represent mean values.
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Table 2: Summary of findings for Australia and New Zealand using the agent-based model originally estimated on 
8 June, 2020.
Scenario 1. Adherence condition Australia NZ
Median estimated elimination date 12 July (95% SI: 28 May to 5 September) 3 June (95%: SI 29 April  to 1July)
80% estimated probability of elimination 3 August (95% SI: 30 July to 8 August) 14 June (95% SI: 12 June to 17 June)
90% estimated probability of elimination 17 August (95% SI: 8 August to 30 August) 21 June (95% SI: 17 June to 28 June) 
Scenario 2. Adherence decay condition 
Median estimated elimination date Uncalculable – 25% likelihooda June 15tha

80% estimated probability of elimination nil September 3rda

90% estimated probability of elimination nil November 13tha

Effective reproductive number 1.8 - 1.9 1.8 - 1.9
Note:
a: Estimates and/or simulation intervals cannot be calculated due to null values of elimination dates extending beyond the simulation time-window.

for Australia and New Zealand as estimated 
using our Wave 1 model as of 8 June 2020 is 
reported in Table 2.

Application of the model to Wave 2 in 
Victoria, Australia
Figure 7 shows the estimated 14-day rolling 
average reported SARS-CoV-2 infections for 
Victoria between mid-September and late 
October 2020 accounting for the estimated 
effect of eased restrictions contained within 
the Victorian Government’s ‘Roadmap for 
Reopening’.18,19,38 Victoria reached a rolling 
14-day average of <5 cases per day on 25 
October,39 which was consistent with the 
median date estimated by the model (26 
October). Each ‘trace’ in this chart represents 
a single run from one of 1,000 individual 

trials and demonstrates the wide variability 
in estimates for reaching a rolling 14-day 
average of <5 cases/day. These results 
demonstrating the range of possible 
outcomes were also released to the public to 
communicate levels of uncertainty associated 
with the model estimates.18 

In the context of decision support for public 
health policy-makers, the most important 
questions were associated with when and 
under what circumstances areas of the 
economy and social life could return to 
less restricted or pre-pandemic conditions 
without risking re-entry into greater 
restrictions or worse, lockdown. It was 
designed to prevent the oscillation pattern 
observed in countries around the world that 
had released restrictions too early, prior to 
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bringing cases fully under control (see Figures 
8a and 8b). The most important finding of 
our Wave 2 model used in Victoria was the 
demonstration that the trigger conditions 
chosen for when to significantly ease 
restrictions, and the planned extent of those 
eased restrictions (e.g. school re-openings, 
returns to work and increased expected 
movement and close interactions), greatly 
affected the risk of a modelled resurgence 
in SARS-CoV-2 cases resulting in a projected 
third wave of infections and a potential risk 
of returning to lockdowns or other social 
restrictions. If a fortnightly case average of 25 
cases per day was used when moving from 
Stage 3 to Stage 2, the predicted risk of a 
resurgence that would lead to a subsequent 
repeat of a Stage 3-style lockdown (i.e. >30 
recorded cases per day over a 14-day period) 
prior to 25 December 2020 was estimated at 
just over 60% (see Figure 8). A more stringent 
five cases per day threshold lowered that 
estimated risk to just 3%. This was due 
not only to the reduction in new cases per 
day but also the reduced total number of 
‘active infections’ present in the community 
produced by waiting longer for new case 
numbers to decline over time.

The second important finding was that 
settings that failed to suppress cases 
adequately resulted in a distinct, longer-
term oscillation pattern where Victoria was 
projected to move in and out of lockdowns 
as a result of experiencing third, fourth 
and fifth (and more) infection waves over 
time; patterns that have since been widely 
observed.18 The clear communication of 
these modelled results was a central feature 
of the Victorian Government’s justification 
of its adopted strategy and they were 
publicly released in conjunction with its 
announcement of the Victorian Government’s 
‘Roadmap for Reopening’.18,19,38 A detailed 
description of the Victorian Government’s 
RoadMap, results of the modelling exercise 
and the modelled assumptions that underpin 
it are available in the Supplementary File and 
ODD protocol, section 7.

Discussion

The findings of this study are two-fold. Firstly, 
we demonstrate the development and utility 
of a dynamic, agent-based policy model 
drawn from complex systems science to assist 
governments and public health policy-makers 
to consider and communicate the potential 
effects of a range of public health policies. 

Figure 5: Estimated NZ disease progression under consistent adherence with physical distancing policies (average 
number of new daily (panel a) and current and cumulative (panel b) cases from 1000 simulations with 95% 
confidence intervals) with shaded areas representing 95% simulation intervals estimated on June 8th, 2020. Solid 
lines represent mean values.
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Figure 6: Estimated NZ disease progression with decay in adherence to physical distancing (average number of new 
daily (panel a) and current and cumulative cases (panel b) from 1000 simulations with 95% confidence intervals) 
with shaded areas representing 95% simulation intervals, estimated on June 8th, 2020. Solid lines represent mean 
values.
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This work and its adoption by policy-makers 
in real-world public-health policymaking is a 
demonstrable example of an incorporation 
of complexity science in public health that 
has been consistently called for in the public 
health, systems, and complexity modelling 
literature,40,41 but that has so far produced few 
tangible examples.

