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1 Introduction

An optical geometry, a notion introduced in the late eighties by Robinson and Trautman, is a
geometrical structure that encodes the existence of an electromagnetic plane wave — or an appro-
priate higher dimensional generalisation [2] — propagating along a prescribed foliation by curves of
a Lorentzian manifold. Let us recall the relevant definitions. A null congruence on a Lorentzian
n-manifold (M, g), n > 3, is a foliation by curves, which are tangent to some nowhere vanishing
null vector field. Given a Lorentzian n-manifold (M, g), n > 3, a null congruence is called geodesic
shearfree, or shearfree for short, if there is a choice for a nowhere vanishing tangent null vector field
p, whose local flow preserves both the codimension one distribution % := pts and the conformal
class of the induced degenerate metric h := glyx9 on the spaces #, = pt9|,, * € M. These

conditions are equivalent to requiring that the Lie derivative Z,g has the form
g = fg+ P’V for some function f and some 1-form 7 . (1.1)

If this holds, the vector field p is also geodesic, i.e. V,p = Ap, and the curves of the congruence

are geodesics (see e.g. [1,2,5,14]). A quadruple @ := (p, %, [h],{g}), given by

(a) anowhere vanishing vector field p, determined up to multiplication by a nowhere zero smooth

function f,
(b) a codimension one distribution %7,
(c) a conformal class [h] of semi-positive metrics on 7,

(d) a non-empty set of Lorentzian metrics {g}, which are exactly all metrics g with respect to
which p is a null vector field with %" = p*s and [h] = [g|% x| and both % and [h] are
preserved by the local flow of p,

is an optical geometry in the sense of Robinson and Trautman [2,5,14] . The Lorentzian metrics

g in the set {g} are called compatible with the prescribed optical geometry @.

By Robinson’s Theorem [8,13], the shearfree null congruences of a real analytic four dimensional
Lorentzian manifold are exactly the foliations by the lines of propagation of electromagnetic plane

waves.

Many interesting examples of optical geometries @ = (p, 7, [h], {g}) are provided by connections
on principal A-bundles 7 : M — S = M/A with one-dimensional structure groups A = R or S*.

On each bundle of this kind, one may consider an optical geometry in which p is the generator of the

L As a matter of fact, all four elements of @ can be recovered just by (i) the 1-dimensional distribution %, which
is generated by p and (ii) the set of metrics {g}, provided that they satisfy appropriate conditions. Thus, the optical
geometries can be also defined as such pairs (¥, {g}) — see the original definition in [14].
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action of the group A along the fibers, and 7" and [h] are the appropriate A-invariant distribution
and conformal class. In this case, the quadruple & := (7 : M — S,p, %', [h]) is called a regular
shearfree manifold and a metric g € {g} of the corresponding optical geometry @ = (p, %, [h],{g})

is said to be a compatible metric of A .

The regular shearfree manifolds are important geometric objects not only for their role in Lorentzian
geometry, but also for their relations with CR geometry. Indeed, for any regular shearfree manifold
M= (7 : M — S,p,¥,[h]), the base manifold S = M/A is naturally equipped with the codimen-
sion one distribution %'° C T'S and the positive definite conformal metric [h°] that are obtained
by projecting the A-invariant distribution % := p* and conformal class [h] onto S = M/A. If M
is even dimensional and the projected distribution % C T'S is contact then the regular shearfree
manifold ./ is called (mazimally) twisting. For any such 4, the corresponding optical geometry
Q= (p,7,h],{g}) determines a family J° of complex structures J> : #,° — %, on the projected
distribution of S, that make S a strongly pseudoconver almost CR manifold (see, e.g. [1,2,5,7]

and references therein).

Celebrated examples of twisting regular shearfree manifolds are given by the 4-dimensional space-
times with Taub-NUT metrics and the 4-dimensional Kerr black holes. For such Lorentzian man-
ifolds, the base manifold of the A-bundle # : M — S has an additional remarkable geometric
feature: it is a principal bundle 7% = § — N with one dimensional structure group A’ = R or
A’ = S and the base manifold N = S/A’ = M/(A- A’) has a natural structure of a Kéhler man-
ifold. Moreover, the strongly pseudoconvex almost CR manifold (S, %%, J%) is a regular Sasaki

manifold and the structure group A’ of S preserves

(i) the CR structure (%%, J%),

(ii) a contact 1-form 6, for W3, ie., WS =ker,, such that df, = 75*w, for some Kihler form

Wo = go(J+,-) on (N, J);

(iii) the conformal class [h] on % contains the degenerate metric h, = ((7% 0 )% go) |5

The fact that the Taub-NUT and Kerr metrics have these properties is one of the reasons of the
interest in twisting regular shearfree manifolds, in which the almost CR manifold (S, %%, J%) is

a Sasaki manifold projecting onto a Kéhler manifold. Such manifolds are called of Kdhler-Sasaki

type [2].

