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Dark-field X-ray imaging visualizes scattering from unresolved microstructure. Most dark-field imaging techniques rely
on crystals or structured illumination, but recent work has shown that dark-field effects are observable in straightfor-
ward propagation-based imaging (PBI). Based on the single-material X-ray Fokker–Planck equation with an a priori
dark-field energy dependence, we propose an algorithm to extract phase and dark-field effects from dual-energy PBI
images. We successfully apply the dark-field retrieval algorithm to simulated and experimental dual-energy data, and
show that by accounting for dark-field effects, projected thickness reconstruction is improved compared to the clas-
sic Paganin algorithm. With the emergence of spectral detectors, the method could enable single-exposure dark-field
imaging of dynamic and living samples.
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1. INTRODUCTION

X-ray imaging is a cheap, fast, accessible, high-resolution imaging
technique. It is ubiquitous in medical, security, and industrial
applications; together, planar and computed-tomography (CT)
X-ray scans make up more than 50% of diagnostic medical imag-
ing [1]. However, traditional attenuation-based X-ray imaging has
two major drawbacks compared to competing modalities, such as
magnetic resonance imaging (MRI) and ultrasound: it comes at
a cost of absorbed dose from the ionizing X-rays, and it provides
poor contrast in weakly attenuating soft tissues. The advent of
high-coherence synchrotron and micro-focus X-ray sources has led
to the development of phase-contrast and dark-field X-ray imaging
modalities, which supplement attenuation-based contrast [2].
Phase-contrast X-ray imaging measures the refraction of X-rays in
the sample, and can achieve significantly improved image quality
compared to traditional X-ray imaging, particularly in soft tissue
[3]. Dark-field X-ray imaging visualizes the scattered component
of the X-ray beam [4,5]. It is associated with small-angle X-ray
scattering (SAXS) from unresolved microstructure in the sam-
ple, and is a promising candidate for the investigation of such
structure. Examples of its use include studying water transport in
porous media [6], diagnosis and assessment of pulmonary diseases
[7–9] and breast cancer [10], and detection of crystallized urate
depositions [11].

A number of techniques have been developed for dark-field
imaging. The earliest X-ray dark-field imaging reflected the
X-ray wavefield from a rotating crystal to analyze the spread in

propagation direction, a technique known as analyzer-based or
diffraction-enhanced imaging [12–14]. More recent methods
imprint a known reference pattern (structured-illumination/coded
aperture) onto the X-ray wavefront, which is then modulated by
the presence of the sample, causing changes in amplitude, position,
and visibility of the reference pattern (associated respectively with
the attenuation, phase-shift, and scattering of the X-rays). If the
pixel size is larger than the reference pattern structure, a scanning
step is generally used to fully recover the modulation, for example,
in Talbot–Lau interferometry [5,15,16] and edge-illumination
[17,18]. If the reference pattern is well resolved, modulations can
be imaged directly without the need for phase stepping, such as in
single-grid imaging [19,20], speckle-based imaging [21,22], and
beam-tracking edge-illumination [23].

In these latter direct-imaging techniques, methods of recon-
structing phase-shift and dark-field generally fall into “local” or
“global” camps, sometimes referred to as “explicit” and “implicit”
tracking. Local methods rely on the modulation pattern having
“small” (high-frequency) features, usually of order a few pixels; a
window around each pixel is applied, and the modulation within
that window is explicitly calculated. Examples of this are cross-
correlation analysis [20,24] and unified modulated pattern analysis
(UMPA) [25] in single-grid and speckle-based imaging. An alter-
native approach is to model the changes in the wavefront globally,
and solve the inverse form of this model for the entire image at
once. An example of this is the use of geometric flow [26] and
the transport-of-intensity equation (TIE) [27] in speckle-based
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imaging. The TIE models the coherent flow of optical energy in
a propagating paraxial complex-scalar wavefield [28]. An exten-
sion of the TIE that includes diffusive flow is the Fokker–Planck
equation of X-ray imaging [29,30]. For a z-paraxial plane wave
propagating forward after passing through a thin object, the equa-
tion can be given in its finite-difference form for the near-field
regime as

I (x , y , z=1)= I (x , y , z= 0)

−
1

k
∇⊥ · [I (x , y , z)∇⊥φ(x , y , z)]z=0

+12
∇

2
⊥
[D(x , y )I (x , y , z)]z=0, (1)

where the exit-surface of the sample is at z= 0, I (x , y , z) is the
intensity of the wavefield, 1 is the propagation distance from
the exit-surface of the sample to the detector, k = 2π/λ is the
wavenumber, λ is the wavelength, ∇⊥ ≡ (∂x , ∂y ) is the transverse
gradient operator, φ(x , y , z) is the phase-shift of the wavefield
caused by the object, and D(x , y ) is the dimensionless X-ray
Fokker–Planck diffusion coefficient, which is related to the angular
spread of the dark-field. Excluding the diffusion term from Eq. (1)
recovers the finite-difference form of the TIE. The X-ray Fokker–
Planck equation can be used to model grating-based imaging [30],
and has been used as the basis for novel dark-field retrieval methods
in speckle-based imaging [31,32].

