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Abstract
Background  Aerobic exercise training (AET) prescribed as lipid management treatment positively affects the standard lipid 
profile and reduces cardiovascular disease (CVD) risk. Apolipoproteins, lipid and apolipoprotein ratios, and lipoprotein sub-
fractions may more effectively predict CVD risk than the standard lipid profile but an AET response in these biomarkers 
has not been established.
Objectives  We conducted a quantitative systematic review of randomised controlled trials (RCTs) to (1) determine the effects 
of AET on lipoprotein sub-fractions, apolipoproteins and relevant ratios; and (2) identify study or intervention covariates 
associated with change in these biomarkers.
Methods  We searched PubMed, EMBASE, all Web of Science and EBSCO health and medical online databases from 
inception to 31 December 2021. We included published RCTs of adult humans with ≥ 10 per group of participants; an AET 
intervention duration ≥ 12 weeks of at least moderate intensity (> 40% maximum oxygen consumption); and reporting 
pre/post measurements. Non-sedentary subjects, or those with chronic disease other than Metabolic Syndrome factors, or 
pregnant/lactating, as well as trials testing diet/medications, or resistance/isometric/unconventional training interventions, 
were excluded.
Results  Fifty-seven RCTs totalling 3194 participants were analysed. Multivariate meta-analysis showed AET significantly 
raised antiatherogenic apolipoproteins and lipoprotein sub-fractions (mmol/L mean difference (MD) 0.047 (95% confi-
dence interval (CI) 0.011, 0.082), P = .01); lowered atherogenic apoliproteins and lipoprotein sub-fractions (mmol/L MD 
− 0.08 (95% CI − 0.161, 0.0003), P = .05); and improved atherogenic lipid ratios (MD − 0.201 (95% CI − 0.291, − 0.111), 
P < .0001). Multivariate meta-regression showed intervention variables contributed to change in lipid, sub-fraction, and 
apoliprotein ratios.
Conclusion  Aerobic exercise training positively impacts atherogenic lipid and apolipoprotein ratios, alipoproteins, and 
lipoprotein sub-fractions; and antiatherogenic apolipoproteins and lipoprotein sub-fractions. Cardiovascular disease risk 
predicted by these biomarkers may be lowered when AET is prescribed as treatment or prevention.
PROSPERO ID  CRD42020151925.

1  Introduction

The standard lipid profile (SLP) biomarkers used to evalu-
ate cardiovascular (CVD) risk comprise total cholesterol 
(TC), triglycerides (TRG), high-density lipoprotein cho-
lesterol (HDL-C) and low-density lipoprotein cholesterol 
(LDL-C) [1]. Dyslipidaemia, a lipid profile characterised 
by abnormally elevated or lowered lipids, is an important 
Metabolic Syndrome (MetS) risk factor of CVD [2, 3]. A 
recent 17-year follow-up study of females concluded the 
TC/HDL-C ratio was a potent predictor of CVD events 
[4]. A systematic review collating data from several large 
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Key Points 

Aerobic exercise training (AET) lowers atherogenic 
apolipoprotein and lipoprotein sub-fractions and lipid 
ratios, and raises antiatherogenic apolipoproteins and 
lipoprotein sub-fractions, in sedentary adults.

AET volume (session minutes, sessions per week, 
aerobic training intensity, and intervention duration) is 
associated with positive change in atherogenic lipid, sub-
fraction and apolipoprotein ratios.

Reporting of apolipoprotein, lipid and sub-fraction ratios 
is less common than standard lipid outcomes. Future 
AET trials should report these parameters as cardiovas-
cular disease risk biomarkers.

observational studies found TC/HDL-C and LDL-C/HDL-C 
ratios better predicted CVD risk than the SLP biomarkers 
[5].

Apolipoproteins (Apo) A1 and A2 are the largest protein 
constituent of HDL [6]. The Apo B100 contains an LDL-
receptor responsible for the uptake of LDL, and serves to 
assemble and secrete VLDL [7]. Raised levels of Apo A1 
and A2 are considered to be antiatherogenic, while increased 
levels of Apo B100 and VLDL are atherogenic [8]. Apolipo-
proteins and the Apo B100/Apo A1 ratio have been investi-
gated as biomarkers more senstive to identifying CVD risk 
than TC, TRG and LDL-C [9–11]. Systematic reviews have 
examined the risk prediction power of Apo A1, A2 and B100 
for cardiovascular risk and found Apo B100 and the Apo 
B100/Apo A1 ratio improved prediction [12–14]. Lowered 
levels of lipoprotein sub-fractions HDL2 and HDL3 are con-
sidered to increase CVD risk, although HDL3 may be less 
protective in the presence of MetS [15]. Sub-fractions of 
HDL-C may be more relevant in identifying CVD risk than 
HDL-C [11].

Lack of aerobic physical activity increases CVD risk [16]. 
Aerobic exercise training (AET) positively affects dyslipi-
daemia and MetS [17–20] and lowers CVD risk [21, 22]. 
Trials reporting the effects of exercise on apolipoproteins 
and lipid ratios suggest that exercise training exerts a posi-
tive effect on these biomarkers [23–25]; however, to the 
best of our knowledge, a comprehensive quantitative review 
investigating the effects of AET on apolipoproteins, lipopro-
tein sub-fractions, associated ratios and lipid ratios in adults 
free of chronic disease other than MetS factors has yet to be 
conducted. The number of pooled exercise trial analyses may 
be few because of the under-reporting of these biomarkers, 
or reporting in differing units of measurement, or disparity 

of health status in the investigated cohorts. A meta-analytical 
technique appropriate for missing or multiple correlated and 
non-independent outcomes, such as lipid ratios, lipoprotein 
sub-fractions and apolipoproteins, is multivariate meta-anal-
ysis of joined outcomes [26, 27]. We hypothesise that in a 
cohort of similar health status, AET will positively affect 
these biomarkers and should lead to a reduction in CVD risk.