We recall that, according to classical results in the theory of G-structures, any local isometric
invariant of a pseudo-Riemannian manifold is fully determined by the components in orthonormal
bases of the Riemann tensor R and its covariant derivatives up to an appropriate order (see, for
instance, [9-12,16] and references therein). Such components are in turn given by the components

of g and the Christoffel symbols of V¥ in a frame field. This observation indicates that the explicit
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expressions of the Christoffel symbols in appropriate frame fields represent a fundamental tool for

studying the compatible metrics of a given regular shearfree manifold of Kéhler-Sasaki type and
possibly finding solutions of the Einstein (or other physically relevant) equations in this class of

metrics.

In this paper, we discuss in great detail the Christoffel symbols of the Levi-Civita connection V¢
of a compatible metric g of a regular shearfree manifold # := (7 : M — S,p, ¥, [h]) of Kéhler-
Sasaki type. More precisely, we fix a special (locally defined) frame field (eq, ..., e, ), which is well
adapted to the optical geometry and is determined only up to a choice of a local frame field on
the underlying K&hler manifold N = M/(A - A’). Such a frame field has the following two useful

properties:

(1) the last two vector fields e,_1, e, are the generators of the actions of the groups A and A’,

respectively, and are therefore canonically associated with the considered manifold;

(2) the vector fields e;, 1 < i < n — 2, are tangent to the distribution 7" at all points and are

A - A’-invariant, thus projecting onto a frame field (ey,...,¢,—2) on N.

Note that (1) and (2) allow to minimise the number of parameters that are necessary to determine
the components of a compatible metric g. Notice also that, due to the fact that . is twisting, a
frame field satisfying (1) and (2) cannot coincide with a coordinate frame field. This forces us to

avoid the use of coordinates in all subsequent computations.

After choosing an adapted frame field of this kind, we write down the general expression of a com-
patible metric ¢ in terms of its dual frame field and we determine the Christoffel symbols of V¢ in
such frame and coframe fields, using just Koszul’s formula and classical results on transformations

of Levi-Civita connections under conformal transformations.

The expressions for the Christoffel symbols given in this paper have been originally determined
during the preparation of [2] and have been successfully used to derive a coordinate-free charac-
terisation of the generalised Taub-NUT metrics on even dimensional manifolds (see e.g. [3] and
references therein for other characterisations of the metrics of such a kind). However, the details
of the actual computations did not appear in [2] and some formulas of that paper had some minor
sign errors — very few indeed and with no effect on any statement and proof. The same explicit
(and amended) expressions have been later used in [6] for determining explicit expressions for the
components of the Ricci tensor of compatible metrics of a shearfree manifold # of K&hler-Sasaki
type satisfying conditions that generalise Kerr’s ansatz for the 4-dimensional rotating black holes.
These expressions for the Ricci tensor allowed us to translate the Einstein equations for a com-
patible metric into equations on its parameters in an adapted frame and to find a large class of
exact solutions that naturally includes the classical Kerr black holes. We anticipate a number of

further applications of the explicit expressions of these Christoffel symbols and believe that the
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detailed computations we present in this paper will be a helpful tool for other researchers who are

interested in the developments of this field.

The paper is structured into two sections: In section 2, we define the adapted frame fields of a
compatible metric, that is the frame fields in which all computations of this paper are performed;
In section 3 we derive the explicit list of Christoffel symbols and provide the details of the compu-

tations.

2 The general form of a compatible metric on a shearfree

manifold of Kahler-Sasaki type

2.1 Notational issues

Consider a shearfree manifold &4 := (7 : M — S, p, 7', [h]) of Kéhler-Sasaki type. We use the

following notation:

(1) (N, J,g,) is the K&hler manifold onto which S projects and w, = go(J-, ) is the Kihler form
of N 2;

(2) A and A’ are the 1-dimensional structure groups of the principal bundles = : M — S and

7% : 8 — N, respectively;

(3) p, and q5 are the fundamental vector fields of the principal bundles 7 : M — S and 77 :
S — N, corresponding to the element of the standard basis of Lie(A) = Lie(A’) = R. This
means that ®L°(z) = e*(z), x € M, and @35 (y) =e*(y), y € S;

(4) 6, is the contact A’-invariant 1-form on S satisfying the conditions
db, = m*w, , 0o(q,) =1, kerO,|, =W , x €S ; (2.1)
and 9, is the pull-back ¢, = 7*(6,) of 6, on M.

It is important to note that %% is an A’-invariant horizontal distribution on the principal bundle
75 : 8 — N, and it is therefore a connection for this bundle. The associated connection 1-form is

S

0, and its curvature 2-form is df, = 7 *w,.