A particularly simple X-ray phase-contrast and dark-field imag-
ing technique, which does not require patterning of the wavefront,
is propagation-based imaging (PBI). In PBI, an unpatterned
spatially coherent wavefront interacts with the sample, and is
subsequently propagated through free space. Phase-shifts intro-
duced by the sample cause interference fringes to be developed
in the free-space propagating intensity, which are then imaged
by a detector [33,34]. PBI does not require specialized optics or a
monochromatic source, at the expense of strict spatial coherence
requirements [35]. Single-image TIE-based phase-retrieval under
a single-material assumption [36] has been extensively applied
for phase-contrast PBI, with the single-material assumption not
preventing widespread adoption for diverse samples [37]. PBI has
recently been extended to dark-field imaging [38–40]. Leatham
et al. [40] developed a theory of PBI dark-field imaging of a
single-material object, based on the Fokker–Planck equation. The
method requires imaging a sample at two different propagation
distances, relying on the geometric dependence of the scattering
cone to separate dark-field effects from attenuation and refraction
of the beam. They noted that an alternative approach may be to
change the energy of the beam. A multi-energy approach would
not require changes in the experimental geometry while imaging,
improving ease of implementation and reducing set-up stability
requirements. In addition, the recent developments in energy-
resolving detectors mean such an approach could capture all the
required information within a single exposure.

Dual-energy imaging is a well-established technique dating
back to the 1980’s [41]. A number of technologies for dual-energy
imaging have been developed, such as rapid voltage switching,
dual-source CT, and layered detectors [42]. As the attenuation by a
specific material is strongly energy-dependent with a theoretically
well-grounded dependence, dual-energy imaging establishes a
basis for material weighting or decomposition [43]. There are
numerous clinical applications of dual-energy imaging, such

as measuring bone mineral density, bone removal, and virtual
non-contrast imaging [42]. Dual- and multi-energy images have
also been utilized in propagation-based phase-contrast imaging,
using the TIE as a basis for phase-retrieval [44,45] and material
decomposition [46,47]. As dark-field is related to scattering, it
has a strong dependence on X-ray energy. This dependence has
been exploited in grating-based imaging to recover information
about size of the sample microstructure [48–50], to do material
decomposition [51], and to improve the signal-to-noise ratio of the
recovered dark-field signal [52].

This paper demonstrates a proof-of-concept for spectral
propagation-based dark-field imaging (SPB-DF), based on a
single-material Fokker–Planck model. Using dual-energy PBI
images, the method initially reconstructs the sample’s projected
thickness. As a second step, the dark-field image is reconstructed
by solving the diffusion term in the Fokker–Planck equation for
the diffusion coefficient. In addition to using a classic numeri-
cal Poisson solver for this step, we introduce a method inspired
by structured-illumination dark-field imaging techniques that
measures a local change of visibility of the sample, exploiting the
texture created by the sample as a “self-reference” pattern. SPB-DF
enables optics-free dark-field imaging, without the necessity to
move the sample. The potential use of an energy-discriminating
detector and polychromatic source with SPB-DF would enable
static, single-shot dark-field imaging, with promising applications
for imaging dynamic processes.

2. THEORY

Under the Fokker–Planck model, dark-field effects are quanti-
fied in the diffusion coefficient D [see Eq. (1)]. Alternatively, a
measure of dark-field is the change in visibility V of a reference
pattern induced by dark-field blurring. Visibility in a small region
of interest around each pixel can be measured as [53,54]

V =
Imax − Imin

Imax + Imin
≈

StdDev(I)

Mean(I)
. (2)

If the reference pattern can locally be modelled as a sinusoi-
dal variation with period p , the visibilities of reference (i.e., no
dark-field, Vref) and observed (dark-field present, Vobs) images
can be related to the Fokker–Planck diffusion coefficient (Eq. 132
in [55], in the case where the dark-field coefficient does not vary
significantly over a grid period [30]) via

Vobs

Vref
= exp

(
−4π212 D

p2

)
. (3)

Both the size of the window used in the measurement of visibil-
ity, and the parameter p used in the conversion to D, depend on the
local length scale of features in the reference image. Equation (3)
was first derived in the context of speckle and single-grid dark-field
imaging, in which there is generally a well-defined length scale
associated respectively with the mean speckle size and the grid
period. In propagation-based imaging, the beam is not imprinted
with a reference pattern. However, if the sample itself creates a
relatively quickly varying intensity, this can be treated as a self-
reference pattern [40]. For the purposes of this work, we will
assume that the length scale of this self-reference pattern is constant
throughout the image, and will measure it as twice the full-width
at half-maximum of the central peak of a radially averaged 2D
autocorrelation—this number is then used as both the window size
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and period p . This assumption is unlikely to hold for general sam-
ples imaged using propagation-based imaging, and in Section 6
we discuss possible methods that could be used in future work to
make local estimates of a dominant length scale. In this paper we
will reconstruct dark-field images by solving for the Fokker–Planck
diffusion coefficient. We will use two approaches to do this, a
“global” approach that numerically solves the diffusion part of the
Fokker–Planck equation (a Poisson equation) for D(x , y ) directly,
and a “local” approach that measures visibility in small regions
using Eq. (2) and converts it to D(x , y )using Eq. (3).

