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Abstract
The premise was tested that the additional genetic gain was achieved in the over-
all breeding objective in a pig breeding program using genomic selection (GS) 
compared to a conventional breeding program, however, some traits achieved 
larger gain than other traits. GS scenarios based on different reference population 
sizes were evaluated. The scenarios were compared using a deterministic simula-
tion model to predict genetic gain in scenarios with and without using genomic 
information as an additional information source. All scenarios were compared 
based on selection accuracy and predicted genetic gain per round of selection for 
objective traits in both sire and dam lines. The results showed that GS scenarios 
increased overall response in the breeding objectives by 9% to 56% and 3.5% to 27% 
in the dam and sire lines, respectively. The difference in response resulted from 
differences in the size of the reference population. Although all traits achieved 
higher selection accuracy in GS, traits with limited phenotypic information at the 
time of selection or with low heritability, such as sow longevity, number of piglets 
born alive, pre- and post-weaning survival, as well as meat and carcass quality 
traits achieved the largest additional response. This additional response came at 
the expense of smaller responses for traits that are easy to measure, such as back 
fat and average daily gain in GS compared to the conventional breeding program. 
Sow longevity and drip loss percentage did not change in a favourable direction 
in GS with a reference population of 500 pigs. With a reference population of 1000 
pigs or onwards, sow longevity and drip loss percentage began to change in a fa-
vourable direction. Despite the smaller responses for average daily gain and back 
fat thickness in GS, the overall breeding objective achieved additional gain in GS.
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1   |   INTRODUCTION

Genomic selection (GS) is a method of predicting the 
genetic merit of selection candidates utilising dense 
marker genotyping covering a whole genome. It uses a 
reference population that has both genotypes and pheno-
types (Meuwissen et al., 2001). This method has resulted 
in increased prediction accuracy and reduced generation 
intervals substantially in a wide range of species and has 
impacted the structure of breeding programs. This has led 
to significant increases in genetic gain achieved, especially 
in dairy cattle because the generation interval in sires has 
fallen from 7 years to approximately 2.5 years (Meuwissen 
et al., 2016). It is possible to select these younger animals 
based on genomic breeding values with a very high accu-
racy (Garcia-Ruiz et al., 2016). The impact of GS largely 
depends on how well or to what extent traits in the breed-
ing objective can be recorded before selection. In dairy 
cattle, most of the breeding objective traits are only mea-
surable on females later in life, while genetic gain mainly 
depends on the selection of dairy bulls and progeny test-
ing of female progeny from those sires.

In pigs, the gain from GS is the result of increased se-
lection accuracy because the reduction in generation in-
terval is significantly less compared to dairy cattle (Jonas 
& de Koning, 2015; Meuwissen et al., 2016). This genetic 
gain is also required to be balanced with the emphasis on 
each breeding objective trait and this depends on the ac-
curacy of the estimated breeding value (EBV) for a trait 
within the breeding objective. Not all the traits achieve a 
similar level of improvement in prediction accuracy using 
genomic information compared to pedigree-based selec-
tion (Christensen et al., 2012; Mehrban et al., 2019). Traits 
that can be easily measured on many selection candidates 
before selection might achieve less additional improve-
ment in prediction accuracy in GS compared to pedigree-
based selection than traits that are difficult to measure or 
sex-limited traits. Optimisation of genetic gain usually 
pursues the traits where the most gain can be made i.e. 
traits with higher accuracy EBV and relatively higher 
economic weight. Lowly accurate EBV of traits having 
relatively lower economic weight will have less variation 
and therefore, lowly accurate EBV will contribute less to 
the overall ranking of individuals based on the breeding 
objective. If GS can improve the accuracy of traits with 
limited information at the point of selection, genetic gain 
of these traits is expected to improve more relative to com-
monly recorded traits.

Several simulation studies have been conducted to 
predict response to GS in pig breeding programs (e.g. 
Lillehammer et al., 2011, 2013; Tribout et al., 2012). These 
studies assumed one or two breeding objective traits only. 
In reality, pig breeding objectives consist of more than two 

traits. There might be both favourable and unfavourable 
correlations while it is generally expected to improve all 
traits simultaneously (Dekkers & Gibson,  1998; Ogawa 
et  al.,  2023). Predicting the direction and magnitude of 
response to GS with more traits in the breeding objective 
depends on the correlation structure between the traits. 
Therefore, more work is required to understand the re-
sponse to GS in the dam and sire line of pig breeding ob-
jectives that include all traits usually used in a breeding 
program.