We thus aimed to conduct a multivariate meta-analysis of 
RCTs comparing the effects of AET achieving a minimum 
aerobic intensity (> 40% maximum oxygen consumption 
(VO2MAX)), against no exercise on apolipoproteins, lipopro-
tein sub-fractions, associated ratios and lipid ratios in adults 
of like health status. Further, using multivariate meta-regres-
sion, we wanted to investigate whether a priori covariates 
were associated with change in outcome measures.

2 � Methods

This systematic review with multivariate meta-analysis and 
meta-regression was designed by GW and NS and regis-
tered in the International Prospective Register of Systematic 
Reviews (PROSPERO) [28], CRD42020151925. The results 
are presented according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) state-
ment [29].

2.1 � Data Sources

Potential studies were identified by systematic online 
searches of PubMed, EMBASE, all Web of Science and 
EBSCO health and medical databases from inception to 31 
December 2021, for RCTs published in English language 
journals. Searches included a mix of Medical Subject Head-
ings (MeSH) and free text terms (see Online Supplemen-
tary Material (OSM) Table S1 for search terms, exclusions 
and example search strategy). Other systematic reviews and 
reference lists of papers were hand searched for additional 
RCTs.

2.2 � Study Eligibility

Studies were eligible for inclusion if the study design was 
an RCT comparing an AET intervention against a non-exer-
cising control group.

2.3 � Study Selection

GW, ET, AP and VN conducted online database searches 
and reviewed search results on the basis of title and abstract 
independently, using Microsoft Excel (Version 16.31 2019). 
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GW, ET, AP and VN assessed and reviewed the full PDF 
texts of potentially eligible RCTs independently. NS was 
consulted to resolve discussion regarding the final list of 
RCTs for inclusion.

2.3.1 � Participants

Studies of adult participants described as sedentary 
and capable of physical activity prior to the interven-
tion and with no chronic disease, other than MetS fac-
tors (body mass index (BMI) ≥ 30 kg/m2; hypertensive 
blood pressure > 130/85 mm Hg; TRG ≥ 10.7 mmol/L; 
HDL-C <  1  mmol/L (men) or HDL-C <  1.3  mmol/L 
(women); fasting blood sugar > 5.5 mmol/L, diabetes mel-
litus type 1 or 2, or medication prescribed to manage these 
factors) [30–32] were included. Studies of intervention 
and control group population sample sizes (N) < 10 were 
excluded to reduce the likelihood of small study effects, for 
example over-estimation of effect size [33].

2.3.2 � Intervention

An AET intervention ≥ 12 weeks was considered the mini-
mum time to affect lipid profiles [34, 35]. Studies of either 
prescribed steady-state or interval AET that employed at 
least a moderate intensity effort (> 40% VO2MAX) were 
included, since this intensity is the minimum recommended 
for sedentary individuals [36, 37]. No restrictions were 
placed on AET session time or type. Other protocol inclu-
sion and exclusion criteria are listed in Table S2 (OSM).

2.3.3 � Comparator

An AET intervention was required to be compared to a non-
exercising control group.

2.3.4 � Outcomes

Pre- and post-intervention measurements in mass (mg/dL) 
or molar (mmol/L) units of measurement of lipoprotein 
sub-fractions, apolipoproteins, or associated ratios and lipid 
ratios, for each of intervention and non-exercising control 
groups, were required to be reported. Lipid sub-fractions 
measurements given in mg/dL were multiplied by 0.02586 
to convert to mmol/L [38]. All Apo measurements, whether 
reported as mass or molar, remained unconverted. Lead 
authors of included studies were contacted via electronic 
correspondence for missing values of outcomes. Any out-
come data presented graphically were converted to numeri-
cal values using WebPlotDigitzer (Version 4.2, 2019).

2.4 � Data Extraction

Pre-established data extraction sheets designed by GW, 
using Microsoft Excel (Version 16.31 2019), were populated 
with extracted data. Included RCTs were randomly divided 
between three teams (ET and VN; AP and TvdT; and AM 
and GW). Each team member independently extracted data 
from the RCTs and reviewed the other team member’s data 
extraction for accuracy. NS and NA resolved disagreements. 
The following data were extracted: (1) author(s), year of 
publication and study design; (2) demographic and clini-
cal characteristics; (3) AET intervention and non-exercis-
ing control protocols; (4) intervention and control group 
intervention measurements for any Apo or lipoprotein sub-
fractions, and lipid ratios, lipoprotein ratios, or Apo ratios; 
and (5) main findings. Summary data (mean (M) or mean 
difference (MD), standard deviation (SD) or standard error 
(SE), or either of SD or SE of the MD) were extracted from 
pre–post intervention and control group trials that used 
either within-group or between-group contrasts to define P 
values with 95% confidence intervals (CIs).