When two images are taken at relatively low and high energy
(cf. large and small propagation distance [40]), dark-field diffusion
is much stronger in the lower-energy image. We aim to develop
a theory for dark-field reconstruction using dual-energy images,
based on the Fokker–Planck equation. To that end, consider a
non-crystalline non-magnetic single-material sample being illu-
minated by a plane wavefield of unit intensity. Assuming a sample
with projected thickness T(x , y ) and complex refractive index
n = 1− δ + iβ, with a propagation distance significantly larger
than T(x , y ), and applying the projection approximation [56], the
Fokker–Planck equation [Eq. (1)] becomes

I (x , y , z=1)= e−µT(x ,y )
−
1δ

µ
∇

2
⊥

e−µT(x ,y )

+12
∇

2
⊥

[
D(x , y )e−µT(x ,y )] , (4)

where µ= 2kβ is the linear attenuation coefficient. Our aim is
to solve Eq. (4) for the projected sample thickness T(x , y ) and
the Fokker–Planck diffusion coefficient D(x , y ), by measur-
ing the propagated intensity I (x , y , z=1) at two different
energies. To solve for T(x , y ), we begin to linearize Eq. (4)
in T(x , y ) and D(x , y ) by assuming that D(x , y ) varies
slowly enough that we can neglect higher-order terms, giving
∇

2
⊥
[D(x , y )e−µT(x ,y )

] ≈ D(x , y )∇2
⊥

e−µT(x ,y ). We expand the
Laplacian [for brevity we drop (x , y ) arguments], giving

I ≈
[

1+

(
1δ

µ
−12 D

)
(µ∇2

⊥
T −µ2

‖∇⊥T‖2)

]
e−µT , (5)

where ‖∇⊥T‖2
=∇⊥T · ∇⊥T. Let us assume that the sample is

weakly attenuating, with µT� 1. Then for most such samples
µ2
‖∇⊥T‖2

� |µ∇2
⊥

T|, and we can neglect the smaller term.
Then we multiply both sides of Eq. (5) by 1−µT, and neglect
higher-order terms inµT∇2

⊥
T, giving

I
1−µT

e−µT
≈ (1−µT)(1+ (1δ −12µD)∇2

⊥
T) (6)

≈ 1−µT +1δ∇2
⊥

T −12µD∇2
⊥

T. (7)

In first approximation we assume that (1−µT)/(e−µT)≈ 1,
with the aim of later iteratively correcting this approximation
[Eq. (13)]. This gives us a partial-differential equation in two
unknown functions T(x , y ) and D(x , y ), which we can solve
using two measurements I (x , y , z=1) at two energies E1 and
E2. We assume that, for our combination of (monochromatic)
energies and sample, the Fokker–Planck diffusion coefficient can
be decomposed as D= D00(λ), where λ is the wavelength, D0 is
the energy-independent dark-field signal created by the sample,
and0(λ) is an unknown function describing the dark-field signal’s
dependence on energy. Inserting this definition into Eq. (7) and
dividing byµ0(λ), we get

I
µ0(λ)

≈
1

µ0(λ)
−

T
0(λ)

+
1δ

µ0(λ)
∇

2
⊥

T −12 D0∇
2
⊥

T. (8)

The last term does not depend on energy. Therefore, for two
intensity measurements at energies E1 and E2 (with corresponding
wavelengthsλ1 andλ2), we can write

I1µ20(λ2)− I2µ10(λ1)

=1(δ1µ20(λ2)− δ2µ10(λ1))∇
2
⊥

T

+µ1µ2(0(λ1)− 0(λ2))T

+ (µ20(λ2)−µ10(λ1)). (9)

Denote F[ f (x , y )] =
∫∫
∞

−∞
f (x , y ) exp(−2π iEr · Eξ)dEr as

the 2D Fourier transform, with the Fourier-space coordinates
Eξ = (ξx , ξy ) dual to the real-space coordinates Er = (x , y ). We take
the Fourier transform of both sides and apply the Fourier derivative
theorem, leading to

F[I1µ20(λ2)− I2µ10(λ1)]

=−4π2
|Eξ |21(δ1µ20(λ2)− δ2µ10(λ1))F[T]

+µ1µ2(0(λ1)− 0(λ2))F[T]

+ (µ20(λ2)−µ10(λ1))δ(Eξ),

(10)

where δ(Eξ) is the 2D Dirac delta function. Finally, we rearrange for
F[T] and apply the inverse Fourier transform to get

T = F−1

[
F [µ20(λ2)I1 −µ10(λ1)I2]

f (λ1, λ2, Eξ)