The size of the reference population is an important 
factor that has an impact on the accuracy of genomic pre-
diction (Daetwyler et al., 2008; Dekkers, 2007). Reference 
populations are defined as the group of animals with both 
phenotypes and genotypes on their own and relatives' in-
formation. In general, the accuracy of genomic prediction 
is higher as the size of the reference population increases 
(Dekkers et al., 2021; Wei et al., 2022). Consequently, it is 
important to understand the benefits of GS in pigs with 
reference populations of different sizes. The objective of 
this study was to investigate the impact of GS in both sire 
and dam lines based on the genetic gain in each of the 
breeding objective traits, the overall economic merit of the 
breeding objective and the accuracy of different traits with 
or without reference population. This study hypothesises 
that GS increases the genetic gain of the overall breeding 
objective compared to the conventional breeding program 
in a multi-trait breeding objective and that the additional 
gain will be larger in some traits than others. This hypoth-
esis was tested using deterministic simulation because 
this deterministic simulation study focused on the ball-
park figure of the potential benefit of GS on pig breeding 
objectives with multiple correlated traits.

2   |   MATERIALS AND METHODS

2.1  |  Breeding scenarios

To simulate the scenarios, different sizes of reference pop-
ulations were used to reflect different levels of genomic 
prediction accuracy. GS scenarios were simulated to pre-
dict response to selection in two different breeding ob-
jectives representing a sire and dam line. The dam line 
objective had both reproductive and production traits, as 
shown in Table  1. In comparison, the sire line breeding 
objective included both production traits and meat and 
carcass quality traits. Production traits are backfat thick-
ness, average daily gain, feed conversion ratio and post-
weaning survivability; carcase quality traits are belly fat 
% and middle portion %; and meat quality trait is drip loss 
percentage. Genomic breeding values of all breeding objec-
tive traits were included as selection criteria. The sources 

 14390388, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbg.12873 by U

niversity O
f N

ew
 E

ngland, W
iley O

nline L
ibrary on [27/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  687M et al.

T
A

B
L

E
 1

 
H

er
ita

bi
lit

y 
(h

2 ) a
nd

 g
en

om
ic

 p
re

di
ct

io
n 

ac
cu

ra
ci

es
 o

f t
ra

its
 u

se
d 

fo
r s

im
ul

at
io

n 
fo

r b
ot

h 
da

m
 a

nd
 si

re
 li

ne
 o

f p
ig

s a
ss

um
in

g 
di

ffe
re

nt
 si

ze
s o

f r
ef

er
en

ce
 p

op
ul

at
io

ns
.

T
ra

it
s

T
ra

it
 u

ni
ts

h2

R
ef

er
en

ce
 p

op
ul

at
io

n

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

N
o.

 b
or

n 
al

iv
e 

(N
BA

)
pi

gl
et

s/
lit

te
r

0.
08

0.
20

0.
28

0.
33

0.
38

0.
42

0.
45

0.
48

0.
50

0.
52

0.
54

So
w

 m
at

ur
e 

w
ei

gh
t (

SM
W

)
kg

0.
17

0.
29

0.
39

0.
46

0.
51

0.
56

0.
59

0.
62

0.
65

0.
67

0.
69

So
w

 lo
ng

ev
ity

 (S
L)

N
 p

ar
ity

0.
10

0.
22

0.
31

0.
37

0.
42

0.
46

0.
49

0.
52

0.
54

0.
57

0.
59

Su
rv

iv
al

 p
ro

po
rt

io
n 

at
 b

ir
th

 (S
PB

)
%

0.
01

0.
07

0.
10

0.
12

0.
14

0.
16

0.
17

0.
19

0.
20

0.
21

0.
22

Pr
e-

w
ea

ni
ng

 su
rv

iv
al

 p
ro

po
rt

io
n 

(P
SP

)
%

0.
02

0.
10

0.
14

0.
17

0.
20

0.
22

0.
24

0.
26

0.
28

0.
29

0.
31

A
ve

ra
ge

 a
ge

 a
t p

ub
er

ty
 (A

A
P)

da
ys

0.
41

0.
42

0.
55

0.
63

0.
68

0.
72

0.
75

0.
78

0.
80

0.
81

0.
83

M
at

er
na

l a
ve

ra
ge

 d
ai

ly
 g

ai
n 

(M
 A

D
G

)
g/

da
y

0.
06

0.
17

0.
24

0.
29

0.
33

0.
37

0.
40

0.
43

0.
45

0.
47

0.
49

Ba
ck

 fa
t t

hi
ck

ne
ss

 (B
FT

)
m

m
0.

33
0.

38
0.

51
0.

58
0.

64
0.

68
0.

71
0.

74
0.

76
0.

78
0.

80

A
ve

ra
ge

 d
ai

ly
 g

ai
n 

(A
D

G
)

g/
da

y
0.

31
0.

37
0.

50
0.

57
0.

63
0.

67
0.

70
0.

73
0.

75
0.

77
0.

79

Fe
ed

 c
on

ve
rs

io
n 

ra
tio

 (F
C

R
)

kg
/k

g
0.

12
0.

24
0.

33
0.

40
0.

45
0.

49
0.

52
0.

55
0.

58
0.

60
0.

62

Po
st

-w
ea

ni
ng

 su
rv

iv
al

 (P
W

S)
0/

1
0.