For what concerns the A-bundle w : M — S, throughout the paper we assume that it is trivial
and equipped with the natural flat connection of a Cartesian product. This apparently restrictive

condition can be always locally satisfied replacing S by an open subset 7" C .S, on which the bundle

2Note that there is a sign difference in the definition of w, w.r.t. [2]. There it is defined as wo = go(-, J-).
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is trivialisable, and identifying 7 : M — S with the trivial bundle 7 : 7~ 4(%?) ~ ¥ x A - ¥

equipped with the standard flat connection.
We denote by #, the horizontal distribution of the flat connection of 7 : M — S.

For any given vector field X on the Kéahler manifold N, we denote by

— X the unique A’-invariant horizontal vector field in #'° C S projecting onto X;

— X the unique A-invariant horizontal vector field in % projecting onto X (%) and thus also

onto X; note that, by definition of %", the vector field X takes values in H, W .

The unique A-invariant horizontal vector field in %, projecting onto q° is denoted by q,.

Owing to the A- and A’-invariance of the connections of 7 : M — S and 7% : S — N and the
properties of the connection 1-form 6,, for any pair of vector fields X,Y on N the following Lie

bracket relations hold 3:

~

(X, V] = [X.Y] = 0 (JX.V)a, »  [X,po] = [X, ) = [Pordo] = 0 - (2.2)

2.2 The adapted frame fields

Consider a frame field (F1,...,E,—2) on an open set 7 C N of the Kéhler manifold and the
corresponding lifted vector fields (El, cey En,g) on M, taking values in the distribution %" =
Z MW . The vector fields of the (n—1)-tuple (E'l, A E”_Q, p,) are pointwise linearly independent
and hence give linear frames for the spaces %, C T,M, x € % = (7% om)~Y(¥’). Since q, projects

onto q5 and ¢ is transversal to #'° = 7.(%'), the vector fields of the n-tuple

~

(E1>"'7En727po7qo) (23)

are pointwise linearly independent and determine a frame field on %. We call (2.3) the adapted

frame field of M determined by the frame field (E;) on N.

Note that, due to (2.2), the Lie brackets between any two vector fields of an adapted frame have

the form

~ ~

[Eia E]] = ijEk - gO(JEMEJ)qo ) [EZapo] = [E27qo] = [po7qo] =0 ) (24>
where the ¢f; are the functions such that [E;, E;] = cf; Ej.

The dual coframe field of (E1, ..., En_s,p,,q,) is denoted by (E,..., E"=2 p*. q3). Since the
dual 1-form ¢} satisfies q%(q,) = 1 and vanishes identically on %" (because %" is spanned by the

3The Lie bracket [)/(\', 17] differs by a sign from the one used in [2]. Since in both papers, it is assumed df, = wo,
the sign difference is a consequence of the different definitions of the K&hler form w,.
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for any choice of the adapted frame (Ei,po, dy)-

2.3 Parameterisation of the compatible metrics

Let (E;) be a (local) frame field on N and denote by (Ey,...,En_2,p,,q,) the corresponding
adapted frame field for . Since we are assuming that . is of Kéahler-Sasaki type, the conformal

class [h] consists of the degenerate metrics on %" having the form
h=o(m% o) (g0)|o, o = conformal scaling factor . (2.6)

By the results in [2, Section 2.5] (see also [6]), the compatible Lorentzian metrics on ./ are locally

in one-to-one correspondence with the pairs (h, q) given by

o a degenerated metric h on 7" as in (2.6):

e a vector field ¢, which is transversal to the distribution #" = #” 4+ Rp,, i.e., of the form
q:=aq, + bp, + ¢E; a#0. (2.7)

More precisely, given the conformal factor o and the vector field q, the corresponding compatible

metric ¢ = ¢(> is the unique Lorentzian metric satisfying conditions

9(X.Y)=0g,(X.Y),  9(X,p,) = 9(py:po) =0,
(2.8)
9(X,q) =0,  g(pp,a)=1,  g(a,q)=0.
From (2.7) and the first line of (2.8), the second line in (2.8) is equivalent to
~ clo 1
g(quo) = - gO(Xa El) ) g(poaqo) =
a a (2.9)

b1,
g(Qovqo) = 72Cl72 + aﬁc CJUgO(EjaEi) .

Introducing the shorter notation

2 b1, :
ai=—, B = p (2a2 + Pl cjogo(Ej,Ei)> , v i=—2—, (2.10)
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we get that ¢ = ¢(®% is the unique Lorentzian metric satisfying the condition

PPN S oa
g(XaY):Ogo(X7Y) ) g(vao):g(pmpo):Oa g(povqo):7 ’
) (2.11)
s ovy* o
g(Qo’X) = 9 gO(Xv Ei) ) g(qmqo) = 56 :
This means that g has the form
i\, D * * i sk OB
(2.12)

—o{ % 07 )y + 00 v (s A B EVE + 50 ) .