]

+
µ10(λ1)−µ20(λ2)

µ1µ2(0(λ1)− 0(λ2))
, (11)

where

f (λ1, λ2, Eξ)=µ1µ2(0(λ1)− 0(λ2))

− 4π2
|Eξ |21(δ1µ20(λ2)− δ2µ10(λ1)). (12)

Equation (11) gives an initial estimate T(0) of the sample
projected thickness, using two recorded images at two different
energies. To improve the estimate, we iteratively correct the left-
hand-side in the fully linearized Fokker–Planck equation [Eq. (7)]
using

I (ζ+1)
= I (ζ ) ·

1−µT(ζ )

e−µT(ζ )
, (13)

and re-solve for T(ζ+1), where ζ is the index of iteration. This itera-
tive process can be carried out for a chosen number of iterations, or
until a stability criterion is met (see Section 5 and Fig. 2 for further
information).

After finding the projected thickness T(x , y ), the only
unknown left in the single-material Fokker–Planck equation is
the diffusion coefficient D(x , y ). With only the diffusion term,
we are left with a two-dimensional Poisson equation. A variety of
methods are available to numerically solve the discrete Poisson
equation [55]. Because it is straightforward and computationally
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inexpensive, we use a de-convolution in Fourier space (see Eq. 13
in [40]) given as

D=
eµT

12
∇
−2
⊥

[
I −

(
1−

δ1

µ
∇

2
⊥

)
e−µT︸ ︷︷ ︸

IDF−free

]
, (14)

where the inverse Laplacian ∇−2
⊥

is a pseudo-differential operator
of the form

∇
−2
⊥
=−F−1 1

4π2|Eξ |2 + ε
F. (15)

The singularity at the origin of the Fourier filter destabilizes the
reconstruction at low frequencies, and must be regularized, in this
case using a Tikhonov regularization parameter ε. This parameter
is fine-tuned for each image to suppress low-frequency artifacts.

We refer to using a numerical solution to the Poisson equation,
in our case Eq. (14), as a “global” method of reconstructing dark-
field. Alternatively, we could consider a “local” approach based
on measuring visibility [Eq. (2)] and converting to D(x , y ) using
Eq. (3). Equation (3) holds directly for pure-dark-field objects, but
does not account for attenuation and phase effects. Our low-energy
image IE1 contains a strong dark-field signal, and can act as the
“observed” image. A matching “reference” image needs to have
identical attenuation and phase effects, but without the dark-field
blurring present in IE1 . We can create such an image using our
reconstructed projected thickness T(x , y )—by simulating a
phase-contrast image at the lower energy using a forward model
that does not include dark-field effects, a “virtual” dark-field-free
image is created. An example of such a forward model appears in
the inverted Fokker–Planck equation [Eq. (14)]; the term inside
the inverse Laplacian denoted IDF−free is the transport-of-intensity
equation propagator, applied to a thin, single-material object
[2]. Up to approximation, I and IDF-free should then be iden-
tical anywhere there is no dark-field, but differ proportionally
with ∇2

⊥
(DI ), where D 6= 0. The visibility maps Vobs(x , y ) and

Vref(x , y ) can therefore be calculated from I and IDF-free respec-
tively [using Eq. (2)], and then inserted into Eq. (3) to recover a
dark-field image.

3. SIMULATION

An initial validation of the algorithm described in Section 2 was
carried out via simulation. A projected thickness map Tin(x , y )was
generated [Fig. 1(a)], consisting of the sum of a bulk thickness and
a quickly varying texture to simulate a realistic sample. The bulk
thickness was created by overlaying three projected superellipsoids,
and the quickly varying component of the projected thickness was
derived from an X-ray image of a random absorption mask [57,58].
This pattern had a mean period of approximately 10 pixels, mea-
sured as twice the full-width at half-maximum of the central peak
of a radially averaged 2D autocorrelation. The Tin(x , y ) map
consisted of 1032× 1032 pixels with a pixel size of 12µm.

Complex refractive index values δ and β for poly(methyl meth-
acrylate) (PMMA) at the two chosen energies E1 = 25 keV and
E2 = 30 keV were found usingxraylib [59]. Under the projec-
tion approximation, the exit-surface complex scalar wavefield was
calculated as

9(x , y , z= 0)= e−kTin(β+iδ). (16)

(a) (b)

(c) (d)

Fig. 1. Simulated data. (a) The projected thickness map Tin(x , y )
consists of three superellipsoids, in addition to quickly varying features
that cover the entire image. (b) The simulated dark-field signal in the
form of the Fokker–Planck diffusion coefficient D(x , y ) at 25 keV. The
bottom row contains the propagated and dark-field-blurred intensities
at (c) 25 keV and (d) 30 keV. To show the difference in local dark-field-
associated blurring at the two energies, zoomed insets in (c) and (d) have
been included, with their grayscales adjusted to the local minimum and
maximum. While the difference is subtle, the reconstruction is able to
extract this signal.