2.5 � Study Quality

Study quality was determined using the validated Tool for 
the Assessment of Study Quality and Reporting in Exercise 
(TESTEX) [39], a 15-point scale specific to exercise train-
ing studies (see Table S3 (OSM) for assessment criteria). A 
score ≥ 10 is considered good study quality and reporting 
[40]. Within-study risk-of-bias was evaluated against seven 
criteria (see Table S4 (OSM)) and a score of low, medium 
or high was awarded. Included RCTs were randomly dis-
tributed between each team, cross-checked for study quality 
data extraction accuracy, and reviewed by NS and NA. A 
study quality sub-analysis of RCTs grouped according to a 
TESTEX score ≥ 10 and a within-study risk evaluation of 
low-to-medium was conducted.

2.6 � Data Synthesis

Statistical analyses were performed using Comprehensive 
Meta-Analysis (CMA) 3.0 (Biostat, Inc., Englewood, NJ, 
USA). To allow for multiple missing and/or correlated 
outcomes [26, 27], we calculated point estimates (effect 
size) and 95% CIs using a continuous multivariate ran-
dom effects model [41] with the effects measures of raw 
MD and SD. We set statistical significance (P value) at 
5% for the effect size. This model assumes normal distri-
bution of raw data. Outcomes were joined according to 
atherogenic potential, change of effect size direction, and 
unit of measurement (mmol/L or mg/dL). Outcomes that 
could not be joined were analysed using a univariate model 
with effects measures and significance as described for 
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the above multivariate model. Reported effects measures 
for each of the intervention and control groups, whether 
analysis-by-protocol or intention-to-treat, were pooled 
when at least three outcomes per group were provided. If 
necessary and where possible, missing effects measures 
data were calculated as follows: the MD was calculated 
by subtracting Mpre-treatment from Mpost-treatment. The standard 
deviation of the MD was calculated thus: SD = square root 
[(SDpre-treatment)2 + (SDpost-treatment)2 − (2r × SDpre-treatment × 
SDpost-treatment)], assuming a correlation coefficient r = 0.5, 
considered a conservative estimate [42]. GW and NS inde-
pendently entered data in CMA, and reviewed each other’s 
files for accuracy.

2.6.1 � Meta‑Analysis and Sub‑Analyses

Comprehensive Meta-Analysis permits joining non-inde-
pendent or correlated outcomes and calculating a pooled 
mean or selecting the largest mean amongst pooled studies 
with various missing outcomes. Although the former may 
under-estimate effect and significance, it aids in avoid-
ing type 1 errors and increases the potential accuracy of 
estimated effect sizes and CIs, and hence was selected 
as the appropriate method. A continuous random effects 
multivariate meta-analysis was conducted in CMA as fol-
lows: outcomes were joined, using the mean of multiple 
per-study non-independent and potentially correlated out-
comes, to assess the impact of AET. In each continuous 
random effects multivariate meta-analysis of the outcomes, 
RCTs were sorted chronologically according to year of 
publication and hence analysed cumulatively (i.e. over 
time). For outcomes unable to be joined (either because of 
effect size direction or unit of measurement), RCTs were 
sorted chronologically according to year of publication 
and analysed cumulatively using a univariate, rather than 
multivariate, continuous random effects meta-analysis.

Sub-analyses were conducted in CMA for study qual-
ity using TESTEX scores (RCTs with a score ≥ 10) and 
within-study bias analysis (low to medium). Data were 
entered by GW and reviewed by NS for accuracy. A leave-
one-out (K − 1, where K = total number of pooled RCTs, 
and each RCT is excluded once) sensitivity analysis was 
also performed to evaluate the influence of each RCT on 
the effect size of pooled data [43].

2.6.2 � Small‑Study Effects

Comprehensive meta-analysis was used to examine small-
study effects and determine the likelihood of missing stud-
ies. Each of Rosenthal’s failsafe N, Orwin’s failsafe N, Duval 

and Tweedie’s trim-and-fill, Egger’s regression test, Begg 
and Mazumdar’s rank correlation test, and precision and 
standard error funnel plots, were used to test for possible 
small-study effects. Data were entered into CMA by GW 
and NS and independently cross-checked. MW reviewed the 
analyses.

2.6.3 � Heterogeneity

Heterogeneity was quantified using the Q statistic, and the 
corresponding P value, τ2, τ, and I2 [41]. The Q statistic, and 
the corresponding P value, compared the differences among 
the calculated effect sizes; τ2 measured absolute between-
study heterogeneity and the estimated SD (τ) [41]. The rela-
tive measure of heterogeneity I2 ranges from 0% (complete 
homogeneity) to 100% (complete heterogeneity) [44]. MW 
reviewed the analyses conducted in CMA.

2.6.4 � Meta‑Regression

Meta-regression was conducted in CMA without adjust-
ment for P values using a random effects restricted maxi-
mum likelihood model with a Hartung–Knapp adjustment to 
detect whether any a priori study or intervention covariates 
might explain a change in statistically significant outcomes. 
A priori AET intervention covariates (intensity, frequency, 
session duration and intervention duration) that have been 
shown to influence lipid outcomes were analysed [19, 45, 
46]. A priori study covariates were analysed for the poten-
tial to affect results by: (1) improved laboratory testing 
employed in recent RCTs (trial publication year); (2) under-
powering of trials (total sample size); (3) correlation of 
similar outcomes (number of outcomes extracted per trial); 
and (4) quality of trials (study quality TESTEX score). Data 
were entered in CMA by GW and validated by NS and MW.