The expression (2.12) gives a convenient parameterisation in terms of the (n + 1)-tuple of smooth
functions (o, «, 8,7%) for the compatible metrics of # = (7 : M — S,p, % ,[h]). We emphasise
that, conversely, any metric having the form (2.12), for some o > 0 and « # 0, is a compatible
metric. Indeed, it is associated with the conformal factor o and with q = aq, + bp, + ciE where
a, b, ¢/ are solutions to (2.10) for given a, 3, v*. They are

2 B

-2 = ind go(E;, E; i- 0
= a0 a20+2a207790( i Ei) s ¢ ac

3 The Christoffel symbols in an adapted frame field of the

Levi-Civita connection of a compatible Lorentzian metric

3.1 The complete list of the Christoffel symbols

Let £ = (w: M — S,p,%,[h]) be a twisting regular shearfree manifold of Kéhler-Sasaki type,
with S projecting onto the Kéhler manifold (N, J,g,). Let also (E;) be a frame field on an
open set 7 C N and (X,4) = (El, .. .,En,g,po,qo) the corresponding adapted frame field on
U = (75 o)~ (') € M. We use the notation g;;, wij, J7, c}; for the functions defined by

9ij = go(Ei, Ej) , wij = go(J By, Ej) , JE; = JIE; [Ei, Ej] = ¢}, B} .

For what concerns the Christoffel symbols T' 44 (i.e., the functions defined by Vx, X5 = T, X¢),
we are going to use the convention that I';7* denotes the function which gives the component of
\Y ETEA?] in the direction of E,,, I‘Z-;)" is the function that gives the component of V EiEJ’ in the
direction of p,, I‘i‘}” is the function giving the component of V B, Ej in the direction of q,, and so

Oo1.

Our main result is the following:
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Proposition 3.1. Let g be a compatible metric for M, hence of the form (2.12) for an (n+1)-tuple
of smooth functions (o, c, 3,7%) on %, with ¢ > 0 and o # 0 at all points. The Christoffel symbols
T 4% of the Levi-Civita connection of g in the frame field (X ) = (Ei,po, q,) are given by

Ij"=yg kgo(VEiEjaEkH'g kSijUH'7 4” % z( )5 +%EJ(U)5i

-8 (4 Buto) - Lopilo)) (3.1

where Sij;, is defined by

¢ ¢ ¢
Sijk 1= ’YZQO(JEiyEk)go(Eéan) + %QO(JEj,Ek)Qo(Ee7Ei) - %QO(JEian)go(EéaEk) ;

T2 = LB/ gim) + o By (1 gi) — —— ™1 bty — ﬁgo(V%E',Em) —~ ﬁSmm
] 200 J 207 4o T« iJ a Y
ij (2 Lo ook 7" A
EELLYAN - i — 2 - —F, , 3.2
95 (Zas(o)+ o (0720t = 28) (o)~ LB (5:2)
Wij  Gij
rp=-=-2_-=4 3.3
do= =By (o), (33)
m _ m agmkwik 1 5m
I‘ipo - Fpoi - 4 + %po(g) i (34)
1 ~ 1 YMw; 1 -~
TPo=T Po= —F, — kY gir — oy~ F, 5
1po po’L 2(1 (a) + QOépO(’y )g k 4 2 ( ) (3 )
Ao _ Qo _
Fipo - Fpui =0 ’ (36)
mk mk 4 mk
~ ~ r Wi
T =T, " =L EBi(y'gu) - L Bu(r'gu) — L-cloguug™ + T2 g
o o 4 4 4 4
m m t m
g t 1 m Y mk i
— —E — i+ — O — —gu E - — , 3.7
B+ L0+ 5007 — L (57 Bul) - D)) L (3)
TP =T P = = Bi(B) + 7" gk Bi(0) — —57™ 1 guuiDo(1)gi0 — =5 Bs(0)+
o T Tt T 9 402 mk 402 BT I T 902
1 m ’Ym’)/t ,ym
_ — —E —E ta. £ L B—
+ 202 B, (v )glt Ao (’V gtm) + dov m(fy gzt) + Aoy 9teCim, + Aoy Wim B
i m
(2 L omok, g
i (Ban(o)+ o 00 = 29) (o)~ B ) (5.5)
1 & 1 L5 v g
rle=r,%=_—FEa)— —p,(Y)git + —FEi(0) — - 3.9
iq, Aot 20 (Oé) 20 po(’y )g t + 2% (U) 200 pO(O') ’ ( )
popy = 0 (3.10)
T, b = p,(log(ac)) , (3.11)
T, 9 =0, (3.12)
m __ m __ 1 m gmk o o mk 1 ,ym
T, =Ty = 120" — S Bule) = £ (57 Bulo) = Ton(0)) (313)
F b I‘ b 1 m Z m ~ 1
Poldo " doPo %po(ﬂ) - Epo(’y )glm + E m( ) + qo(a)