The wavefield was then 8× up-scaled using third-order
spline interpolation and propagated a distance of 1= 0.5 m
using a Fresnel propagator [2] to create the propagated inten-
sity IP (x , y )= |9(x , y , z=1)|2. To model an independent
dark-field induced blurring, a simulated Fokker–Planck diffu-
sion coefficient D(x , y ) at 25 keV was created by overlaying four
projected spheres [Fig. 1(b)], and then scaled to 30 keV using an
ad-hoc energy dependence of D∝ λ3 (see Section 4 for further
justification and detail). The diffusion coefficients were con-
verted to blur widths using σ(x , y )=

√
2D(x , y )1 [29,30], and

finally applied to the propagated intensities IP (x , y ) using a local
Gaussian-type diffusion:

I (x , y )=
∫
∞

−∞

∫
∞

−∞

IP (x ′, y ′)

× g (x , y ; x ′, y ′, σ (x ′, y ′))dx ′dy ′, (17)

where g (x , y ; x ′, y ′, σ ) is a 2D Gaussian probability density
function centered at (x ′, y ′), with standard deviation σ . The
resulting simulated images are shown in Figs. 1(c) and 1(d). Where
the dark-field signal is present, we see a slight reduction in con-
trast [see insets in Figs. 1(c) and 1(d)]. This effect is especially
pronounced at the lower energy. As we base our reconstruction
on the Fokker–Planck model, we deliberately decided not to also
use a Fokker–Planck-based forward model for simulation. The
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Fig. 2. Difference in mean reconstructed projected thickness between
each iteration n of the iterative correction to our algorithm, where
1T̄ = T(n) − T(n−1). The shaded area indicates±10µm. Both simulated
(Section 3) and experimental data (Section 5) show rapid convergence.

(a) (b)

Fig. 3. (a) An intensity line profile comparison between (b) reconstruc-
tion of the projected thickness T(x , y ) using SPB-DF, and single-material
phase retrieval of the 25 keV and 30 keV images based on the transport-
of-intensity equation [36]. The solid line shows the simulated projected
thickness. By accounting for the strong dark-field diffusion in this part of
the sample, SPB-DF improves the fidelity of reconstruction.

approach of Fresnel propagation followed by local diffusion has
low computational requirements, is straightforward to implement,
and directly simulates the blurring effect seen in experimental
propagation-based images. Alternatively, one could simulate dark-
field by fully modelling the scattering microstructure. This could
be done by ensemble-averaging over the propagated images from
many random rapidly varying complex refractive index maps, or by
binning the recorded intensity from a high-resolution simulation
that directly simulates microstructure.

Using the resulting simulated intensity images, IE1 [Fig. 1(c)]
and IE2 [Fig. 1(d)], the projected thickness was reconstructed using
Eqs. (11) and (13), with n = 20 iterations. A convergence plot for
this simulation, as well as for experimental data from Section 5, is
shown in Fig. 2; both rapidly converge within approximately five
iterations. The resulting projected thickness is shown in Fig. 3(b).
In Fig. 3(a) we compare our result to TIE-based projected thickness
reconstructions from the simulated images at both energies using
an intensity line profile [36]. Although the higher-energy image
has the weaker dark-field effects, SPB-DF still achieves better fidel-
ity than either of the TIE-based reconstructions by incorporating
dark-field effects in the forward model.

Based on the TIE propagator seen in Eq. (14), the dark-field-
free image IDF-free at the lower energy E1 = 25 keV was created
using the reconstructed projected thickness. Figure 4 compares

(a) (b)

Fig. 4. (a) IDF-free at 25 keV, created using the reconstructed simulated
thickness in Fig. 3(b). (b) An intensity line profile taken along the red
line in the first panel, which straddles strong and weak dark-field regions,
shows that IDF-free recovers details that were lost to dark-field induced
blurring in IE1 [Fig. 1(c)]. The difference between these profiles is used in
the global approach to reconstructing the diffusion coefficient [Eq. (14)],
and the change in the local visibility between these two profiles (Vref from
IDF-free and Vobs from IE1 ) gives a measure of dark-field via Eq. (3) in the
local approach.

(a) (b)

(c) (d)

Fig. 5. Reconstructions of the Fokker–Planck diffusion co-efficient
(at 25 keV) from simulated data, using a global approach [Eq. (14)] and
a local approach [Eq. (3)], with and without added noise. Note that the
simulated diffusion coefficient had a range of 0− 2.5× 10−9 [Fig. 1(b)].

the two key terms in Eq. (14), demonstrating a drop in local
image contrast/visibility in the presence of dark-field, as seen in
grating/speckle-based methods (e.g., [5,19,24]). Reconstructions
of the diffusion coefficient D(x , y ) are shown in the top row
of Fig. 5, comparing the local [Fig. 5(a)] and global [Fig. 5(b)]
approaches described in Section 2. A regularization parameter of
ε= 2× 105 was used in the global reconstruction. For the local
reconstruction, visibility was measured in 10× 10 pixel sliding
windows using Eq. (2), and converted to the diffusion coefficient
using Eq. (3) with a period p = 10 pixels. The simulation was
repeated with zero-mean Gaussian white noise added to the sim-
ulated images at a signal-to-noise ratio of SNR= 105, with the
resulting reconstructions of the diffusion coefficient shown in the
bottom row of Fig. 5. Note that all the reconstructions contain
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some values below zero, which are artifacts from the assumptions
made in the theoretical derivation and from the naïve regulariza-
tion in global reconstruction. For our purposes “negative” diffusion
(sharpening) is not considered physically relevant, and so we show
all results with the lower gray value set to zero.

