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Abstract 

This paper presents a framework for monitoring, analysing and decision making for a smart manufacturing environment. We 
maintain that this approach could play a vital role in developing an architecture and implementation of Industry 4.0. The 
proposed model has features like experience based knowledge representation and semantic analysis of engineering objects and 
manufacturing process. It is also capable of continuous real time visualization of key performance indicators (KPI’s) and 
supports M2M communications over novel protocols like OPC-UA. Our model covers the industrial manufacturing cycle right 
from capturing raw data at machine level, converting it into useful information, doing semantics analysis and performs real time 
KPI visualization.
© 2015 The Authors. Published by Elsevier B.V.
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1. Background

The unprecedented advancement in the field of information and communication technologies (ICT) is forcing 
advance manufacturing countries to integrate it with production industry. ICT offers features like connectivity, 
Artificial Intelligence (AI), industrial automation, etc. which leads to a paradigm shift in production by having 
interconnected systems that will eventually generate a new industrial revolution1, 2.
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Apart from IT systems in industries, technologies such as Big Data, Cloud computing and semantics, promise to 
generate intelligent factory into forth industrial revolution known as Industrie 4.03. The emergence of intelligent 
factory/Industrie 4.0/ Industrial Inter-net/Factories of the Future as a new wave can transform the production and its 
associated services. It is a powerful concept which promotes the computerization of traditional manufacturing plants 
and their eco-systems towards a connected and 24/7 available resources handling scheme. Industrie 4.0 promotes 
vision of smart factories and is based on the technological concepts of Cyber Physical Systems (CPS) 4. CPS are 
central to this idea and are entitled to be part of smart machines, storage systems and production facilities able to 
exchange information with autonomy and intelligence5, 6.

This research work proposes a conceptual framework along with a practical architecture to capture data coming 
from CPS-like devices, infer useful information from it and visualize it in real time. As presented by Shafiq et.al7,
Knowledge engineering plays an important role in cyber physical systems as there is a need for a unified framework 
to represent the myriad types of data and application contexts in different physical domains, and interpret them 
under the appropriate contexts8. Moreover, this system should be able to decide and trigger actions according to 
changing manufacturing situations, and for such reason it requires the use of knowledge based and intelligent 
information approaches. Concept of Virtual engineering object (VEO) and Virtual engineering process (VEP) are 
used as knowledge representation and semantic analysis tool9-13.

The structure of this paper is as follows: section 2 describes the conceptual framework for the case study under 
taken for the implementation of intelligent factory. Experiments conducted and results obtained are presented in 
section 3 and in the last section conclusions are presented.

2. Framework description 

The primary objective of this work is to contribute to intelligent factory concept proposing a model that entails 
rapid transfer of new knowledge into industrial processes and products. In our work, we focus on the knowledge 
based conceptual model, architecture and key elements needed for the support of Industrie 4.0. The proposed 
conceptual framework (see Fig.1) is divided in four stages: (i) Data Collection and Communication platform (ii) 
Data preparation and healing (iii) Semantic Analysis and (iv) Real-time visualization.

The proposed architecture for intelligent factory can serve to create horizontal value networks at a strategic level, 
provide end-to-end integration across the entire value chain of the business process level and enable vertically 
integrated and networked design of manufacturing systems. 

Fig. 1. Architecture for the intelligent factory
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2.1 Data Collection and Communication platform

In all industrial applications, data/information plays a very important role. Standardization and languages for 
standardization of communications in a machine-to-machine context like OPC (Object Linking and Embedding -
OLE for Process Control,) and more recently OPC-UA (Unified Architecture), using an unified architecture not 
dependent on windows OS, play a very important role. The benefits of using the aforementioned approaches are 
quite evident in the sense that an abstraction layer from the manufacturer’s programming interface and proprietary 
languages in the PLC’s, sensors and actuators are simplified acting as an inter-language for communication. The 
data collection in the OPC-UA approach is representational state transfer (REST) oriented, client-server 
implemented and provides a mechanism to subscribe to data changes in an asynchronous manner. Data collection 
then can be serialized and the gathered data stored in different databases that will be implemented as clients 
consuming the data. Analysis in terms of data changes and event changes are also benefited, as the 
synchronous/asynchronous need of a given application is a feature that will become easy to handle and maintain.