05
0.

16
0.

22
0.

27
0.

31
0.

34
0.

37
0.

39
0.

42
0.

44
0.

46

Be
lly

 fa
t (

BF
)

%
0.

34
0.

39
0.

51
0.

59
0.

65
0.

69
0.

72
0.

75
0.

77
0.

79
0.

80

D
ri

p 
lo

ss
 %

 (D
LP

)
%

0.
14

0.
26

0.
36

0.
43

0.
48

0.
52

0.
55

0.
58

0.
61

0.
63

0.
65

M
id

dl
e 

po
rt

io
n 

(M
D

)
%

0.
23

0.
33

0.
44

0.
52

0.
57

0.
61

0.
65

0.
68

0.
70

0.
72

0.
74

Ju
ve

ni
le

 in
su

lin
 li

ke
 g

ro
w

th
 fa

ct
or

 1
 (I

G
F-

1)
N

g/
m

L
0.

22
0.

32
0.

43
0.

51
0.

56
0.

61
0.

64
0.

67
0.

69
0.

71
0.

73

M
us

cl
e 

de
pt

h 
(M

D
)

m
m

0.
19

0.
30

0.
41

0.
48

0.
53

0.
58

0.
61

0.
64

0.
67

0.
69

0.
71

 14390388, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbg.12873 by U

niversity O
f N

ew
 E

ngland, W
iley O

nline L
ibrary on [27/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



688  |      M et al.

of information for different breeding objective traits are 
shown in Table 2. All the production traits, except meat 
and carcase quality and post-weaning survival traits, 
were available on selection candidates before selection. 
Production traits such as back fat thickness and average 
daily gain were measured on selection candidates along 
with records on 5 full sibs, 30 half-sibs, the sire and the 
dam. Since the feed conversion ratio is expensive to meas-
ure, it was recorded on two full sibs and 5 half sibs along 
with recordings on the sire and the dam. Post-weaning 
survival (assuming 97% survival rate) trait was recorded 
on 30 half sibs along with a record for the sire. Meat and 
carcase quality traits were recorded on 2 full sibs and 10 
half sibs. Reproductive traits such as number born alive 
and sow mature weight were recorded on the dam and 3 
half sibs. It was assumed that the dam had 2 parties and 
the records for the number born alive, survival proportion 
at birth and pre-weaning survival proportion in the two 
parties were assumed repeated records. One record from 
the dam for sow longevity was available on selection candi-
dates (Table 2). It was assumed that genomic breeding val-
ues of all traits were available for all selection candidates. 
Economic weights derived by Hermesch et al. (2014) and 
Amer et al. (2014) for breeding objective traits are shown 
in Table 3. Production traits were assumed either uncor-
related with reproductive traits in Table  4 or correlated 
with reproductive traits in Table  5 because of inconsist-
ency in correlations between production and reproduc-
tive traits found in the literature. All the heritabilities 

and genetic correlations were collected from the litera-
ture (Hermesch,  2008, 2013; Hermesch & Jones,  2012; 
Hermesch & O'Shea, 2005; Kerssen et al., 2019; Lewis & 
Bunter, 2011; Lewis & Hermesch, 2013).

2.2  |  Simulation procedure

The selection index (Hazel,  1943) method was used for 
incorporating multiple breeding objective traits to predict 
selection response and selection accuracy for overall merit 
as well as for individual objective traits. The method uses 
relative economic weight for each breeding objective trait 
and phenotypic and genetic parameters for breeding ob-
jective and selection criteria traits. Dekkers (2007) showed 
how genomic information can be added as just another 
information source in the selection index framework as-
suming genomic breeding value as an additional trait 
with a heritability of 0.99 and economic weight of zero 
(Dekkers, 2007).

The (co)variance structure between the true breeding 
value of the trait and the corresponding genomic breeding 
value in the two-trait setting is:

⎡⎢⎢⎢⎢⎣

�
2
BV1 rg�a1�a2 r21�

2
a rg�a1r

2
1�a2

�
2
BV2 rg�a1r

2
2�a2 r22�

2
a

�
2
GEBV1 rg�a1r1�a2r2

sym �
2
GEBV2

⎤⎥⎥⎥⎥⎦

Traits

Information source

Own Sire Dam Full sibs
Half 
sibs

No. born alive 0 0 2 0 3

Sow mature weight 0 0 1 0 3

Sow longevity 0 0 1 0 0

Survival proportion at birth 0 0 2 0 0

Pre-weaning survival proportion 0 0 2 0 0

Average age at puberty 0 0 1 0 5

Dam average age at puberty 1 1 1 5 30

Back fat thickness 1 1 1 5 30

Average daily gain 1 1 1 5 30

Feed conversion ratio 1 1 1 1 5

Post-weaning survival 0 1 0 0 30

Belly fat 0 0 0 2 10

Drip loss percentage 0 0 0 2 10

Middle portion 0 0 0 2 10

Juvenile insulin-like growth factor 1 1 1 2 12

Muscle depth 1 1 1 5 30

T A B L E  2   Sources of information 
for different traits in dam and sire line 
breeding objectives.
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Where, �2
BV1