3 � Results

The search and inclusion process is presented in Fig. 1 in a 
PRISMA flow diagram [29].

Combined searches resulted in a total of 1704 potential 
papers. After removal of duplicates and exclusion of articles 
based on abstract and title, 109 full-text articles remained for 
screening against inclusion and exclusion criteria. Screen-
ing resulted in the inclusion of 57 RCTs for data extraction, 
pooling and analysis, published between 1979 and 2020. 
We contacted three lead authors of whomh one lead author 
responded and provided data as requested. Two papers pre-
sented data graphically which was converted using WebPlot-
Digitzer (Version 4.2, 2019).
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3.1 � Participant, and Intervention Characteristics

Details are provided in Table 1. Total participants numbered 
3194 (exercise: 1721; control: 1473). Of these, 963 par-
ticipants were female, 780 were male; the remaining 1451 
participants were not classified. Participants under 35 years 
of age numbered 136, between 35–55 years of age there 
were 2060 participants, and 998 participants were aged over 
55 years. All participants were sedentary before trial com-
mencement and control groups were instructed to continue 
existing sedentary habits. Aerobic exercise intensity ranged 

from 40–80% VO2MAX. Intervention duration ranged from 
12–52 weeks. Sessions per week ranged from 1.8 to 5.2, and 
minutes per session ranged from 15 to 210.

Intervention protocols included weight-bearing activities 
such as running or walking on treadmills or outdoors, cir-
cuit training with no or minimal resistance components, and 
non-weight-bearing activities such as swimming, cycling 
and ergocycle. Trials included supervised and unsupervised 
training sessions. Effort was either unchanged or progressive 
in response to training adaptations. Measures of effort were 
clinically or self monitored and reported via training logs 
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Fig. 1   PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram
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Table 1   Participant and intervention characteristics

Trial name Total N Age 
(range in 
years)

Sex Number of 
extracted 
outcomes

Study qual-
ity score 
(/15)

Intensity 
VO2MAX 
%

Interven-
tion duration 
(weeks)

Sessions 
per week

Minutes 
per ses-
sion

Aldred et al. [47] 22 35–55 F 2 10 59 12 4.6 29
Baker et al. [48] 34  > 55 M 1 9 72 20 3 48
Bell et al. MICT [49] 85 35–55 Mx 1 11 63 24 2.8 29
Boardley et al. [50] 68  > 55 Mx 1 9 65 16 3 35
Choi et al. [51] 75 35–55 F 2 10 50 12 5 60
Connolly et al. [52] 24 35–55 F 1 12 60 12 2.9 15
Costa et al. [53] 40 35–55 F 1 10 60 12 2 30
Finucane et al. [54] 87  > 55 Mx 1 12 60 12 3 60
Furukawa et al. [55] 45 35–55 F 2 12 50 12 2.5 30
Gahreman et al. [56] 24  < 35 M 1 13 75 12 3 20
Gordon et al. [57] 154  > 55 Mx 1 10 40 24 5 60
Grandjean et al. [58] 37 35–55 F 1 11 70 24 3 40
Hagan et al. a [59] 24  < 35 F 2 10 59 12 5 30
Hagan et al. b [59] 24  < 35 M 2 10 47 12 5 30
Hespel et al. [60] 27 35–55 M 4 9 80 16 3 40
Hinkleman & Nieman [61] 36 35–55 F 1 12 62 15 5 45
Huttunen et al. [62] 90 35–55 M 2 11 50 16 3.5 30
Kiens et al. [63] 37 35–55 M 1 8 80 12 2.6 45
Knoepfli-Lenzin et al. [64] 32 35–55 M 1 8 67 12 2.5 58
Korshøj et al. [65] 116 35–55 Mx 1 9 60 16 2 30
Krustrup et al. MICT [66] 31 35–55 F 1 10 70 16 1.8 52
Kukkonen-Harjula et al. 

[67]
108 35–55 Mx 2 12 70 15 3.8 45

Laaksonen et al. [68] 42  < 35 M 2 11 70 12 4 40
Lehmann et al. [69] 29 35–55 Mx 2 8 50 12 4 38
LeMura et al. [70] 22  < 35 F 1 9 59 16 3 30
Ligtenberg et al. [71] 51  > 55 Mx 3 11 70 26 3 50
Lindheim et al. [72] 45 35–55 F 4 9 52 26 3 30
Martins et al. [73] 63  > 55 Mx 1 6 60 16 3 45
Mohanka et al. [74] 173  > 55 F 2 12 57 52 3 45
Motoyama et al. [75] 30  > 55 Mx 1 12 50 39 5.2 30
Niederseer et al. [76] 34  > 55 Mx 2 10 55 12 2.4 210
Nieman et al. [77] 30  > 55 F 1 13 55 12 5 38
Nieman et al. [78] 43 35–55 F 1 13 65 12 4.8 45
Paolillo et al. [79] 20 35–55 F 2 12 79 52 2 45
Ready et al. [80] 25  > 55 F 3 8 54 26 4.9 54
Ring-Dimitriou et al. [81] 30 35–55 Mx 2 9 75 39 1 80
Rosenkilde et al. [82] 24 35–55 M 3 11 75 12 3 60
Rossi et al. [83] 33  > 55 F 1 7 70 16 2 52
Ruangthai and Phoem-

sapthawee [84]
25  > 55 Mx 2 11 48 24 3 40

Shearman et al. [85] 37 35–55 M 3 10 44 12 4.3 34
Sigal et al. [86] 123 35–55 Mx 2 15 75 22 2.4 45
Slentz et al. hvVICT [16] 84 35–55 Mx 1 10 73 26 3.6 58
Slentz et al. lvMICT [16] 72 35–55 Mx 1 10 48 26 3.5 58
Slentz et al. lvVICT [16] 83 35–55 Mx 1 10 73 26 2.9 43
Stefanick et al. a [87] 88  > 55 F 3 12 50 52 3 53
Stefanick et al. b [87] 93 35–55 M 3 12 50 52 3 53
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or electronic devices. These protocol attributes are further 
detailed in the Study Quality TESTEX and within-study 
risk-of-bias assessements.