Both methods give a reasonable qualitative reconstruction, and
the local method is quantitatively close to the original signal. In
all reconstructions there are some artifacts remaining from strong
phase fringes, where the assumptions of the mathematical treat-
ment in Section 2 break down. As the local method relies on local
windowing, the reconstruction looks noisy, even without added
noise; by contrast, the global reconstruction is smooth. However,
while the local reconstruction is quite robust to added noise, the
global reconstruction is sensitive to low-frequency “cloud” artifacts
that are typical for this kind of problem [36].

4. DETERMINING DARK-FIELD ENERGY
DEPENDENCE

To apply our approach to experimental data, we must decide the
Fokker–Planck diffusion coefficient’s dependence on energy.
To measure this dependence, a dark-field step-wedge phantom
was imaged at several energies using single-grid imaging [60] at
the Imaging and Medical Beamline (IMBL) of the Australian
Synchrotron in Melbourne, Australia. The beamline uses a super-
conducting multi-pole wiggler insertion device with 1.4 T field
strength, and a bent double-Laue crystal monochromator was
used to achieve an energy resolution of 1E/E ∼ 10−3 around
the chosen beam energy [61]. The sample was placed approxi-
mately 135 m downstream of the source, in imaging hutch 3B. An
absorption grid, consisting of a stainless steel wire cloth with wire
diameter of 61 µm and hole size of 90 µm (Test Sieve; ESSA), was
placed upstream of the sample on a movable stage. The sample con-
sisted of a poly(methyl methacrylate) (PMMA) block, which had
a central step-wedge shaped void cut out of it and was filled with
PMMA microspheres with a diameter of 45–53 µm (DNP-P010;
CD Bioparticles). A sample-only image with annotated regions
of interest (ROIs) is shown in Fig. 6. A 2 m sample to detector dis-
tance was set. The detector used was IMBL’s “Ruby”, consisting of
a 25 µm Gd2O2S:Tb scintillator coupled to a PCO.edge sCMOS
sensor (16-bit, 2560× 2160 pixels) via a lens system, giving an
effective pixel size of 5.6µm. The sample was imaged at energies of
25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, and 45 keV.

At each beam energy we recorded 30 grid-only, sample and grid,
flat-field, and dark-current images. Images were averaged, and
flat-field and dark-current corrected. We found that the grid and
sample both independently moved up to 5 to 10 pixels between
energies. This could have been due to backlash error from repeated
movement of the sample and grid stages into and out of the beam,
as well as from the beam angle changing slightly when changing
energy. Images were registered to the grid pattern using enhanced
correlation coefficient (EEC) maximization [62]. A small remain-
ing movement of the sample between energies remained, but did
not significantly affect the results as the final step in processing was
an averaging over large regions of interest.

A single-grid reconstruction method was used to measure
the dark-field signal in different ROIs of the sample at different
energies [60]. The method applies a local cross-correlation at each
pixel between a small kernel in the sample-and-grid image, and a
larger search region in the grid-only image. A sinusoid model of

Fig. 6. Regions of interest (A)–(C) shown on 35 keV PBI image of a
PMMA step-wedge phantom. The regions consist of increasing depths of
45–53µm diameter PMMA microspheres (and decreasing depths of solid
PMMA). All thicknesses have an uncertainty of±1 mm. The arrow marks
the uneven top surface of the microspheres.

the grid is used to fit the data to the cross-correlation, giving the
attenuation and relative change in visibility δV (denoted “DF ”
in Eq. 7 of [60]) induced by the sample at each pixel. Finally, a
median filter with size of the grid pitch is applied. The result-
ing reduction in V was converted to a Fokker–Planck diffusion
coefficient using Eq. (3). Note that this is equivalent to an initial
conversion to a scattering angle θ according to Eq. 11 in [60],
which is directly related to the diffusion coefficient [55]. The mean
Fokker–Planck diffusion coefficient in each ROI measured this
way is plotted against wavelength in Fig. 7. To model the energy
dependence of the diffusion coefficient a power law of the form
D(λ)= aλb was chosen, which has been demonstrated in theory
[51,55], simulation [63], and experiment [50,51] to be a good fit
for dark-field diffusion energy dependence in a variety of models
(such as hard-spheres [51,55] and random walk through random
media [55]) and samples (both packed spheres and more complex
microstructure [51,63]). The model, with the four free parameters
ai and b (where i ∈ {1, 2, 3} indexes the three ROIs), was fit to all
measurements simultaneously using the Levenberg–Marquardt
algorithm. The factors ai are expected to contain information
about the projected thickness of microspheres in each region (alter-
natively, the number of scattering interfaces), and are assumed to
be independent of energy. The resulting energy dependence was
b = 3.72± 0.03. This result is broadly consistent with previous
measurements of dark-field energy dependence in grating interfer-
ometry [50,51]. An in-depth comparison would need to consider
the difference in origin and measurement of dark-field signal, in