 and �2
BV2

 are the variances of true breeding 
values of traits 1 and 2, respectively. �2

GEBV1
 and �2

GEBV2
 are 

the variances of genomic breeding values of traits 1 and 2, 
respectively. r is the genomic prediction accuracy for differ-
ent trait combinations (r1, r2), �2a is the additive genetic vari-
ance, rg is the genetic correlation between the two traits. The 
(co)variance structure can be extended for more than two 
traits. Different genomic section scenarios based on the sizes 
of the reference population were compared with a conven-
tional pig breeding program.

Effective population size (Ne) was assumed to be 100 
and genomic prediction accuracy was calculated using the 
formulas (Daetwyler et al., 2008; Goddard et al., 2011):

Where r is the genomic prediction accuracy, N is the ref-
erence population size, h2 is the heritability of each trait, 
Me is the effective number of chromosome segments, L is 
the pig average chromosome length in Morgans. The aver-
age chromosome length was assumed to be 1.2 Morgans 
(Haberland et al., 2013) and K, the number of chromosomes 
was assumed to be 19. The effective number of chromosome 
segments could also be estimated empirically from the ge-
nomic relationship matrix among the reference and target 
individuals (Lee et al., 2017). Real genotype data of pigs was 
not available for this study. Therefore, in this deterministic 
simulation study, Me was calculated using the above equa-
tion proposed by Goddard et al. (2011).

A deterministic simulation was used to predict the ge-
netic merit per selection round using the following for-
mula: R = i riA�I, where R is the predicted genetic gain, i is 
the selection intensity assuming 1 and riA is the selection 
accuracy (correlation between true and EBV) and �I is the 
standard deviation of the breeding objective. The simula-
tion was conducted using MTindex (https://​jvand​erw.​une.​
edu.​au/​softw​are.​htm). The percentage contribution of a 
trait in the breeding objective was calculated as follows:

where GSD is the genetic standard deviation of a trait, EW 
is the economic weight of a trait, and n is the total number 
of traits in the breeding objective. The contribution of each 
trait to the breeding objective is shown in Table 3.

Different scenarios of GS were created by varying the 
accuracy of genomic prediction reflected by the different 

sizes of the reference population. Genomic prediction ac-
curacies of different traits depend on the heritability of 
each trait and the sizes of the reference population, these 
are both shown in Table  1. Ten different GS scenarios 
were defined based on the size of the reference population 
ranging from 500 to 5000 pigs with an interval of 500 pigs. 
Preliminary results in this study showed that genomic pre-
diction accuracy for different traits marginally increased 
when the size of the reference population increased from 
5000 onwards. This marginal improvement in genomic 
prediction accuracy with the sizes of the reference popu-
lation of more than 5000 individuals and an effective pop-
ulation size of 100 was also reported in the literature (Lee 
et al., 2017). Therefore, the reference population size was 
only up to 5000 individuals in this study. Furthermore, 
the sizes of the reference population were assumed to be 
the same for all traits in this simulation study for com-
putational simplicity. In reality, the sizes of the reference 
population vary for traits such as growth traits versus 
reproductive traits (Song et al., 2017; Wang et al., 2022). 
However, it was assumed that the reference population 
was available for all traits from previous generations.

3   |   RESULTS

3.1  |  Predicted genetic gain

The dam line breeding objective consisted of both repro-
ductive and production traits. Reproduction and produc-
tion traits accounted for 53.80% and 46.20% of the total 
dam breeding objective relative to the genetic standard 
deviation of traits, respectively (Table 3). In the dam line 
breeding objective when production and dam traits were 
assumed uncorrelated, overall merit benefited from GS 
scenarios but not all the individual breeding objective 
traits benefited (Table 6). All reproductive traits and post-
weaning survival achieved additional genetic gain com-
pared to the conventional breeding program, but back fat 
thickness, average daily gain and feed conversion ratio 
achieved a smaller rate of genetic gain with GS compared 
to a conventional breeding program. For example, the 
number born alive, sow mature weight, sow longevity and 
the average age at puberty achieved 62% to 304%, 50% to 
193%, 150% to 705% and 32% to 90% more genetic gain, re-
spectively, in GS scenarios compared to the conventional 
program. In comparison, back fat thickness, average daily 
gain and feed conversion ratio achieved 6% to 23%, 4% 
to 13% and 4% to 5% less gain, respectively, in genomic 
scenarios. All the scenarios of GS predicted additional ge-
netic gain for the overall breeding objective per round of 
selection, ranging from 7.20% to 44.50% when compared 
to the gain in a conventional breeding program.

r =

√
Nh2

Nh2 +Me

Me =
2NeLK

log
(
NeL

)

(
(GSD × EW) of a trait∕

(
n∑
i=1

abs(GSD × EW)

))
× 100,
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      |  695M et al.