2
5o (@0 + 5 00k = 28) (o)~ BB (319
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Ipa =Tqp; =0, (3.15)
mk mk m m
m _ 9 iy, 9 4 _ b _
quqo - 9 QO(’-Y )gzk 4 Ek(ﬂ) 20 qo(a) + 4o po(ﬂ)
B kD 7"
2 (agmE - d
1o \9 k(o) - po(o) ) (3.16)
o1 1 1. 1
L0 = 559(8) + 557" gmkdo(@) = 577" gmkPo(B) — —5Ha,()+
B ™ i YA
+ ﬁpo(/ﬁ) - %%W )gim + EEm(ﬂ)_
8 /1 1 "k M~
_ 2 (= — ok — 2 - B, , 3.17
5o | %) + 55 (V"7 Gk = 28) o (0) = 5~ Em() (3.17)
1 1 1 I}
T % — — _ sl R . 3.18
aud; = 790(@) = 52Po(B) + —do(0) = 5P, (0) (3.18)

The proof will be carried out in three steps, which we provide in the next subsections. In the
first step we compute all covariant derivatives Vx,Xp determined by two vector fields of the
adapted frame field (X4) = (Ei,po,qo) under the assumption 0 = 1. In the second step, the
determined covariant derivatives are used to compute the Christoffel symbols T 4G, still under the
condition 0 = 1. In the concluding third step, the Christoffel symbols T' Ag are determined with no
restriction on o by using classical transformation formulas for the Levi-Civita covariant derivatives

under conformal changes of the metric.

3.2 The first step

By Koszul’s formula, for any triple of vector fields X1, Xo, X3,

oV 51X, Xa) = 5 (20062, X))+ Xalg(3X1, )~ Xl X))~

~ g([X0, X, Xa) — 9([Xa, Xa], X1) +g<[X1,X2],X3>) C(319)

Using this formula, we may determine the functions g(V x, X2, X3), for a compatible metric g with

o =1, for with any choice of X7, X5, X3 in a set of vector fields of the form
{ )?, Po,d,, Where X is the lift of a vector field X on N } .
We get the following expressions:

VeV 9(VzY,2) = 6,(VXY, Z2) + 9(Sxv. Z) | (3.20)
= «
9(VY.py) = —100(JX,Y) | (3.21)

9V V0, = TR GFaY, B + 1V (R 0o(X,B) — 100X, Y) . (3.22)

>~ =
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where S is the tensor field of type (0,3) on N, defined by

J J J
9(Sxv, 2) i= T2 00(TX, 2)g0 (B3, Y) + T200(TY, 2)g0( By, X) = Togo(TX,V)g0(E;, 2)

= (0%
Vepo:  9(Vgpo, Z) = 90(JX. Z) , (3.23)
9(V5Po,P,) =0, (3.24)
1o 1,
9(VgPo,do) = 7 X(@) + 7Po(7")90(X, Ei) (3.25)

Vit 9(V3a02) = (X(0100(En 2)) - {201 '00(X, B) -
- X2, B) + (8IX.2), (3.26)
9V 30,p,) = 1 X(0) ~ 10,(1)90(X. Fy) (3.27)
9(Vzdo qo) = i)?(ﬂ) ; (3.28)
Vp,V 9(V.V,2) = %go(ﬂc 7), (3.29)
9(Vp,Y,p,) =0, (3.30)
9V, ¥,0,) = Pa(1)90 (V. B) + 17 (a) (331)
Vo.Po:  9(Vp,Pp Z2) =0, (3.32)
9(Vp,Po,P,) =0, (3:33)
9(Vp, Do, d,) = %po(a) ; (3.34)
Vodot 9(Vo,00 2) = 1po(4)00(Ei 7) — 12(0) (3.35)
9(Vp,40,D,) =0, (3.36)
9(Vp,do:d,) = LACH (3.37)
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VoV 9(Va7.2) = (V0 0B 7)) — 120 (Y, B)-
- (V2L B+ 1BV, Z) . (339)
9V, 700) = 5 (V@) = D)1, Y)) | (339)
9(Ve,Y,q,) = ?i) ; (3.40)
Vabo: 0V 2) = pa(1)90(Ei 2) ~ 1 Z(e) (341)
9(Vq,Po:P,) =0, (3.42)
9(Vq,Pod0) = poflﬁ) ; (3.43)
Vado: 9V, 2) = 50,0)00(E: 2) ~ 1 Z(9) (344
o(Va,dp,) = 3a,(a) — Pt (3.45)
oV, 000, = 22 (3.46)

From this list, we may recover the explicit expressions of the covariant derivatives of vector fields
of the adapted frame field (Ei, Do, d,) as follows. We claim that the dual coframe field (E’, e
is given by the following 1-forms (here, (¢°™) := (g;;) ™' = (g0(E:, Ej))_l)
i wn * 2 Lo m 7" 5
E' = g<g "Er — —Do, ) N S g<qo + = (V" gme — 28) Do — —Enm, ) ;
e @ e @

2
*— gl Zp. o). (34
qa g<apo,) (3.47)