3.2 � Comparative Outcomes

The ratio outcomes extracted from included RCTs were TC/
HDL-C, LDL-C/HDL-C, HDL-C/TC, HDL-C/LDL-C, Apo 
B100/A1, and Apo A1/Apo B100. Sub-fractions extracted 
(mmol/L and mg/dL) were VLDL, HDL2 and HDL3. Apoli-
poproteins extracted (mmol/L and mg/dL) were Apo A1, 
Apo A2 and Apo B100.

Outcomes were joined according to antiatherogenicity, 
atherogenicity, effect size direction and reporting measure-
ment. The TC/HDL-C, LDL-C/HDL-C and Apo B100/
A1 ratios were joined (negative effect size direction) and 
analysed. The Apo A1/Apo B100, HDL-C/TC and HDL-C/
LDL-C ratios were joined (positive effect size direction) and 
analysed. Apolipoprotein A1 and A2 mmol/L were joined 
with HDL2 and HDL3 mmol/L (antiatherogenic) and ana-
lysed. Apolipoprotein B100 mmol/L was joined with VLDL 
mmol/L (atherogenic) and analysed. Apolipoprotein A1 and 
A2 reported as mg/dL were joined (antiatherogenic) and 
analysed. Apolipoprotein B100 reported as mg/dL (athero-
genic) was analysed separately. Summary statistics of the 
models are shown in Table 2.

Antiatherogenic Apo A1 and A2, with or without the 
inclusion of HDL2 and HDL3, and independent of unit 
of measurement, were statistically significantly raised by 
AET, as shown in Fig. 2 (mmol/L MD 0.047 (95% CI 

0.011, 0.082), P = 0.01) and Fig. 3 (mg/dL MD 2.297 
(95% CI 0.441, 4.153), P < 0.02) below. The joined TC/
HDL-C + LDL-C/HDL-C + Apo B100/Apo A1 ratio was 
reduced with AET by a statistically significant amount, as 
shown in Fig. 4 (MD − 0.201 (95% CI − 0.291, − 0.111), 
P < 0.001). Sub-analyses using K − 1 sensitivity analysis 
for statistically significant outcomes did not change the 
results; see Figs. S1–S3 (OSM).  

3.3 � Study Quality and Reporting

The median study quality TESTEX score was 10 (from a 
maximum score of 15; range 6–15), see Table S5 (OSM). 
Within-study risk of bias was mainly low or medium, see 
Table S6 (OSM). No RCT attained a TESTEX score ≥ 10 
with a high within-study risk of bias score. Sub-analy-
ses using TESTEX scores ≥  10 resulted in statistical 
significance for atherogenic Apo B100 combined with 
VLDL, as shown in Fig. 5 (mmol/L MD − 0.08 (95% CI 
− 0.161, 0.000), P = 0.05), and the TC/HDL-C + LDL-C/
HDL-C + Apo B100/Apo A1 ratio remained statistically 
significant; see Table S7 (OSM). Better quality studies 
increased the effect size for Apo B100 reported in mg/dL 
but did not attain statistical significance (Table S7, OSM).

3.4 � Lipid Extraction Methodology

The included RCTs extracted blood from individuals in 
fasted states and in seated or supine positions and thus no 

a data reported for females, b data reported for males, F female, hvVICT high-volume vigorous-intensity continuous training, lvMICT low-
volume moderate-intensity continuous training, lvVICT low-volume vigorous-intensity continuous training, N sample size, M male, Mx trial 
included both females and males, VO2MAX maximum oxygen consumption, (=) exercise protocol equivalent to recommended exercise volumes, 
(<) exercise protocol less than recommended exercise volumes

Table 1   (continued)

Trial name Total N Age 
(range in 
years)

Sex Number of 
extracted 
outcomes

Study qual-
ity score 
(/15)

Intensity 
VO2MAX 
%

Interven-
tion duration 
(weeks)

Sessions 
per week

Minutes 
per ses-
sion

Stensel et al. [88] 65 35–55 M 3 11 60 52 7 28
Sunami et al. [89] 40  > 55 Mx 3 10 50 22 3 60
Suter et al. [90] 61 35–55 M 1 9 77 16 3 30
Suter and Marti [91] 32 35–55 F 5 9 80 16 3 45
Tully et al. (=) [92] 52 35–55 Mx 1 13 53 12 4.2 26
Tully et al. (<) [92] 54 35–55 Mx 1 13 53 12 4.2 29
Verissimo et al. [93] 63  > 55 Mx 7 8 55 35 3 50
von Thiele Schwarz et al. 