When production and reproductive traits were as-
sumed to correlate with some unfavourable correlations, 
GS scenarios provided 9.60% to 56.12% additional ge-
netic gain in the dam line breeding objective compared 
to the conventional breeding program (Table  7). With 
unfavourable correlations between sow longevity, back 
fat thickness, and average daily gain, genetic gain in sow 
longevity was in the unfavourable direction in conven-
tional breeding programs and GS with a reference popu-
lation of 500 pigs. As the size of the reference population 
increased, genetic gain started to change in a favourable 
direction. Pre-weaning survival proportion achieved the 
highest additional genetic gain of (83% to 550%) followed 
by sow mature weight (123% to 403%); number born alive 
(73% to 351%) and sow longevity (58% to 278%) in GS sce-
narios, compared to the genetic gain in a conventional 
breeding program (Table 7). With unfavourable genetic 
correlations between production and reproduction traits, 
production traits such as back fat thickness, average daily 
gain and feed conversion ratio had 6% to 14%, 4% to 11% 
and 7% to 9% smaller rates of improvement in GS scenar-
ios, respectively, compared to a conventional breeding 
program. When the feed conversion ratio was assumed 
uncorrelated with reproductive traits, it achieved more 
genetic gain than assuming correlations with reproduc-
tive traits. However, the overall dam line breeding objec-
tive benefited more from GS by 2.40% to 11.60% when 
production and reproductive traits were assumed to be 
correlated in comparison to assuming zero correlation 
between production and reproduction traits.

In the sire line breeding objective, production traits ac-
counted for 79% of the total breeding objective based on 

a genetic standard deviation of traits. Meat and carcase 
quality traits accounted for 21% of the total breeding ob-
jective. Not all objective traits benefited equally from GS 
scenarios in the sire line. Some traits achieved less gain 
in GS scenarios, for example, back fat thickness, average 
daily gain and feed conversion ratio achieved 4.4% to 13%, 
1.8% to 3.64% and 25% to 75% less genetic gain compared to 
conventional breeding program, respectively. By contrast, 
the genetic gain for post-weaning survival, middle portion 
and drip loss percentage increased by 20% to 150%, 11% to 
53% and 200% to 600% using genomic information, respec-
tively. The overall responses on the sire line breeding ob-
jective increased by 3.50 to 27% in GS scenarios, compared 
to conventional breeding programs (Table 8).

3.2  |  Selection accuracy

The overall increase in accuracy varied from 5% to 40% 
but with ever-diminishing increases as the reference 
population increased in the dam line breeding objective. 
Selection accuracy for all the traits in the dam line breed-
ing objective increased in GS compared to conventional 
breeding programs. Reproductive traits achieved more 
accuracy than production traits in GS. The accuracy of 
multi-trait EBVs in the most accurate GS scenario with 
a reference population of 5000 pigs for individual dam 
line breeding objective traits such as number born alive, 
sow mature weight, sow longevity, survival proportion 
at birth, pre-weaning survival proportion, average age 
at puberty and maternal average daily gain increased by 
140%, 106%, 248%, 225%, 214%, 79% and 33%, respectively. 

T A B L E  8   Response per round of selection for the terminal line breeding objective traits and the overall merit of the breeding objective 
(in $ value) in different sizes of reference population starting from 500 to 5000 in increments of 500).

