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ABSTRACT
In order to allocate resources effectively according to
the production plan and to reduce disturbances, a
framework for smart production performance analysis
is proposed in this article. Decisional DNA based
knowledge models of engineering objects, processes
and factory are developed within the proposed
framework. These models are the virtual representa-
tion of manufacturing resources, and with help of
Internet of Things, are capable of capturing the past
experience and formal decisions. A case study for the
smart tool performance analysis is presented in
which information of key tool parameters like tool
life, surface integrity, tool forces and chip formation
can be sensed in real-time, and predictions can be
made according to specific requirements. This frame-
work is capable of creating a cyber-physical conjoin-
ing of the bottom-level manufacturing resources and
thus can work as a technological basis for smart fac-
tories and Industry 4.0.

KEYWORDS
Decisional DNA; Virtual
Engineering Factory (VEF);
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Introduction

Massive research efforts have been recently carried out to add smartness to
manufacturing processes and towards the adoption of forth industrial revo-
lution, Industry 4.0 (Shafiq et al. 2017; Zhang et al. 2016; Zhang et al.
2017). In this direction, agent technology has been widely developed and
implemented in manufacturing applications for its autonomy, flexibility,
reconfigurability, and scalability (Maturana et al. 2004). Related works on
the implementation of multiagent systems into industries were extensively
conducted in different fields including process and quality control, object
management, manufacturing control systems etc. (Zhang et al. 2011).
Valckenaers et al. extended the concept of intelligent agents to intelligent
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beings, which focuses on not only on the capabilities of decision making
but also reflect the physical reality (Valckenaers et al. 2007). In order to
apply web services in factory automation, the theoretical foundations,
including the resource virtualization method, the semantic web, and the
service composition method, were also studied (Tao et al. 2013). Recently,
many emerging technologies are greatly promoting the development of
Internet of Things (IoT) (Want, Schilit, & Jenson 2015), including radio
frequency identification (RFID), near-field communication (NFC),
Bluetooth LowEnergy, long term evolution - advanced (LTE-A), etc. Lee
et al. and Bagheri et al. proposed the Cyber Physical System (CPS) architec-
ture for Industry 4.0 (Lee, Bagheri, & Kao 2015) and for self-aware
machines in Industry 4.0 environment (Bagheri et al. 2015).
Currently, with the applications of new technologies such as RFID,

Bluetooth, Wi-Fi, and GSM etc., the new era of the IoT is created (Want,
Schilit, & Jenson 2015). It refers to uniquely identifiable objects (things)
and their virtual representations in an Internet-like structure. With the sup-
port and application of IoT technology, the potentially intelligent and real-
time operators of 4C (i.e., perception and Connection, Communication,
Computing, and Control) to both physical and virtual objects can be real-
ized (Lopez, Ranasinghe, & Harrison 2012). Thus, by extending the IoT
technologies such as RFID and Barcode to the manufacturing environment,
real-time and multi-source manufacturing data has become more accessible
and ubiquitous (Sanin et al. 2018).
However, the traditional manufacturing systems with centralized and

hierarchical control approaches “present good production optimization,”
but are weak in response to changes (Leit~ao & Barbosa 2014). Therefore, in
this research, a framework on self-adaptation that includes dynamic task
allocation, adaptive scheduling, and evaluating the capabilities of dynamic
reconfiguration of an industrial system is proposed. CPS provides a theor-
etical framework for mapping the manufacturing-related things to the com-
puting space so that the modeling of manufacturing systems can be easily
achieved. The proposed framework consists of Decisional DNA based
knowledge models of engineering objects, processes and factory termed
Virtual Engineering Object (VEO), Virtual Engineering Process (VEP), and
Virtual Engineering Factory (VEF), respectively. These models are not only
capable of capturing real-time information of the shop-floor but also store
and reuse this knowledge for future predictions. The significance of this
work is that the upper-level management can get important information
about the dynamic changes of the manufacturing execution in real time.
The structure of the article is as follows: In the next section, the know-

ledge representation technique of Set of Experience Knowledge Structure
(SOEKS) and Decisional DNA (DDNA) is briefly introduced with a
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number of references for readers unfamiliar with this technique. The con-
cepts of VEO, VEP, and VEF are explained in the following sections. Next,
details of the proposed framework are presented. Then, a case study of the
smart tool performance analysis is demonstrated. And the last section sum-
marizes and presents the conclusions drawn from this work.

Set of Experience Knowledge Structure (SOEKS) and Decisional DNA

The powerful knowledge representation technique of Set of experience
knowledge structure (SOEKS) and Decisional DNA (DDNA) is used as the
technological base for this work. SOEKS-DDNA (San�ın et al. 2012; San�ın
et al. 2009; Sanin et al. 2012; Shafiq, Sanin, and Szczerbicki 2014) is a
unique and single structure for capturing, storing, improving and reusing
decisional experience. DDNA name is a metaphor related to human DNA,
and the way it transmits genetic information among individuals through
time. The Decisional DNA consists of stored experienced decision events
(i.e. experiential knowledge) that can be grouped according to areas of
decision or categories. In other words, each SOE (short form for SOEKS)
related to a formal decision event can be categorized and acts similarly to a
gene in DNA. A gene guides hereditary responses in living organisms, as a
SOE directs responses of certain areas of the organization. Furthermore,
assembled genes create chromosomes and human DNA, as groups of cate-
gorized SOE create decisional chromosomes and Decisional DNA.