Fig. 7. Mean Fokker–Planck diffusion coefficient D in each region of
interest (ROI) (A)–(C) of the step-wedge phantom (illustrated in Fig. 6)
at each energy, measured using single-grid imaging. The error bars show
the standard deviation in a region. The results are simultaneously fit to a
power law model of the form Di (λ)= aiλ

b , where λ is the wavelength, i
denotes each region, and ai and b are four free parameters. The resulting
energy dependence is b = 3.72± 0.03.
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(a) (b)

Fig. 8. Experimental images of an approximately single-material sam-
ple at (a) 25 keV and (b) 30 keV. Most of the sample is composed of solid
plastic, except for a powder of 1µm diameter polystyrene microspheres in
the test tube at the bottom left of the images. There is a subtle but percep-
tible difference in the blurriness of the sample’s texture in the region of the
powder at the two energies.

both the propagation-based and interferometric context, but is
beyond the scope of his article. This is an active area of research in
the literature (see, e.g., [55]), and we emphasize that this depend-
ence is likely to depend on details of the sample and experimental
set-up. An updated understanding of dark-field energy depend-
ence could be incorporated into 0(λ) without alteration to the
body of the SPB-DF algorithm.

5. EXPERIMENTAL DEMONSTRATION

Experimental images were taken at IMBL, with the wiggler field
strength adjusted to 3 T. The sample consisted of a plastic test tube
containing polystyrene microspheres with a diameter of 1µm (P/N
100211-10; Corpuscular), placed next to a solid plastic male Luer
lock adaptor. Directly in front of these was placed a custom made
PMMA container, which was filled with 250–300 µm diameter
PMMA microspheres (Cospheric) to provide a consistent domi-
nant local length scale. The container had walls of 2 mm thickness,
with a 1 mm gap between them.

As in Section 4, the IMBL’s “Ruby” detector was used, with an
effective pixel size measured at 9.7 µm. The sample was placed at a
propagation distance of 3.5 m, and imaged at 25 keV and 30 keV.
Images were flat-field and dark-current corrected, and registered
using EEC maximization [62]. The resulting images are shown in
Fig. 8. As in the simulation, a slight blurring of the quickly varying
structure can be seen through the 1µm microspheres, which varies
with energy. In a region containing only the large microspheres, a
measurement of local length scale gave p = 15.7 pixels.

The results of reconstructions of the experimental sample can
be seen in Fig. 9. The dark-field energy dependence of D∝ λ3.72

found in Section 4 was used in the reconstruction of the projected
thickness [Fig. 9(a)]. As in the simulation, the thickness was also
reconstructed using the TIE-based Paganin algorithm at each of
the two energies [36]. A line profile of T through the region of the
sample with the strongest dark-field signal is shown in Fig. 9(b),
comparing the thickness reconstructions. While, unlike in the
simulation [Fig. 3(a)], the true sample thickness is unknown,
the trend of an improved visibility of features in the projected
thickness reconstruction is the same as in the simulation. For
the global dark-field reconstruction [Fig. 9(d)], a regularization
parameter of ε= 2.88× 107 was found to be optimal. The global
reconstruction clearly differentiates the strongly scattering 1 µm

(a) (b)

(c) (d)

Fig. 9. Reconstructions from the experimental data. (a) While all
objects can be seen in the projected thickness reconstruction, only the
1 µm diameter polystyrene microspheres are prominent in (c) local and
(d) global dark-field reconstructions. While the local dark-field recon-
struction contains some artifacts from the strong phase edges of the Luer
lock, the global reconstruction is almost free of artifacts. (b) The projected
thickness line profile along the red line shown in (a) compared to pro-
jected thickness reconstructions using the TIE-based Paganin algorithm
[36] at each energy.

microspheres from the rest of the sample, with almost no obvious
artifacts. In contrast, the local reconstruction [Fig. 9(c)] retains
some artifacts from the strong phase edges on the Luer lock and
test tube.