[94]
118 35–55 F 1 8 49 52 3 60

Wirth et al. [95] 21 35–55 M 1 8 60 17 3 60
Wood et al. [96] 81 35–55 M 6 9 80 12 3 25
Wood et al. [97] 88 35–55 M 1 9 80 52 4 45
Total 3194  Median 1 10 60 16 3 45
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RCT was excluded for phlebotomy reasons (data not shown). 
Lipoprotein and apolipoprotein analysis, although under-
reported in detail, included density gradient ultracentrifu-
gation; immunoturbidimetric methods (Roche) in serum; 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
(SDS-PAGE), immunoprecipitation enhanced by polyeth-
ylene glycol, and nuclear magnet resonance spectroscopy; 
however, sensitivity analysis according to analytical method, 
when possible to perform, did not change the results (data 
not shown).

3.5 � Small Study Effects

Included studies exceeded the minimum number of effect 
sizes to be pooled [98]. There was minimal to no evidence 
of potential small study effects for each of the statistically 
significant outcomes after analysis with Classic fail-safe 
N, Orwin’s fail-safe N, Duval and Tweedie’s trim-and-
fill, Egger’s regression test, and Begg and Mazumdar’s 
rank correlation test, nor following visual inspection of 

Table 2   Multivariate and univariate random effects meta-analysis summary statistics per lipid outcome

Apo apolipoprotein, CI confidence interval, HDL/HDL-C high-density lipoprotein(-cholesterol), mg/dL milligrams per decilitre, mmol/L milli-
moles per litre, N sample size per group and total, TC total cholesterol, VLDL/LDL-C (very) low-density lipoprotein(-cholesterol)

Multivariate analysis model Random effects, mean difference, 95% CI Population N

Mean of combined outcomes (apo, sub-fraction, ratio) Point estimate Lower limit Upper lLimit P value Exercise Control Total

Apo A1 + A2 + HDL2 + HDL3 mmol/L 0.047 0.011 0.082 0.010 260 235 495
Apo A1 + A2 mg/dL 2.297 0.441 4.153 0.015 403 370 773
Apo B100 + VLDL mmol/L − 0.053 − 0.114 0.008 0.087 535 360 895
TC/HDL-C + LDL-C/HDL-C + Apo B100/Apo A1 − 0.201 − 0.291 − 0.111 0.000 974 934 1908
HDL-C/TC + HDL-C/LDL-C + Apo A1/Apo B100 0.022 − 0.002 0.046 0.077 121 97 218

Univariate analysis model Random effects, mean difference, 95% CI Population N

Single outcome Point estimate Lower limit Upper limit P value Exercise Control Total

Apo B100 mg/dL − 0.953 − 2.616 0.710 0.261 369 335 704

Fig. 2   Antiatherogenic apolipoproteins (Apo) and sub-fractions (joined Apo A1 + A2 + HDL2 + HDL3 mmol/L)

Fig. 3   Antiatherogenic apolipoproteins (Apo) (joined Apo A1 + Apo A2 mg/dL)
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precision and standard error funnel plots. Given the min-
imal evidence, the impact of the potential small study 
effects is trivial, which suggests validation of the results 
of the corresponding multivariate meta-analyses; see 
Tables S8–S11, Figs. S4a–S7b (OSM).

3.6 � Heterogeneity

Neither the degree of absolute between-study heterogene-
ity (τ2) nor the relative heterogeneity (I2) for each analysed 
outcome indicated that trials should not be pooled, or that 
significance testing should not be undertaken; see Table S12 
(OSM).

Fig. 4   Joined TC/HDL-C, LDL-C/HDL-C ratio. Apo apolipopro-
tein, CI confidence interval, Combined joined outcomes, f females, 
HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipo-
protein cholesterol, m males, MICT moderate-intensite continuous 

training, Random random effects model, TESTEX study quality score 
(numeric), TC total cholesterol, (=) exercise protocol equivalent to 
recommended exercise levels, (<) exercise protocol less than recom-
mended exercise levels

Fig. 5   Atherogenic apolipoprotein and subfraction (joined 
B100 + VLDL), SQ ≥ 10. Apo apolipoprotein, CI confidence interval, 
Combined joined outcomes, HDL-C high-density lipoprotein cho-
lesterol, hvVICT high-volume vigorous-intensity continuous train-
ing, LDL-C low-density lipoprotein cholesterol, lvMICT low-volume 

moderate-intensity continuous training, lvVICT low-volume vigorous-
intensity continuous training, Random random effects model, SQ ≥10 
study quality score greater than 10, TESTEX study quality score 
(numeric), TC total cholesterol, VLDL-C very-low-density lipoprotein 
cholesterol
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3.7 � Meta‑Regression

Exploratory multivariate meta-regression modelling of 
significant results suggested an association between AET 
volume (intervention covariates: intensity, minutes per 
session, sessions per week, and intervention duration) 
and improvement in the joined TC/HDL-C + LDL-C/
HDL-C + Apo B100/Apo A1 ratio (τ2 = 0.0023, R2 = 0.84); 
see Table S13a (OSM). The study covariate publication 
year was minimally associated with improvement in the 
joined TC/HDL-C + LDL-C/HDL-C + Apo B100/Apo A1 
ratio (τ2 = 0.0134, R2 = 0.07); see Table S13b (OSM). Our 
maximum likehood modelling of intervention and study 
covariates, whether singly or combined, alluded to overfit-
ting of the data for antiatherogenic outcome Apo A1 + Apo 
A2 + HDL2 + HDL3 mmol/L; see Tables S14a and b (OSM). 
Variations of the model (restricted maximum likelihood, 
method of moments) suggested no fit or overfitting, respec-
tively (data not shown).