VEO/VEP/VEF: Conjoining of the Physical and the Virtual World

The central idea of our concept is to replicate knowledge and experience of
the manufacturing factory, and to represent it virtually to create
Manufacturing DNA. In a manufacturing domain, a factory performs vari-
ous processes; a process, in turn, uses different resources for its manufac-
turing. For the complete knowledge representation of a manufacturing
system it is categorized into three levels; first is the resource/object level,
second is the process level and third is the factory/system level. SOEKS
based knowledge representation of these levels is developed both at the
individual level and in conjunction with each other. Virtual/knowledge rep-
resentation of engineering objects, processes and system will be beneficial
in the asset, machine and entire system optimization respectively. Critical,
effective and creative decisions can be made based on these intelligent vir-
tual manufacturing levels. In the subsequent sections concept of VEO,
VEP, and VEF are discussed.
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Virtual Engineering Object (VEO)

A VEO (Shafiq, Sanin, & Szczerbicki 2014; Shafiq et al. 2015, 2015a) is
knowledge representation of an engineering artifact. It has three features:
(i) the embedding of the decisional model expressed by the set of experi-
ence, (ii) a geometric representation, and (iii) the necessary means to relate
virtualization with the physical object being represented.
A VEO is a living representation of an object capable of capturing, add-

ing, storing, improving, sharing and reusing knowledge through experience,
in a way similar to an expert in that object. A VEO can encapsulate know-
ledge and experience of every important feature related to an engineering
object. This can be achieved by gathering information from six different
aspects of an object viz. Characteristics, Functionality, Requirements,
Connections, Present State and Experience (Shafiq, Sanin, & Szczerbicki
2014; Shafiq et al. 2015). The technique of SOEKS-DDNA provides VEO
the dynamicity to overcome issues of representing complex and discrete
objects (Shafiq et al. 2015a).
The changing machining conditions, such as spindle thermal deform-

ation, tool failure, chatter, and work-piece deformation induced by clamp-
ing force, cutting force and material inner stress have a significant impact
on machining quality and efficiency. VEO will cater decision making
regarding these problems which may emerge during the machining process
due to complex conditions at the machining level (Sanin et al. 2017).

Virtual Engineering Process (VEP)

Virtual engineering process (VEP) is a knowledge representation of the
manufacturing process/process planning of artifact having all shop floor
level information regarding operations required, their sequence and resour-
ces needed to manufacture. VEP deals with the selection of necessary man-
ufacturing operations and determination of their sequences, as well as the
selection of manufacturing resources to “transform” a design model into a
physical component economically and competitively (Shafiq et al. 2015b).
As process planning representation, VEP is a combination of information

regarding the operation required, manufacturing sequence, and machines
involved (Chen et al. 2011). In addition to this, information of all the
VEOs of the resources associated with the given process is also linked to
VEP. Therefore, to encapsulate knowledge of the above mentioned areas
the VEP is designed having following three main modules: (i) Operations
(ii) Resources, and (iii) Experience (Sanin et al. 2017). Both VEO and VEP
are embedded in cloud computing platform (see Figure 1) to facilitate
delivery of compressed information on complex interrelationships within
modeled processes.
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Virtual Engineering Factory (VEF)

As shown in Figure 1, a manufacturing factory is a collection of integrated
equipment and human resources, whose function is to perform one or
more processing and/or assembly operations on a raw material, part, or set
of parts (Shafiq et al. 2016). Based on the components and their functional-
ity at the factory level, the architecture of VEF is conceived. VEF has six
elements each having links to involve VEP and VEO to represent the entire
knowledge and experience of a manufacturing factory. The arrangement of
these six elements of VEF along VEO and VEP in a cloud architecture is
shown in Figure 1. Elements of VEF are as follows: (i) Loading/Unloading
(ii) Transportation (iii) Storage (iv) Quality Control, and (v) Experience
(Sanin et al. 2018).
Each factory level experience (i.e. VEF-SOEK) is associated with a com-

ponent experience (VEP-SOEKS) to be manufactured and that component,
in turn, needs machines/objects experience (VEO-SEOKS) for its manufac-
turing. This idea is shown in Figure 1, VEF-DNA is created by collecting,
connecting and linking VEF, VEP, and VEO (Shafiq, Szczerbicki, &
Sanin 2018).