Size of reference population

Response in GSD

$indexBFT ADG FCR PWS BF DLP MidP

0 −0.230 0.550 −0.380 0.100 −0.040 0.010 0.170 4

500 −0.220 0.540 −0.340 0.120 −0.030 0.000 0.190 5

1000 −0.220 0.530 −0.340 0.150 −0.030 −0.010 0.210 5

1500 −0.210 0.530 −0.340 0.170 −0.020 −0.020 0.220 5

2000 −0.210 0.530 −0.340 0.180 −0.020 −0.030 0.230 5

2500 −0.210 0.530 −0.350 0.200 −0.020 −0.030 0.230 5

3000 −0.200 0.530 −0.350 0.210 −0.010 −0.040 0.240 5

3500 −0.200 0.530 −0.350 0.220 −0.010 −0.040 0.250 5

4000 −0.200 0.530 −0.360 0.230 −0.010 −0.040 0.250 5

4500 −0.200 0.530 −0.360 0.240 −0.010 −0.040 0.250 6

5000 −0.200 0.530 −0.360 0.250 −0.010 −0.050 0.260 6

Note: Size of reference population zero indicates conventional breeding programs.
Abbreviations: ADG, average daily gain (g/d); BF, belly fat %; BFT, back fat thickness (mm); DLP, drip loss %; FCR, feed conversion ratio (kg/kg); MidP, 
middle portion %; PWS, post-weaning survival (0/1).
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Selection accuracy for production traits in dam line breed-
ing objectives such as average daily gain, backfat and feed 
conversion ratio increased by 15.40%, 12.50%, 25.29%, re-
spectively, in GS with a reference population of 5000 pigs 
(Figure 1). When reproduction and production traits were 
uncorrelated in the dam line breeding objective, selec-
tion accuracy for the overall breeding objective increased 
by 43% in GS with a reference population of 5000 pigs 
(Figure 1). When reproduction and production traits were 
correlated in the dam line breeding objective, selection 
accuracy for the overall breeding objective increased by 
55% in GS with a reference population of 5000 pigs com-
pared to the conventional breeding program (Figure 2). In 
comparison, the selection accuracy of multi-trait EBV for 
belly fat percentage, drip loss percentage, and middle por-
tion percentage in the terminal sire line increased by 9% 
to 41%, 16% to 77% and 13% to 58%, respectively, in the 
GS scenarios compared to the conventional breeding pro-
gram. Production traits such as backfat thickness, average 
daily gain and feed conversion ratio increased by 1.40% 
to 12.60%, 1.40% to 14% and 1.90% to 25.40%, respectively 
(Figure 3).

4   |   DISCUSSION

4.1  |  Genetic gain (dam line breeding 
objective)

This study compared the potential for additional genetic 
gain when genomic information is used for pig breeding 
in dam and sire lines. This study compared genetic gain in 

two breeding objectives and at different levels of accuracy 
of GS. Not all the breeding objective traits achieved higher 
genetic gain in GS scenarios than in the conventional 
breeding program. However, the overall breeding objec-
tive benefitted from GS. Knol et al. (2016) gave an exam-
ple of a commercial pig breeding where the overall benefit 
in breeding objective increased by 50% using GS for eight 
different breeding objective traits in a pig line. The genetic 
improvements for individual breeding objective traits 
were not outlined. van der Werf (2009) and Lillehammer 
et  al.  (2020) studied the magnitude of genetic improve-
ment for individual breeding objective traits using GS in 
sheep. van der Werf (2009) investigated both meat and fine 
wool merino sheep breeding objectives, showing that GS 
shifted the emphasis on traits. Lillehammer et al. (2020) 
also found similar trends in Norwegian white sheep. The 
Norwegian white sheep breeding program was simulated 
with a breeding objective consisting of growth, carcass 
and maternal traits. Authors found that growth and ma-
ternal traits achieved larger genetic gain in GS compared 
to the pedigree-based selection, whereas the carcase trait 
was accompanied by a reduction in genetic gain. These ex-
amples show the impact of GS on a multiple-trait breeding 
objective, with a more positive impact on traits with those 
with the greatest accuracy increase. In pig breeding pro-
grams, the traits that benefit most are reproductive and 
post-weaning survival traits, as these are typically meas-
ured later in life or are lowly heritable. Traits that were 
disadvantaged were production traits such as average 
daily gain and back fat thickness, these are typically meas-
ured on selection candidates and have moderate to high 
heritability or had antagonistic correlations with the traits 

F I G U R E  1   Accuracy of multi-trait EBV for breeding objective traits and the overall dam line index in scenarios with conventional 
breeding program (reference population size zero) and genomic selection with different size of reference population starting from 500 to 
5000 in increments of 500). Production traits and reproduction traits were assumed uncorrelated. For trait definitions, see Table 1. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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      |  697M et al.

that benefited in GS. For example, average daily gain and 
back fat thickness were assumed uncorrelated or unfa-
vourably correlated with sow mature weight. However, in 
either case of uncorrelation and unfavourable correlation 
between sow mature weight, average daily gain and back 
fat thickness, average daily gain and back fat thickness 
achieved a smaller rate of genetic gain in GS than pedigree 
selection while sow mature weight benefited more in GS. 
This increase resulted the overall merit of breeding objec-
tive in GS. This demonstrates that smaller rates of genetic 
gain for some traits in GS compared to traditional selec-
tion are not of concern if the overall breeding objective 
benefits from the GS. These findings are relevant for any 
species with a multiple-trait breeding objective.

Individual breeding objective traits had different rates 
of genetic improvement in the GS scenarios. The relative 
improvement of different dam line breeding objective 
traits can be explained by the relative economic weight, 
correlation structure between production and reproduc-
tion traits and selection accuracy. Accuracy is determined 
by the sources of information available before selection. 
Phenotypic information for reproduction traits was not 
available on the selection candidates until after the first 
farrowing. In contrast, production traits in the dam breed-
ing objective had phenotypic records on the selection 
candidates except for post-weaning survival. As a result, 
the accuracy of multi-trait EBV for reproduction traits 
was lower than production traits, for example, the accu-
racy of sow longevity and feed conversion ratio was 0.40 
and 0.52; respectively. With a 5000 reference population, 
sow longevity achieved 243% more accuracy, whereas 
feed conversion ratio achieved 35.40% more accuracy. 
Furthermore, reproduction traits contributed 53.80% to 

the total breeding objective. As a result, reproduction 
traits achieved larger genetic gain than production traits. 
However, smaller responses in some traits came at the 
same time as much larger responses response in other 
traits that increased the overall response by 9% (in $ value) 
in the least accurate GS scenario with 500 reference pop-
ulations. This indicates that in a multi-trait context, GS is 
particularly beneficial for improving the traits that have 
fewer records or because of unfavourable correlation with 
other breeding objective traits.