Secondly, the core results of our Wave 1 
model reiterate that for island nations such 
as Australia and New Zealand, the potential 
to eliminate community transmission of 
SARS-CoV-2 (and other viruses and/or 
variants of similar transmissibility) or at least 
experience prolonged periods of negligible 
community transmission remained high if 
borders could be secured and public will 
could be preserved. Under maintained 
stringent physical distancing, we estimated a 
median probability of achieving elimination 
of community transmission in Australia 
during the first wave of infections by 12 July 
2020 and a 90% probability of achieving 
elimination by 17 August. In contrast, the 
modelled median probability of achieving 
elimination of community transmission in 
New Zealand was 3 June 2020 with a 90% 
probability by 21 June. In fact, as of 8 June 
2020 when our original estimates were 
devised, New Zealand had no known active 
cases and the New Zealand Government had 
declared local elimination of SARS-CoV-2. 
However, under the scenario of decaying 
adherence to physical distancing (closer to 
what actually played out in both countries), 
we estimated that elimination of community 
transmission in Australia was unlikely and 
a second wave of SARS-CoV-2 infections 
was probable. This second wave occurred 
in Victoria and was considerably larger and 
more deadly than the first.

Our finding that island jurisdictions have 
the potential to eliminate community 
transmission of SARS-CoV-2 was also reflected 
by successes observed in Taiwan in 2020. 
Taiwan acted at least 6–8 weeks before both 
Australia and New Zealand by imposing 
border controls on 25 January. An extensive 
public health response ensued including the 
testing of individuals showing symptoms of 
SARS-CoV-2 (Taiwan instituted one of the 
most comprehensive testing regimes per 
case of SARS-CoV-2),42 isolating individuals 
(and their close contacts), extensive contact 
tracing, and the wearing of face masks while 
in public. Together, New Zealand, Taiwan 
and Australia consistently ranked among 
the best-performing countries, globally, with 

Figure 7: Estimated outcomes from 1,000 model runs from mid-September to 25 October, 2020. Each colour 
represents different stages as set out in the Victorian Roadmap.38
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regard to managing their policy responses to 
COVID-19, especially during the early stages 
of the pandemic.43 

A limitation of our findings is the level of 
uncertainty associated with results. This is 
not unusual given that infectious diseases 
and circumstances surrounding transmission 
dynamics are inherently stochastic. The wide 
simulation intervals are the net outcome 
of many possible timings and amplitudes 
of a second wave, in addition to stochastic 
variability scenarios that may play out. 
This has implications for how closely one 
might expect any model of this kind to be 
validated by closely matching real-world 
data. It also highlights an important principle 
of agent-based and broader dynamic 
modelling exercises in that representing 
the mechanisms of change generally takes 
precedence over efforts to precisely forecast 
or match numerical results.44,45 Having said 
that, our model’s adaptation to Victoria’s 
second wave of infections proved to be 
highly predictive, demonstrating a 14-day 
rolling average of within one case per day of 
the actual average as of 26 October, despite 
the model being devised more than 50 days 
earlier when rolling averages were just under 
200 cases per fortnight (Victoria’s 14-day 
rolling average on 26 October 2020 was 
just 3.6 cases per day).19 Upon reaching this 
target, the Victorian Government released 
restrictions to ‘Level 2’. As of 1 January 2021, 
Victoria had recorded no locally transmitted 
COVID-19 infections for 60 consecutive 
days, maintaining this record into the new 

year until two small outbreaks occurred 
through hotel quarantine breaches – and 
were subsequently quashed – in January and 
February 2021.

Further limitations and challenges
The model and approach we describe 
here have many strengths including the 
ability to run policy experiments that assess 
changes in behaviour and contact patterns 
as demonstrated in its Wave 2 utilisation 
for Victoria. Despite this, the model also 
omits many potentially important factors. 
It does not include changes to individual 
hygiene behaviours (hand washing 
and cough etiquette, etc) or associated 
environmental transfer that may alter rates 
of transmission (e.g. through surfaces). 
Further, it also does not include accurate 
geographic representation of towns, cities, 
or other locations whose proximity may 
alter transmission patterns (e.g. commuting 
or transport routes). Its representation of 
demographic and workplace heterogeneity 
is also limited. It, therefore, remains an 
abstraction in many respects. However, it 
has been built flexibly and can be extended 
to include adjustments to assumptions or 
inclusion of these and other public health 
considerations such as school and public 
transport closures, mask-wearing, expansion 
of tracking, tracing and testing regimes, 
changes to the understanding of the 
demographic, workforce, and movement 
patterns given new empirical data (e.g. linear 
vs. exponential decays), and advances in the 
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Figure 8a and 8b. Demonstration of the use of the model (publicly released slide-pack 18) by 
the State Government of Victoria to communicate risk associated with various opening 
trigger settings when exiting wave 2. A full set of slides is available in the ODD protocol (see 
section 7). 