2.2 Data preparation

Once the data is collected, it is necessary to prepare it for its exploitation. First of all, there is a necessity of some 
filtering, as not all the raw data is useful. The outliers and any other fragment of data that is considered noise are 
eliminated here. 

Then, the data is standardised. Here we propose the use of AutomatonML14 which is an open standard based on 
XML for the storage and exchange of plant engineering information. AutomationML describes real plant 
components as objects encapsulating different aspects. An object can consist out of other sub-objects, and can itself 
be part of a bigger composition. 

Finally, the data is aligned and synchronized. Since sensors do not normally have a real-time clock, as computers 
have, it is responsibility of the device that is capturing to set a time reference. Moreover, each sensor has its own 
sample time that depends on the dynamic of the system that is monitoring. So, all the captured data is organised and 
rearranged in this module to send it to the cloud in a synchronous pace.

2.3 Semantic Analysis

The semantic enhanced intelligent factory model agglutinates the entire reasoning process. The semantization 
process starts with an IN/OUT module that synchronizes the information to be enriched with the communication 
layer messages/serialized-responses maintained between the server and the client. As mentioned in section 1, the 
sematic reasoner adopted is VEO and VEP.

Virtual Engineering Object (VEO) - Virtual Engineering Process (VEP)

The concept of VEP and VEO can be assimilated with intelligent factory or Industry 4.07. In manufacturing 
environment, collection of components/tools/objects constitutes a process as depicted in Fig.2. Following this 
pattern, virtual representation of artefacts in the form of VEO and the process as VEP is developed. 

Virtual Engineering Objects (VEO)

A VEO is a knowledge representation of an engineering artefact comprising experience models, domain and 
functionality along with a physical attachment to the virtual object in its conceptualization. VEO is developed on the 
concept of cradle-to-grave approach, which means that the contextual information and decision making regarding an 
engineering object right from its inception until its useful life is stored or linked in it. A VEO can encapsulate 
knowledge and experience of every important feature related with an engineering object. This can be achieved by 
gathering information from following six different aspects of an object Characteristics, Functionality, Requirements, 
Connections, Present State and Experience9, 10.



1804   Syed Imran Shafi q et al.  /  Procedia Computer Science   96  ( 2016 )  1801 – 1808 

Fig. 2. Correlation between physical and virtual world

Virtual Engineering Process (VEP)

Virtual engineering process (VEP)11, 13 is a knowledge representation of manufacturing process/process-planning 
of artefact having all shop floor level information regarding required operations; their sequence and resources 
needed to manufacture it. VEP deals with the selection of necessary manufacturing operations and determination of 
their sequences, as well as the selection of manufacturing resources to “transform” a design model into a physical 
component economically and competitively. In addition to this, for VEP, information of all the VEO’s of the 
resource associated with the process is also linked. Therefore, to encapsulate knowledge of the above mentioned 
areas, the VEP is designed having the following three main elements or modules (i) Operations, (ii) Resources, and 
(iii) Experience.

The knowledge representation technique of Set of experience knowledge structure (SOEKS)-Decisional DNA 
(DDNA) 15 is used for developing VEO and VEP models 9.

2.4 Real-Time Visualization

Visual techniques are increasingly being used for exploratory analysis and to quickly identify patterns in 
industrial processes. As Visual Analytics are especially suited for complex real world problems with large amounts 
of data, they fit perfectly in this field. The proposed framework contains a Visual Analytics module that offers a 
graphical output to the semantically enhanced information stored in the architecture.

In our approach, we propose a flexible dashboard system instead of a single universal visualization. The diversity 
of problems that can appear in a manufacturing environment is too high to create a unique type of visualization. It is 
better building an interactive tool that can create customized visualizations. The user can visualize in real time 
different variables, graphs and charts, and compose its own visualization configuration.