In a simulation study by Wolc et al. (2015), the authors 
included 16 egg production and egg quality traits in breed-
ing objectives for laying hens. The authors found that GS 
outperformed pedigree selection for all traits. However, 
phenotypic records of all the traits were not available on 
selection candidates at the time of selection. This is in 
agreement with our results because all reproduction traits 
in our study also benefitted from GS. However, the dam 
line breeding objective in the current study also included 
production traits, which were recorded on selection can-
didates and consequently, production traits had less ad-
ditional genetic gain using GS. The magnitude of genetic 
improvement for different traits indicates a shift of genetic 
improvement towards the traits that have a limited num-
ber of records, a feature of GS that has not been well re-
ported in pig breeding programs but has been reported in 
sheep breeding studies (Lillehammer et al., 2020; van der 
Werf, 2009). Therefore, our study can be used as a refer-
ence to explain if some traits in pig breeding programs are 
found to have a smaller rate of genetic gain in GS com-
pared to pedigree selection.

Overall response in the breeding objective benefited 
from the GS scenarios, for example, the least accurate 

F I G U R E  2   Accuracy of multi-trait EBV for breeding objective traits and the overall dam line index in scenarios with conventional 
breeding program (reference population size zero) and genomic selection with different sizes of reference population starting from 500 to 
5000 in increments of 500). Production traits and dam traits were assumed correlated. For trait definitions, see Table 1. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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GS scenario with 500 reference populations achieved 9% 
more overall response ($value) in the dam line breeding 
objective compared to the conventional breeding program. 
Lillehammer et al. (2013) found 9% more overall genetic 
gain (in GSD) in the GS scenario compared to conventional 
breeding programs for a dam breeding objective that con-
sisted of one dam trait and one production trait where the 
traits were unfavourably correlated. Additional genetic 
gain in the GS scenario resulted from the increased accu-
racy of the GS index. In this current study, the accuracy of 
the GS index was about 9% higher than the accuracy of the 
pedigree selection index. In our study, individual breeding 
objective traits also had increased accuracy with genomic 
information. However, increased accuracy for individual 
traits did not necessarily translate into higher genetic gain 
in the multi-trait breeding objective context, as was found 
in the current study. This implies that selection accuracy 
alone cannot be used to compare different breeding pro-
grams in a simulation study. Both genetic gain and selec-
tion accuracy should be used to assess breeding programs.

When the size of the reference population increased, 
the overall response to the breeding objective also in-
creased in all scenarios. However, the overall response 
did not increase linearly with the increased size of the 
reference population. This non-linear increase in over-
all response is also in line with the findings reported by 
Shumbusho et al. (2013). Response to GS with the increase 
in the sizes of reference population can be explained by 
the changes in the accuracy of EBVs. The accuracy of the 
breeding objective did not increase linearly with the in-
crease in the size of the reference population. The mar-
ginal effectiveness of extra records for increasing the size 
of the reference population is important for optimising 

the investment into genotyping animals. As the accuracy 
did not increase linearly, there should be an optimal size 
of the reference population that would be economically 
efficient. Furthermore, members of the reference popula-
tion might not be phenotyped for all the traits that require 
more investment. Therefore, it would be worthwhile to 
investigate the economic efficiency of the optimum size 
of the reference population for new traits that require 
investment.

Genomic prediction accuracy depends on the rela-
tionship between the selection candidates and the ani-
mals in the reference population. Updating the reference 
population is important for maintaining genomic pre-
diction accuracy (Wolc et  al.,  2011). Genotyping more 
animals in successive generations will also contribute 
to updating SNP effects (Lillehammer et al., 2013). The 
number of animals genotyped in different studies is dif-
ficult to compare because of differences in population 
structure and phenotypic information (Lillehammer 
et al., 2020). Keeping the number of genotyped animals 
constant, the composition of the reference population 
can vary to increase the accuracy of GS and the rate of 
genetic gain. 1) Crossbred pigs might be included in the 
reference population because the inclusion of cross-
bred pigs in the reference population can increase the 
selection accuracy of purebred pigs. The inclusion of 
crossbred pigs in the reference population is more im-
portant for traits that are not usually recorded or not 
expressed in the nucleus population. For example, the 
length of productive life of a sow is only available in 
crossbred pigs because purebred sows are not kept for 
a long time in the nucleus population to limit the gen-
eration interval. However, the benefits of genotyping 

F I G U R E  3   Accuracy of multi-trait EBV for breeding objective traits and the overall sire line index in scenarios with conventional 
breeding program (reference population size zero) and genomic selection with different sizes of reference population starting from 500 to 
5000 in increments of 500). For trait definitions, see Table 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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crossbred pigs depend on the correlation between pure-
bred and crossbred performance (van Grevenhof & 
van der Werf, 2015). 2) Genotyping more males versus 
more females also impacts genetic gain. Lillehammer 
et  al.  (2013) showed that genotyping more females in-
creased the relative contribution of maternal traits trait 
to the total breeding objective in Norwegian Landrace 
pigs. This could be a useful strategy to shift the genetic 
gain towards the desired direction without compromis-
ing the total genetic gain.