 

Figure 8a and 8b: Demonstration of the use of the model (publicly released slide-pack18) by the State Government of Victoria to communicate risk associated with various 
opening trigger settings when exiting wave 2. A full set of slides is available in the ODD protocol (see section 7).

use of digital technologies for rapid and more 
efficient contact tracing.46 More recently, 
it has also been adapted to consider the 
additional challenges of the Delta variant 
and expanded to include vaccination roll-out 
strategies, including vaccine effectiveness 
and targeting of vulnerable groups in staged 
administration among other improvements. 
Our model code continues to evolve, is 

open for use and adaptation by any other 
jurisdiction around the world who may wish 
to use or adapt it for their own immediate 
and/or longer-term planning purposes 
(https://bit.ly/2XI3v3z). Model speed has 
also been enhanced through deployment 
on high-performance computing clusters, 
enabling a greater exploration of the policy 
phase space.47

From a methodological and research 
application perspective, it is very important 
to note that the development of this model 
and its application to the Victorian context 
did not occur ‘cold’. As model authors 
and contributors, we worked closely with 
representatives from the Department of 
Health and Human Services to construct 
and deploy new, policy-relevant functions 
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and features, sometimes under extreme 
time pressure. The results of these models 
and trials were sometimes publicly 
released within only a day or two of their 
completion. It is acknowledged that had this 
development occurred in a more deliberate 
manner and given more time, this would 
have afforded greater consideration of the 
model architecture and/or some model 
features including more efficient coding 
practices or closer calibration to real-world 
data or dynamics. More attention may also 
have been directed to model validation and 
verification activities, and sensitivity analyses. 
Practically, however, we did not always have 
that opportunity, but such are the realities of 
developing and deploying models in crises 
conditions. We made a judgement at the time 
alongside our academic and government 
collaborators that potential issues were 
more likely ‘mice than tigers’.48 Thankfully, 
however, time has provided the opportunity 
to re-visit the model with clear eyes and 
improve both performance and robustness. 
Already, this has resulted in considerable 
improvements in speed (>1000x original) 
and design that will continue to be openly 
documented in the model’s ODD protocol 
and online repository as well as online policy 
and decision support tools developed with 
co-authors and collaborators (e.g. https://
populationinterventions.science.unimelb.edu.
au/pandemic-trade-offs-july-2021).

Finally, we also acknowledge that real-
world evidence also indicates that some 
assumptions governing behaviour and 
mechanisms – especially in our Wave 1 
conceptualisation – did not operate in the 
model as they did in the real world. For 
example, increases in mobility showed a more 
linear recovery after cessation of lockdowns 
than exponential.35 Also, testing, tracking 
and tracing mechanisms are not realistically 
represented as ‘likelihoods of being traced 
per day’, but follow both up and downstream 
chains of enquiry. The likely positive case 
reporting bias in the early stages of the 
pandemic directed toward presenting and/
or hospitalised cases and returned travellers 
and their contacts is also not accounted for. 
The duration of illness estimated for agents 
in this model was also arguably longer than 
necessary, however, this did not result in an 
estimated extension of generation time or 
serial intervals (mean = 5.4 days, sd = 0.6 days) 
beyond observed empirical estimates.49,50 Our 
contemporary models and representations 
now incorporate such improvements while 

also benefitting from better publicly available 
data. 

Conclusions

There are multiple factors countries must 
consider in weighing up the benefits of 
individual infectious disease suppression 
strategies or preparing themselves to be 
resilient in the face of second and subsequent 
waves of infections in the absence of 
adequate vaccine coverage. Such factors 
include the probability of re-entry of the virus 
after initial elimination (and the probability 
that any such outbreaks can be successfully 
controlled); the time to produce and 
availability of a vaccine or highly effective 
antivirals; and the cost-benefit ratio of any 
strategy when taking into account other 
health, economic and social factors.51 Here, 
we present a model that was both robust 
and flexible enough to assist decision-makers 
think through and analyse critical public 
health policies and their consequences 
in real-time. As indicated by the Victorian 
Government’s Chief Health Officer, Professor 
Brett Sutton, in his public address on Sunday 
8 November 2020, the evidence provided 
through this work was “extraordinarily 
helpful” in assisting the government to chart 
Victoria’s course to safety in 2020.

“We backed the modelling … and that’s what 
it told us [getting to <5 cases per day was 
possible] … and we are very pleased that it 
has been validated and vindicated … If there’s 
a lesson for anyone, it’s that science-based 
disciplines use empirical data and other 
inputs to try to make the best decisions … 
it’s not perfect, nothing is perfect, but it has 
been extraordinarily helpful to get us here.” – 
Professor Brett Sutton. 
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