The visualization module is based on Bokeh16, which is a Python interactive visualization library that targets 
modern web browsers. Its goal is to provide elegant, concise construction of novel graphics in the style of D3.js 
(another library for data visualization), but also deliver this capability with high-performance interactivity over very 
large or streaming datasets.
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3 CASE STUDY

3.1 Problem statement

There is a need to develop a knowledge based virtual manufacturing environment in which real time data 
communication, monitoring, semantic analysis and visualization of KPI can be done in real time over a network. 
The advantage of this framework will be that it will facilitate effective decision making both at the planning stage as 
well as at the operations stage; which, in turn, will enhance the manufacturing performance.

3.2 Methodology

A case study is designed to capture data coming from machines, monitor it, analyse it and finally visualize it in 
real time. Data is collected from four sensors, measuring different parameters: temperature, pressure, spindle-speed 
and metal removal rate. These are key operation parameters as they affect surface finish, machining time and other 
output indicators; thus, they must be monitored and analysed. Total number and type of these data sensors may vary 
according to different machining conditions. The purpose of choosing the above mentioned sensors is to 
demonstrate the practical applicability of the proposed concept. Some of the salient features of the case study 
implementation are:

Using CPS-like devices and OPC-UA to support data capture coming from sensors and actuators recording 
specific activities of the machines. 
Standardising data representation by using AutomationML.
Using SOEKS converting machine data stored in database (Offline) as Set of Knowledge Experience Structure 
(SOEKS).
Using SOEKS to create VEO and VEP according to their format.
Plotting streaming data in the client using visualization API based on BOKEH.

3.3 Results

Data capture and visualization

As illustrated in Fig.3, information is continuously being pushed from machines. The foremost role of the model 
is to manage the incoming data and to store the information in an efficient fashion. Storing streaming data is 
effective for the evaluation of machine performance and for its maintenance. Any significant change to the status of 
the monitored machine can be detected. The change can be defined as a dramatic variation (high and low as shown 
in Fig.3) in machine health value, a maintenance action or a change in the working regime. During the life cycle of a 
machine, these streaming data will be accumulated and used to construct the time-machine history of the particular 
asset. This active time-machine record will be used for peer-to-peer comparison between assets. Once the asset is 
failed or replaced, its relative time-machine record will change status from active to historical and will be used as 
similarity identification and synthesis reference.
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Fig. 3. Visualization of streaming data

Performing semantics on the SOEKS similarity identification

Data coming from four sensors is captured and arranged in the SOEKS format to represent formal decisions 
taken while operating the machine. To compare the current machine behaviour, similarity with each past SOEKS of 
the machine is calculated. Similarity index is calculated by Euclidian distance between the variables.

Fig.4 shows similarity index calculated for each SOEKS in the repository with the query SOEKS. The SOEKS 
marked with a red dot indicates the most similar SOE. Once the patterns are matched, future behaviour of the 
monitored system can be predicted more accurately.

Fig. 4. Similarity identification for each SOEKS

For each set of variables, SOEKS functions to calculate machine health index and tool life are defined. Fig.5 
illustrates corresponding machine health index and tool life for each SOEKS. Predicting remaining useful life of 
assets helps to maintain just-in-time maintenance strategy in the manufacturing plant. In addition, life prediction 
along with historical time machine records can be used to improve the asset utilization efficiency based on its 
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current health status. Historical utilization patterns of similar asset at various health stages provide required 
information to simulate possible future utilization scenarios and their outcome for the target asset. Among those 
scenarios, the most efficient and yet productive utilization pattern can be implemented for the target asset.

Fig. 5. SOEKS Functions evaluation for each formal decision

4. Conclusions

In this research, a conceptual framework for building intelligent factory is presented. We have also presented a 
practical implementation of the concept with real sensor data gathered from an actual machine. Intelligent factory 
holds huge potential as it enables dynamic manufacturing business last-minute changes to production and delivers 
the ability to respond flexibly to disruptions and failures. End-to-end transparency is provided over the 
manufacturing process, facilitating optimised decision-making. Therefore, from the presented work, it can be 
concluded that the proposed framework has features to build intelligent factory effectively; moreover, it has 
prospects to facilitate building of bigger environments of Industry 4.0.
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