4.2  |  Genetic gain (sire line breeding 
objective)

In this study, the sire line breeding objective included 
both meat and carcass quality traits as well as production 
traits. The importance of including meat and carcass qual-
ity traits in the breeding objective is increasing because 
of consumers' desire for better pork quality (von Rohr 
et  al.,  1999; Willson et  al.,  2020). However, the record-
ing of meat and carcase quality traits is difficult and ex-
pensive. The development of large reference populations 
for pork quality traits and the selection of young animals 
based on genomic breeding value would be a good strat-
egy to improve pork quality traits (Miar et al., 2014). If the 
breeding objective trait is expensive to measure, pedigree-
based selection might use indicator traits for multi-trait 
evaluation that are easy to measure. In this case, invest-
ment in building up a reference population for the trait of 
interest can be more effective than investing in phenotyp-
ing indicator trait (Calus & Veerkamp, 2011). Therefore, 
it is worthwhile to record pork quality traits to build up 
a large reference population for the improvement of pork 
quality traits.

This study found that the overall response in the sire 
line breeding objective increased in GS scenarios from 
3.50% to 27%. The aim of breeding objective was to de-
crease the drip loss percentage, however drip loss per-
centage increased in GS with a reference population of 
500 pigs and a conventional breeding program since the 
drip loss percentage was unfavourably correlated with 
average daily gain. GS scenarios with a reference popula-
tion of 1000 or more pigs began to decrease drip loss per-
centage (favourable direction) while losing some gain for 
other traits such as back fat thickness, average daily gain 
and belly fat percentage. This demonstrates that hard-to-
measure traits even with unfavourable correlations can be 
improved in a breeding program but it requires enough 
genomic prediction accuracy.

Shifting of genetic improvement for some breeding 
objective traits was also found in the sire line breed-
ing objective as was found in the dam line breeding 

objective. Tribout et al. (2012) also found 4% more pre-
dicted response (in GSD) on a breeding objective for a 
sire line in a GS scenario using one training population 
and 30% more response when two training populations 
were used for two breeding objectives traits (one trait 
represented easy-to-measure trait and another one 
represented expensive or hard-to-measure trait). The 
breeding goal for the Norwegian breeding program has 
a relative economic value of 19% to 41% for meat qual-
ity traits. As a result, Norsvin Duroc has a good com-
bination of lean meat growth and high-meat quality 
(Gjerlaug-Enger et al., 2014).

The genomic selection comes with the extra cost as-
sociated with genotyping animals, sample collection, 
DNA isolation and storage, computing infrastructure, etc. 
(Abell et al., 2014). Extra genetic gain in the GS scenar-
ios should compensate for the extra cost of implementing 
GS. It is also important to explore the possible economic 
value of each breeding objective trait based on the market-
ing system to make sure that farmers are paid for all the 
breeding objective traits.

In the current study, GS showed the opportunities 
for improving genetic gain both in the dam and sire line 
of pigs in different scenarios of GS on a breeding ob-
jective consisting of multiple correlated traits. However, 
GS caused a shift in emphasis among breeding objective 
traits resulting in more improvement in some traits at 
the expense of other traits. This study also found non-
linear relations between genetic gain and the size of the 
reference population, an optimum size of the reference 
population should be further explored in terms of eco-
nomic efficiency. The breed was undefined in this de-
terministic simulation. The ballpark figure of this study 
could be validated with stochastic simulation where 
genotypes of a particular breed and realistic population 
size could be simulated.

5   |   CONCLUSIONS

GS made more genetic improvement for reproductive 
and pork quality traits than traits that are easily re-
corded such as average daily gain and back fat thick-
ness. However, improvement in the overall responses 
for sire and dam line breeding objectives was found 
in all the GS scenarios. Improvement in genetic gain 
diminished as the size of the reference population in-
creased. Improvement of genetic gain for pork quality 
traits showed the potential for incorporating meat qual-
ity traits in the sire line breeding objective. Because of 
the marginal improvement of overall response with the 
increase in the reference population, economic analy-
sis should be conducted to investigate the optimum 
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size of the reference population for the specific trait. It 
is important to investigate which traits need more in-
vestment, particularly meat quality traits. So, for extra 
trait recording, it is good to know how many animals 
we need to measure and how many generations of data 
can be used.
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