This claim can be checked using (2.11) and observing that the right hand sides in the above

equalities are 1-forms that satisfy the equalities

E i i i e ’Yia
EYE)) = g% ge; =0} . E'(po) =0, E'(q)) = g" L-gmi — -5 =0,
Sy 2™ ™ 2«
* L) = — 'miimlzo’ * :77:17
pO( ]) a 2 9j a Imj po(po) a2
* 25 k (0% ’ym’yk
_ 2 F = (M ok — 2 S e A —
Po(do) cv2+cv2(,yvglC 6)2 o 2 Imk
* /T * * 20{
qo( ]):0’ qo(po)207 qo(qo)_**zl
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Since any local vector field Z on M can be written in terms of the frame field (E'Z, Posd,) s
7= E(2)E: +v(2)p, + a3(2)a,

from the above expressions for the 1-forms Ei, ps, and g}, we get that for any pair of vector fields

X,Y on M, the Levi-Civita covariant derivative VxY is equal to

~

VxY = (gmkg(VXY, Ek) — %Q(VXK Po)) En+
| 59(VxYia.) + (V""" gmr — 28) 9(VxY,p,) — T IVXY En) ) pot
9
+(2o9xvip) )0, 349

Combining (3.20) — (3.46) with (3.48), we get the covariant derivatives we are looking for. We list
them in (3.49) — (3.57) (here, we denote by S;;,, the components of the tensor field S in terms of
the frame field (F;) on N):

VEEJ' = (g kgo(VEiEj7Ek) +g kSij\k—k 1 j) B+
+ i@.(k.)JriE.(k.),
o i\ 9jk % i\ Gik

1 m ’Ym o ’Ym Wij
17 VF Gmpwij — ?go(inEﬁEm) - aSijm> Po — %qo , (3.49)

1 Y™ w;
fapo(vk)gm - 4“”) Do » (3.50)

gmk N gmk R ,yf gmk:
Vid,= | =—Ei(gu) — ——Er(v'g) — Zcﬁrgtzgmr + Tﬁwik—

; 1 1
- %Ei(a) + ZZpo(vt)git> B+
+ (210[@1(5) + %QQWmvkgmkEi(a) - %.(Q’mey’fgmkpo(vt)gn - %Ei(a) + %po('Yt)git_
_ gﬁi(’ytgtm) + gﬁm(vtgit) + 740’7 Guect, — ZZBwim> Dot

1 -~ 1
—E(a) — —p. (7)), 51
+ <2a i(a) 2O[po('v )gn>qo, (3.51)

~ «Q ~ 1 A 1 m
VPoEi = 4 wikEm + <E2(Oé) + Zpo(’yt)git - 7w1m> po ) (352)
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Vp, Do = Po(log a)p, , (3.53)
Voo = (100 = L Biu@) ) B+ [ oba(8) = Lobar)gim + L Bonl0) )by + (3.54)

poqo - 4po Y 4 k& m 20[p0 4a Pol7 )Gim 404 m\& Po » .
N mk mk __ v mk
Vo Bi = (S—Ei(v'gu) = T—Er(v' ) — ¢t grog™ + L Buss—
4 4 4 4
,ym. ,}/m ~

E; -— Yo | Em
T E@) + on (a0 ) Bt

~

1 1 N 1
+ (Ei(ﬁ) + "y g Ei () — @vm'ykgmkpo(vt)git —

1 -
—5 E;
o 1z BE;(a)+

2a2

1 t YA ™A t Y Y, ol
5 it — ——Ei m)+ -—Em i im — 7 PWim |Po
+ 502P6(1)9it = 5= Ei(V gum) + = Em(7 9i) + ———guee 1oy Bwim | ot

1 A 1 t
=+ <2aE1(CM) - %po(v )glt> 9o > (355)
mk . mk __ ~
Va,Po = | = Po(1)gin = =~ Ei(a) | B+
+( pu(8) = opy (3 gim + L Br() by > (3.56)
QOépo 4 Pol7 " )Gtm 4 m (& Po » :

mk ) mk R m m R
Vq,q = (gqo(vl)gm -9 _E8) - Laqo(a) + 7(}1%(5)) Ent+

2 4 2 4
1 1 1
+<m%m+mﬂ%@mmwmﬂ%%mmmimm+£ﬁw>
LA NSRS 1 _ Po(B)
- QQO(’Y )gzm + 4o Em(ﬁ))l)o + <aqo(a) 20 ) 9o - (357)

3.3 The second step

Let us now denote by I" Ag the Christoffel symbols of the Levi-Civita connection of a compatible
metric g as in (2.12) under the assumption that the function o is identically equal to 1. Since
the T',§ are the functions that appear in the expansions Vx,Xp = I' ;X of the covariant
derivatives (3.49) — (3.57), all such Christoffel symbols can be determined by just looking at those
formulas. For convenience of the reader, we provide the complete list in the next lines