4 � Discussion

This systematic review and cumulative random multivariate 
meta-analysis, with meta-regression of 57 RCTs of 3194 
participants, compared the effects of at least 12 weeks of 
AET performed at > 40% VO2MAX against non-exercising 
control groups on lipoprotein sub-fractions, apolipoproteins, 
associated ratios and lipid ratios in sedentary adults free 
of chronic diseases other than the CVD risk factors com-
prising MetS. Despite the potential for calculating a smaller 
effect size and obtaining statistical insignificance by adopt-
ing a conservative multivariate meta-analytical approach, 
we have shown that AET at > 40% VO2MAX for ≥ 12 weeks 
achieved better outcomes than no exercise for lipoprotein 
sub-fractions, lipid and Apo ratios, as well as Apo A1, A2 
and B100, which appear to be superior predictors of CVD 
risk compared to the SLP [4, 5, 9–14]. These CVD risk bio-
markers could potentially be prioritised for measurement 
over the SLP. Using the measurement of these CVD risk 
biomarkers, AET can be prescribed in sufficient quantities 
to reduce CVD risk. Such a shift reflects the increasing trend 
towards personalised medicine and availability of economi-
cal and advanced lipoprotein tests [99, 100].

Our work corroborates other investigations of interven-
tion covariates that might explain favourable change in 
SLP biomarkers [19, 21, 45, 46]. We found that increasing 
AET volumes (intensity, frequency, duration and chronic-
ity) are associated with a beneficial change in lipid ratios 
that are considered highly indicative of CVD risk. Our 
recent comparison of the effects of high-intensity versus 
moderate-intensity aerobic exercise on lipids suggested that 

antiatherogenic HDL-C is positively affected by high inten-
sity more than moderate intensity exercise [101].

Our results suggest that the study covariate publication 
year is only minimally associated with improvement in lipid 
and apolipoprotein ratios. Advances in lipid and apolipopro-
tein extraction techniques and measurement, if represented 
by the study covariate publication year, may have a limited 
influence on the changes observed in these biomarkers as 
a result of AET. Extraction techniques and measurement 
would thus be unlikely to explain variation in results of indi-
vidual RCTs investigating the effects of AET. Our sensitivity 
analysis using lipid extraction methodology and measure-
ment did not change our results. None of our included RCTs 
reported aggregated baseline lipid values suggesting extreme 
dyslipidaemia, for which next-generation DNA-sequencing 
may be more diagnostically appropriate for lipid disorders 
[102], and no RCTs reported including this technique. Con-
versely, our study quality sensitivity analyses showed that 
atherogenic Apo B100 + VLDL mmol/L achieved a statisti-
cally significant effect size for RCTs with a study quality 
score ≥ 10. These results allude to improvements in study 
design over time, and/or the employment of more sensitive 
lipid assays, irrespective of study publication year.

4.1 � Clinical Significance and Future Research

Antiatherogenic apolipoproteins were statistically signifi-
cantly increased with AET by 0.05 mmol/L or 2.30 mg/dL 
(grouped by unit of measurement). A one SD increment of 
Apo A1 is associated with a reduced hazard ratio of major 
cardiovascular events [103, 104]. While not statistically sig-
nificant, for RCTs reporting Apo B100 with a study qual-
ity score ≥ 10, we showed that AET beneficially decreased 
Apo B100 by 2.073 mg/dL. Given that a 9% reduction in 
coronary heart disease occurs for every 10 mg/dL reduc-
tion in ApoB100 [105], we calculate that our estimated 
2.073 mg/dL decrease in ApoB100 could anticipate a 4.34% 
decrease in coronary heart disease. For RCTs with a study 
quality score ≥ 10, AET reduced the combined biomarker 
Apo B100 + VLDL-C by the statistically significant amount 
of 0.08 mmol/L. Such a decrease in atherogenic lipopro-
teins and sub-fractions is also associated with a similar 
reduction in coronary heart disease [105–107]. Our results 
reinforce the prescription of AET as a central tool in lipid 
management.

Our exploratory meta-regression analysis indicated 
that AET intervention volume (intensity, session min-
utes, sessions per week, and intervention duration) con-
tribute to positive change in these CVD risk biomark-
ers. Other studies have found that an AET protocol of at 
least 180 min per week at > 40% VO2MAX or > 1200 kcal/
week has a beneficial influence on lipids [45, 46, 108, 
109]. A previous systematic review pooling data from 
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AET interventions compared thresholds of intensity and 
volume, and determined that a minimum effective AET 
protocol required an AET volume of > 45 min per session 
for 3–4 sessions per week for a duration of > 26 weeks 
at >  65% VO2MAX [19] to positively affect lipids. To 
obtain larger effects on both the lipid CVD risk biomark-
ers we measured and their associated reductions in CVD 
incidence, the volume and intensity of weekly AET may 
need to be increased above global guidelines of 150 min 
of moderate intensity AET or 75 min of vigorous intensity 
AET per week [110] to the thresholds described above. 
Clinicians profiling their patients with the lipid CVD 
risk biomarkers we measured can prescribe AET proto-
cols that more closely align with the patient’s preference 
by varying the intervention covariates associated with 
change in these biomarkers. As a minimum, weekly AET 
volumes in excess of 180 min at upper moderate intensi-
ties (> 65% VO2MAX) should be targeted.