Framework for Decisional DNA Based Production Analysis Model

IoT technologies are increasingly widely used in the manufacturing systems
to collect real-time data captured by sensors. To efficiently use this data we
need extensive research on modeling the dynamic status of a manufactur-
ing system for real-time production performance analysis. In this analysis

Figure 1. VEF architecture linking VEO and VEP.
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process abnormal event diagnosis is crucial to ensure normal production
operations. In the current practice, decision-making is based on the under-
standing of a manufacturing process by an expert and is thus subjective.
How to dynamically provide managers with qualitative and quantitative
exception information such that it is persuasive and objective is a critical
issue that has not been solved yet. In the proposed framework information
is collected through agents like sensors, RFID, Camera, Operator etc. at
three levels of manufacturing setup namely object level, process level and
factory level. At the object level, the information is stored in a structured
format of SOEKS to create VEO a specialized form of CPS (Figure 2).
An engineering process involves various process parameters along with

many resources. Thus, at the process level information along with VEOs
create VEP, a specialized form of Cyber Physical Production System
(CPPS). At the next level VEF, which is an encapsulation of all the VEOs
and VEPs is developed. Finally, as shown in Figure 2, the collection of
VEOs, VEPs, and VEF forms Factory Experience or Manufacturing DNA,
through which exception information can be extracted.
Manufacturing process can be monitored in real-time, the obtained data

can be mined and corresponding knowledge can be discovered to enhance
production analysis and exception diagnosis. This is done by systematically

Figure 2. Overview of creating Manufacturing DNA.
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deploying RFID devices on the shop-floor to track and trace manufacturing
objects and collect real-time production data.
The VEO or cyber-physical machine module is responsible for capturing

multisource and real-time manufacturing information around the machine
by using auto identification technologies. The aim of this module is to
enhance the sensing ability of traditional manufacturing machines. By
applying the advanced IoT technologies (e.g., RFID, digital caliper, pressure
sensor, etc.), traditional machines are enabled to capture the real-time man-
ufacturing information proactively. These data streams are provided to the
VEO/VEP/VEF modules and can be further interpreted as manufacturing
progress or state indications. To demonstrate this concept a detailed case-
study is presented in the next section.

Smart Machining Tool: A Case Study

In this section, a case-study is presented to demonstrate how a tool in a
machining domain of production can be managed in a smart way.
Manufacturing any component in a factory requires a combination of dif-
ferent processes and machines/resources. Figure 3 shows the interrelation
between the VEOs, VEPs, and VEF in a machining set-up. Not only experi-
ence discovery can be made of the individual modules but also the foot-
print of any decision can be traced. The framework also guides the
interrelation between the tool (VEO (Tool)) and the machine, also the pro-
cess the machine is performing (VEP (Machining)) and lastly the compo-
nent that is being manufactured (VEF). For a tool “VEO (Tool)-DNA” is

Figure 3. Mechanism of experience discovery in Manufacturing DNA.
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first developed and its position in the entire manufacturing scenario is
shown in Figure 3. VEO (Tool)-DNA comprises of chromosomes of chip
formation, shear plane model, machinability, force component, tool life and
surface integrity. These can be modified according to the specific situation
and need. Similarly, VEP for process and VEF for manufacturing a compo-
nent in a factory are developed.
Figure 4 shows the internal architecture of VEO (Tool)-DNA. It has

SOEKS of different aspect which affects the tool chromosomes discussed
earlier. For example, Material SOEKS have various variables like material
type, microstructure, chemical configuration, strength property, and heat
treatment. Each SOEKS apart from these variables, have functions, con-
straints and rules that govern the SOEKS. Similarly, Machine Tool,
Production Condition, Tool, Work-piece, and Cutting Material have a
number of SOEKS variables as shown in Figure 4.
Data captured for various tool modules (see Figure 4) through various

agents like sensor, RFID, CPS and operators is stored in the SOEKS format
in CSV format. A parser is written in JAVA programing language to read
this data and to convert this information into SOEKS.
In real-time key performance indicators can be monitored and in case of

an exception, diagnosis mechanism may be suggested. Figures 5 and 6
shows the output parameters for Tool Life and Surface Roughness calcu-
lated from the SOEKS input variables. An operator can set upper and lower

Figure 4. Internal architecture of VEO(Tool)-DNA.
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limits for Tool Life and Surface Roughness and analyze the tool settings in
case the values are out of these limits.
Another feature of Decisional DNA is that it can be used for prediction.

For prediction of a specific situation for tool life and surface roughness,
VEO (Tool)-DNA can be queried. JAVA parser calculates the Euclidian
distance between the query SOEKS and the VEO (Tool)-DNA SOEKS and
gives a similarity index as shown in Figure 7. Once the most similar
SEOKS is determined the entire history of that experience can be traced
providing the corresponding information for the VEP and VEF.

Figure 5. Surface Roughness corresponding to different tool operations.

Figure 6. Tool Life corresponding to different tool operations.

Figure 7. Similarity index for a sample query.
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Conclusions

In this article, we introduced an initial approach that allows IoT and the
Decisional DNA to capture decisional events of engineering objects, process
and factory and reuse these captured events for decision making in future
operations. In this approach, the Decisional DNA is used as the technology
of knowledge representation of certain decisional events. Moreover, the
adaptability and usability of the Decisional DNA applied to smart produc-
tion performance analysis model has been tested through a case study of a
machine tool in a manufacturing set-up. In future research, we plan to
refine the model by evaluation and comparisons of different knowledge dis-
covery approaches.
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