Y Wi

L= 9" 9o(V%, Ej, Ex) + g™ Sy + 1

(3.58)



Lorentzian manifolds with prescribed optical geometries 253

~

1~
L= *aEi(ngjk) + o= Ej(7* gir )+

t 2 2a
1 1" e gl
40(7 7 ImkWij — o go(inEjaEm) - ;Siﬂm ’ (359)
a4, _ Wi
Lj°=- 5 (3.60)
mk
m _ m ag Wik
Fip(7 - Fpoi - 4 ) (361)
1 ~ 1 Y™w;
Flpo — F Po — E - k B um . 2
ip, Pot 20 ( ) + 2apo(’y )g k 4 ’ (3 6 )
dbo _p %o _
Lipe =T, " =0, (3.63)
mk £ mk
Lig, =Tq P = LEi(Vtgtk:) - LEk(Vtgti) - lcﬁrgtzgmr + Lﬁwik—
° o 4 4 4 4
ol ™
- F it 3.64
1 Bi(0) + b, (0 )gu (3.64)
1 ~ 1 1 . B ~
Lo =Tq,i" = 5 EB) + 157" F gk i) - 1oz 7"V mkpo(V)git — 55 i)+
1 : m - ,ym - ’Ym’}/t ,ym
Pl it = —Ei(v' gim) + —Em(3'gi o — im > (3.65
+ 523 0P6(1)9it = = Ei(v gum) + = Em(Y'git) + == guCim — 7—Bwim , (3.65)
1 ~
Pde=r do=_—F, i 3.66
iag =Ta,i” = 55 Bi(@) = 5 po(1 )i (3.66)
pogf) =0, (3.67)
pogz = po(log OZ) ) (368)
Iy 5o =0, (3.69)
m m 1 m grnk =
P90 = qupo = ZpO(’y ) - 4 Ek;(Oé) ) (370)
I Po=T_ Po=_— - im 7E’m ’ 3.71
ob =T B = 5o0,(8) = b, ()gim + 1 Bim(a) (371)
Tpyae =Tap; =0, (3.72)
gmk ) gmk N ,ym ,_ym
r,m=>— Ygir — —F - — — .
SR 2 q0(7 )g k 4 k‘(/B) 20 qo(a) + Aoy po(ﬁ) ) (3 73)
Tobe = 50l8) + 5577 0mkale) = 157" 0mkpa(B) — Sgan(a)+
dode 20 To 2(12,7/ YV ImkYo 40427 Y 9mkDPo a2 1o
p gl ; 7" A
a9 e ! m 7Em ) N 4
+ Lpo(8) = 20,0 ) gim + T En(8) m (374
1 1
Do, = ~ay(e) = 5-b,(3) - (3.75)
Note that the equalities I‘ig‘ = Fp i Lig 4= Fq ; , etc. are also consequences of the fact that the

torsion of the Levi-Civita connection is O and that the pairs of vector fields {E;, p, }, {E; q,}, ete.,

commute.
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3.4 The third step

Assume that g is one of the metrics considered in the previous two subsections (i.e., compatible
with 0 = 1) and denote by D the Levi-Civita connection of a conformally scaled metric g¥ = €2%g
for some smooth . It is well known that, for any pair of vector fields X, Y of M (see e.g. [4, Th.
1.159]),

DxY =VxY +X(p)Y +Y(p)X — g(X,Y)grad(yp) . (3.76)

If we expand grady in terms of the frame field (EZ, Posd,) S
grady = (gradp)™ E; + (gradg)Pp, + (gradp)®q, , (3.77)

we see that the Christoffel symbols I’ Ag for a compatible metric g with ¢ = 1, as considered in
the previous subsections, and the Christoffel symbols T 4% for the conformally scaled metric g%

are related to each other by

T =T, + Ei(0)d)" + ()67 — gij (grade) P | (3.78)
L0 =T[5 — gij(grade)P (3.79)
Lo =Ty — gij(grade)® (3.80)
Lo =T, " =T +p(0)0]" (3.81)
Lo =T, P =T0 +Ei(p), (3.82)
Do =T, 07 =Ty, (3.83)
D =T, =T + a7 — L gu(aradg)™ (359
Liqy =Tq," =Tig) — %tgti (grade)® (3.85)
Fig: = qu?o = Pigj + Ei(‘ﬂ) - %tgti(gl"ad@)q" ) (3.86)
popy = Lbyby ° (3.87)
Ly p = Top0 +200(0) (3.88)
Lpope = Top; (3.89)
m m m B
Loa =Tap, =lpa — §(grad<ﬂ) " (3.90)
Ty o =Tap0 =T 80 + () — %(gradso)po , (3.91)
Ty o = Dol =Ty 3+, () — 5 (gradp)® (3.92)
Lopa, = La,a, = g(gradso)ﬁ"" , (3.93)
Lo,a =Ta,a; — g(grad@"f’ 7 (3.94)