6. DISCUSSION

Our method of dark-field imaging involves two steps: (1) the
projected thickness of the sample is reconstructed, taking into
account dark-field effects; and (2) based on the projected thick-
ness, the Fokker–Planck diffusion coefficient is reconstructed.
This first step provides the opportunity to improve the resolu-
tion and feasibility of the microscopy of samples with porous or
granular regions [64]. For the second step, we have considered two
approaches. A global approach is to numerically solve the diffusion
part of the Fokker–Plank equation, a Poisson equation. While
we have used a straightforward spectral solution with a manually
optimized Tihkonov regularization, more advanced regularization
schemes or numerical methods of solving the Poisson equation
that may be more appropriate for this kind of diffusive dark-field
reconstruction could be explored in future work. In addition to
this global approach, we have suggested an alternative approach
that is inspired by structured-illumination techniques, based on
comparing the visibility of local features. In this case, we compare
the visibility of a small region around each pixel in one image
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that contains strong dark-field effects (the raw, lower-energy
image) and another that contains none (IDF−free, created using the
reconstructed projected thickness).

We must emphasize that a reconstruction based on local vis-
ibility relies on local structure being present in the images, and
on this local structure varying over a few pixels. Quantitative
local reconstruction depends on knowing the period of local
intensity variation. In the simulation and experiment we delib-
erately included a rapidly varying and consistent texture in the
sample. However, a generic sample will not in general create a well-
defined intensity variation of consistent size/period. This could be
addressed by first estimating a local period (e.g., using a 2D wavelet
transform), and then adjusting the window size and period at each
pixel accordingly. In Section 1 of Supplement 1 we repeat both the
simulation and experiment carried out in this paper, but do not
deliberately include quickly varying features in the samples. While
a global inversion of the Fokker–Planck equation is able to recon-
struct dark-field even when there are no visibly blurred features,
local reconstruction of the simulation breaks down completely,
and is less robust in the experimental case.

In Section 2 of Supplement 1 we perform an experiment
with a sample composed of a variety of materials, which deviates
strongly from the single-material assumption. While the global
dark-field reconstruction has some difficulties in this case, the
local reconstruction is still able to give a good qualitative picture
of the strongly scattering components of the sample. In addition,
based on the simulation carried out in Section 3, we saw that a local
reconstruction can be more robust to noise than a global solution.

Interest in the spectral behavior of dark-field imaging has been
spurred recently by progress in the development and proliferation
of photon-counting energy-resolving X-ray detectors. A dichro-
matic or polychromatic source together with an energy-resolving
detector would enable SPB-DF to be applied with a single expo-
sure, significantly ameliorating issues with registration. A third
energy bin raises the possibility of avoiding the single-material
assumption, enabling separate reconstruction of the attenuation
and refraction channels in multi-material samples. Multi-energy
propagation-based imaging can be used to perform phase-retrieved
material segmentation using a linearized transport-of-intensity
equation [46]. This could be used to mitigate the attenuation
artifacts that remain in our dark-field retrieval for multi-material
samples, or could be extended to include dark-field effects based
on our work. Imaging at additional energies may also allow for the
extension of SPB-DF to directional dark-field imaging [65–68] by
making an appropriate substitution of the scalar diffusion coeffi-
cient D, such as by a symmetric rank-2 diffusion tensor [55,69] of
the form

D→
[

Dxx
1
2 Dxy

1
2 Dxy Dyy

]
. (18)

The imaging regime (energy, sample size) described within this
paper is currently used in small-animal biomedical research studies
[70], suggesting this approach could be of benefit in that work.
Dual-energy X-ray imaging systems are already in widespread
clinical and security use, raising the possibility that SPB-DF could
be adopted for dark-field imaging in these contexts. To observe
propagation-based dark-field effects, high local contrast would be
helpful, which becomes more difficult at the higher energies and
large pixel sizes used for human imaging. With a high-coherence

micro-focus source and high-resolution detector, local image con-
trast can be achieved by imaging phase contrast speckle [71]. With
a low-coherence source, one possibility is to overlay a high-contrast
reference pattern, in the style of single-grid/speckle-based imaging,
but without the explicit need for a mask-only reference image
and the resulting strict set-up stability requirements. The result-
ing reconstruction would contain both the sample and the mask
pattern, but this mask could then be subtracted out before image
assessment. Commercial application would also require develop-
ing specific imaging protocols, including a choice of the dark-field
energy dependence parameter. Further research is needed to assess
if this is viable.

7. CONCLUSION

We have seen that dark-field effects are observable in propagation-
based X-ray imaging, and that their strength changes with energy.
We have developed a dual-energy imaging method of recon-
structing the projected thickness of a sample that accounts for
these dark-field effects using the X-ray Fokker–Planck model,
improving the accuracy of reconstruction compared to TIE-based
thickness reconstruction. Following the thickness reconstruction,
we considered two methods of recovering the Fokker–Planck
diffusion coefficient to give a dark-field image. A global method
using Fourier transforms gives smooth qualitative solutions with
low artifacts, but is susceptible to noise. An alternative method,
comparing the visibility of local sample features in a raw image and
a generated dark-field-free image, produces stronger artifacts, but
gives quantitative results and is robust to both noise and multi-
material samples. Further research is needed to develop robust
methods for the general inverse problem of diffusion retrieval in
dark-field imaging. Multi-energy reconstruction opens the door
to using energy-discriminating detectors for single-exposure and
time-resolved dark-field PBI.
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