Given the paucity of apolipoprotein, sub-fraction and 
ratio data reported in exercise trials, we propose that 
future research should compare AET protocols of appro-
priate volume against non-exercising interventions and 
report apolipoproteins, lipoprotein sub-fractions and rel-
evant ratios, including the atherogenic index of plasma 
(log ratio of TRG/HDL-C). Since TRG better predicts 
CVD risk in women [111], we recommend trials also 
record, and by sex, non-HDL-C, non-HDL-C/HDL-C 
and the log ratio of TRG/HDL-C, as these ratios were 
under-reported in our included RCTs. Additionally future 
trials could also explore the effect of acute and chronic 
AET protocols on these lipid biomarkers, with additional 
pharmacotherapeutic and dietary interventions for com-
parison, in sedentary adults achieving less than recom-
mended exercise volumes, both with and free of chronic 
disease and/or MetS factors.

Our study quality TESTEX and within-study risk 
of bias analyses indicated that included RCTs failed to 
specify one or more of the following: method of ran-
domisation and allocation concealment; medication use, 
drop-out reasons, or adverse events; monitoring of the 
non-exercising group or adherence to either the exercis-
ing or non-exercising protocol; a minimum compliance 
level; the use of objective measuring devices; and report-
ing of post-intervention exercise volume (total sessions 
attended, total minutes per session, achieved intensity). 
Phlebotomy specifics of post-intervention blood extrac-
tion methodology and analyses were not always recorded. 
Participant data for pre–post body weight, body fat or 
lean mass, waist circumference or BMI, systolic and dias-
tolic blood pressure, and fasting blood glucose, were also 
missing. Researchers investigating the effects of AET can 

better report their findings by including quantitative data 
for these participant characteristics.

4.2 � Strengths and Limitations of this Systematic 
Review and Multivariate Meta‑Analysis 
with Meta‑Regression

Our work has a number of strengths. To the best of our knowl-
edge, this quantitative review is the first to have compared the 
effects of a minimum prescribed AET dose against no exercise 
on lipid sub-fractions, ratios and apolipoproteins in a cohort 
characterised as free of chronic disease except for the possible 
presence of the CVD risk factors comprising MetS, using a 
multivariate meta-analytic approach.

Previous systematic reviews did not use TESTEX [39] to 
measure the quality of included studies. We followed a rig-
orous inclusion/exclusion protocol to ensure minimisation of 
confounding factors amongst the RCT populations [112].

A potential limitation of our work is the use of aggregated 
RCT data and not individual subject data [113, 114], with the 
exception of one study [86]. We searched using English lan-
guage terms, potentially reducing the pool of available stud-
ies for selection and possibly introducing bias. We excluded 
studies with intervention and comparison group N < 10, and 
the number of RCTs included with longer durations were few, 
which may have reduced estimated effect sizes. We included 
AET protocols with an intensity (> 40% VO2MAX) at the lower 
end of the moderate-intensity range; this low-intensity may 
elicit very small changes in lipids [19], and the inclusion of 
these protocols may have resulted in understated effect sizes. 
Study reporting of protocol adherence and intensity var-
ied. Some RCTs used objective measures such as electronic 
devices. Other studies used subjective measures, for example, 
the Borg scale, self-reported heart rate, log books, denoted by 
different indices of intensity (energy expenditure, VO2MAX, 
maximum heart rate, METs, Borg scale). Bias in the meas-
urement of data reported in the included RCTs may have thus 
occurred. Some RCTs reported scant data on AET protocol or 
energy expenditure, and we therefore estimated intensity as a 
percent of VO2MAX. A very small number of RCTs noted that 
control groups increased physical activity levels during the 
duration of the study; this may have reduced our estimated 
effect size. Since our meta-regression covariates were not ran-
domised at study level, our meta-regression findings are best 
viewed as exploratory. With respect to data pooling, where 
the standard deviation of the mean difference, or exact P val-
ues within groups, or 95% CIs were not available, statistical 
analyses depended on extrapolated data. Our imputation of 
these statistics was conservative and this approach may have 
weakened results.
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5 � Conclusion

This multivariate meta-analysis with meta-regression of 
pooled data indicated that AET programs of moderate inten-
sity with a minimum 12-week duration significantly reduced 
the joint TC/HDL-C, LDL-C/HDL-C and Apo B100/Apo A1 
ratios, as well as Apo B100 and VLDL values, while signifi-
cantly raising Apo A1 and A2 and the sub-fractions HDL2 
and HDL3, in sedentary adults free of chronic disease other 
than possible MetS factors. Our results mimic the results of 
previous reviews examining standard lipid CVD risk biomark-
ers and our exploratory meta-regression suggested AET vol-
ume is associated with change in lipid ratios and antiathero-
genic apolipoproteins and lipoprotein sub-fractions. Few 
studies reported the Apo B100/Apo A1 ratio, considered an 
equivalent if not more accurate lipid CVD risk biomarker in 
comparison to standard lipid CVD risk biomarkers. Aerobic 
exercise training has been shown to affect lipoprotein sub-
fractions, ratios and apolipoproteins, and positive changes in 
these biomarkers are associated with reduction in CVD risk. 
Clinicians can confidently prescribe aerobic exercise train-
ing programs as part of overall CVD risk management and 
monitor the effect of these programs using these novel lipid 
biomarkers.
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