Ly o =Tqa +2a,(p) — g(gradga)qo . (3.95)
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We now recall that any vector field X on M decomposes into the sum

X = BB+ 5300, + a5 (X)a, =g (X B~ Lo, ) Bt

) . N ) (3.96)
m T s
g <X, Zdo+ — (V" gk — 28) b, — Em) P, +9 <X, po> Qo -
@ e o e
From this, we get that the components (grade)? of the gradient of ¢ are equal to
E ik 7 ok
(grade)™ := g™ Ex(p) — —po(®) ,
2 1 m DU
(gradg)™ := =a,(9) + —5 (v"7 gmr = 28) Do (f) = ~—Em(f) , (3.97)

2
(gradp)de := apo(w)-

Inserting these expressions and (3.78) — (3.95) into (3.78) — (3.95), we get the explicit formulas for
the Christoffel symbols T' ,§ of the scaled metric g¥ = e2?g. They are:

7

n
1 7 o mk Wij 1 A
T, = g™ g0(V%, By, Ex) + g7 Sy + 2 o+ B + Ej(0))

mk ’Ym
~ 9ij (g "Ey(p) - apo(v?)) ; (3.98)
1 ~ 1 ~ i 1 ,ym ’Ym
Po _ (~E g (~F g, k . _ 1 g
Fij = %Ez('y gjk?) + %Ej(fy gzk) Aoy —"y ImkWi; — o go(VOEiEJ,Em) o SZJ|m
2 1 m ,ym ~
— 9ij (qo(@) + — (V"  gmr — 28) po() — Em(so)> , (3.99)
(0% « (6
wij 294
L === == Po(9) (3.100)
mk
m m ag Wik m
Lip, =Tpi == tP(0)d", (3.101)
LA 1 ’ymwim o
Do =Ty 7 = 5= Bi(a) + 5-p,(V)gin = — 7 + Eil(p) (3.102)
Do =Ty =0, (3.103)
” m gmk N gmk R ,YZ ., gmk
g =T, = TEi(’Ytgtk) -7 Ee(v' g1i) — Zcﬁrgteg "4 1 Buwip—
m m t m
T n b t m v mk 1 v
- ——k; — i 0" — Gt E - — , 3.104
B+ Lo+ a0 — T (7Bl - Tope)) (310
Pe= T, P = S B(B) + 57" gk Bi(0) — 57" kDo (1 )it — 55 B (0) +
9, 9o? 200 g 40[ m 40[2 mkFo it 20[2 7
! 7" 5 7" 5 "t A
+ ﬁﬂpo(’yt)git - @Ei('ytgtm) + @E (W git) + dor gtécfm - Eﬁwim—
t
Yy 2 1 m 'y ~
— 5t (aqo(so) + o2 (V" g — 28) Po () — —En(y )) , (3.105)
e =1 % = L Bi(a) - Lp, (v + Bile) — Lg Zpo(e) (3.106)
19, do? 200 200 o 2 a o )
Ly, =0, (3.107)
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T, be =po(loga) +2p, () , (3.108)
Lpps =0, (3.109)
m m 1 m gmk - &7 mk 3 ,}/m
N =Tofh = ") = B = § (B - o)) . G0
[ Po=T, Po= ip (B) - ﬂp (v")gim + ﬁﬁm(a) + qo(p)—
Podo QoPo 90 4o ° 4o o
a (2 1, ok DURIPS
-3 (aq()(w) + o2 (7 Y 9mk — 2/8) po(‘ﬁ) - aE7n(<p)> ) (3.111)
Fpa =T, =0, (3.112)
gmk ) mk __ ,ym ,ym
Lya = T%(’Y )9ir — TEk(ﬂ) - %qo(a) + Bpo(ﬂ)*
B ks "
-5 (9 "Br(p) — —Dpo(9) | (3.113)
(6%
Ty 5 = 5-0,(8) + 557" Imkcto(0) = 137" gmiba(8) — -5 Ba,(0)+
do90 - 2O[q0 20{27 ,-Y ngqo «@ 40[27 ,-Y gmkpo Oé2 qo @
— - a5 ¢ m 7Em -
+ 5520P0(B) = 546 (v)gim + = Em(B)
8 (2 1 & DI
- A - G m mk — 2 - 7Em ) 3114
5 (5% + (V" gk — 28) P, () o () (3.114)
1 Po(B) B (2
| AT —— S CAEO ) - . 3.115
apd; = 5 Go(@) = 75 +20,(0) = 5 { —o() (3.115)

In order to conclude, it is now sufficient to observe that the metric (2.12) with an arbitrary o > 0
can be obtained from the metric considered in subsection 3.2 (i.e., with ¢ = 1) by applying the
scaling factor e with ¢ := %1og 0. Hence, the desired expressions for the Christoffel symbols are
given by (3.98) — (3.115) with ¢ replaced by 3 logo at all places. These substitutions yield (3.1)
- (3.18).
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