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1 | INTRODUCTION

Genomic selection (GS) is a method of predicting the
genetic merit of selection candidates utilising dense
marker genotyping covering a whole genome. It uses a
reference population that has both genotypes and pheno-
types (Meuwissen et al., 2001). This method has resulted
in increased prediction accuracy and reduced generation
intervals substantially in a wide range of species and has
impacted the structure of breeding programs. This has led
to significant increases in genetic gain achieved, especially
in dairy cattle because the generation interval in sires has
fallen from 7years to approximately 2.5years (Meuwissen
et al., 2016). It is possible to select these younger animals
based on genomic breeding values with a very high accu-
racy (Garcia-Ruiz et al., 2016). The impact of GS largely
depends on how well or to what extent traits in the breed-
ing objective can be recorded before selection. In dairy
cattle, most of the breeding objective traits are only mea-
surable on females later in life, while genetic gain mainly
depends on the selection of dairy bulls and progeny test-
ing of female progeny from those sires.

In pigs, the gain from GS is the result of increased se-
lection accuracy because the reduction in generation in-
terval is significantly less compared to dairy cattle (Jonas
& de Koning, 2015; Meuwissen et al., 2016). This genetic
gain is also required to be balanced with the emphasis on
each breeding objective trait and this depends on the ac-
curacy of the estimated breeding value (EBV) for a trait
within the breeding objective. Not all the traits achieve a
similar level of improvement in prediction accuracy using
genomic information compared to pedigree-based selec-
tion (Christensen et al., 2012; Mehrban et al., 2019). Traits
that can be easily measured on many selection candidates
before selection might achieve less additional improve-
ment in prediction accuracy in GS compared to pedigree-
based selection than traits that are difficult to measure or
sex-limited traits. Optimisation of genetic gain usually
pursues the traits where the most gain can be made i.e.
traits with higher accuracy EBV and relatively higher
economic weight. Lowly accurate EBV of traits having
relatively lower economic weight will have less variation
and therefore, lowly accurate EBV will contribute less to
the overall ranking of individuals based on the breeding
objective. If GS can improve the accuracy of traits with
limited information at the point of selection, genetic gain
of these traits is expected to improve more relative to com-
monly recorded traits.

Several simulation studies have been conducted to
predict response to GS in pig breeding programs (e.g.
Lillehammer et al., 2011, 2013; Tribout et al., 2012). These
studies assumed one or two breeding objective traits only.
In reality, pig breeding objectives consist of more than two
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traits. There might be both favourable and unfavourable
correlations while it is generally expected to improve all
traits simultaneously (Dekkers & Gibson, 1998; Ogawa
et al., 2023). Predicting the direction and magnitude of
response to GS with more traits in the breeding objective
depends on the correlation structure between the traits.
Therefore, more work is required to understand the re-
sponse to GS in the dam and sire line of pig breeding ob-
jectives that include all traits usually used in a breeding
program.

The size of the reference population is an important
factor that has an impact on the accuracy of genomic pre-
diction (Daetwyler et al., 2008; Dekkers, 2007). Reference
populations are defined as the group of animals with both
phenotypes and genotypes on their own and relatives' in-
formation. In general, the accuracy of genomic prediction
is higher as the size of the reference population increases
(Dekkers et al., 2021; Wei et al., 2022). Consequently, it is
important to understand the benefits of GS in pigs with
reference populations of different sizes. The objective of
this study was to investigate the impact of GS in both sire
and dam lines based on the genetic gain in each of the
breeding objective traits, the overall economic merit of the
breeding objective and the accuracy of different traits with
or without reference population. This study hypothesises
that GS increases the genetic gain of the overall breeding
objective compared to the conventional breeding program
in a multi-trait breeding objective and that the additional
gain will be larger in some traits than others. This hypoth-
esis was tested using deterministic simulation because
this deterministic simulation study focused on the ball-
park figure of the potential benefit of GS on pig breeding
objectives with multiple correlated traits.

2 | MATERIALS AND METHODS

2.1 | Breeding scenarios

To simulate the scenarios, different sizes of reference pop-
ulations were used to reflect different levels of genomic
prediction accuracy. GS scenarios were simulated to pre-
dict response to selection in two different breeding ob-
jectives representing a sire and dam line. The dam line
objective had both reproductive and production traits, as
shown in Table 1. In comparison, the sire line breeding
objective included both production traits and meat and
carcass quality traits. Production traits are backfat thick-
ness, average daily gain, feed conversion ratio and post-
weaning survivability; carcase quality traits are belly fat
% and middle portion %; and meat quality trait is drip loss
percentage. Genomic breeding values of all breeding objec-
tive traits were included as selection criteria. The sources
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of information for different breeding objective traits are
shown in Table 2. All the production traits, except meat
and carcase quality and post-weaning survival traits,
were available on selection candidates before selection.
Production traits such as back fat thickness and average
daily gain were measured on selection candidates along
with records on 5 full sibs, 30 half-sibs, the sire and the
dam. Since the feed conversion ratio is expensive to meas-
ure, it was recorded on two full sibs and 5 half sibs along
with recordings on the sire and the dam. Post-weaning
survival (assuming 97% survival rate) trait was recorded
on 30 half sibs along with a record for the sire. Meat and
carcase quality traits were recorded on 2 full sibs and 10
half sibs. Reproductive traits such as number born alive
and sow mature weight were recorded on the dam and 3
half sibs. It was assumed that the dam had 2 parties and
the records for the number born alive, survival proportion
at birth and pre-weaning survival proportion in the two
parties were assumed repeated records. One record from
the dam for sow longevity was available on selection candi-
dates (Table 2). It was assumed that genomic breeding val-
ues of all traits were available for all selection candidates.
Economic weights derived by Hermesch et al. (2014) and
Amer et al. (2014) for breeding objective traits are shown
in Table 3. Production traits were assumed either uncor-
related with reproductive traits in Table 4 or correlated
with reproductive traits in Table 5 because of inconsist-
ency in correlations between production and reproduc-
tive traits found in the literature. All the heritabilities

Information source

and genetic correlations were collected from the litera-
ture (Hermesch, 2008, 2013; Hermesch & Jones, 2012;
Hermesch & O'Shea, 2005; Kerssen et al., 2019; Lewis &
Bunter, 2011; Lewis & Hermesch, 2013).

2.2 | Simulation procedure
The selection index (Hazel, 1943) method was used for
incorporating multiple breeding objective traits to predict
selection response and selection accuracy for overall merit
as well as for individual objective traits. The method uses
relative economic weight for each breeding objective trait
and phenotypic and genetic parameters for breeding ob-
jective and selection criteria traits. Dekkers (2007) showed
how genomic information can be added as just another
information source in the selection index framework as-
suming genomic breeding value as an additional trait
with a heritability of 0.99 and economic weight of zero
(Dekkers, 2007).

The (co)variance structure between the true breeding
value of the trait and the corresponding genomic breeding
value in the two-trait setting is:

2 2 2 2
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TABLE 2 Sources of information
for different traits in dam and sire line

Sire Dam

:

Traits

No. born alive

Sow mature weight

Sow longevity

Survival proportion at birth
Pre-weaning survival proportion
Average age at puberty
Dam average age at puberty
Back fat thickness

Average daily gain

Feed conversion ratio
Post-weaning survival

Belly fat

Drip loss percentage
Middle portion

Juvenile insulin-like growth factor
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Full sibs
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Half
sibs

breeding objectives.

wm O O O W w

30
30

30
10
10
10
12
30
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2 2 . .
Where, o and Oy, A€ the variances of true breeding

values of traits 1 and 2, respectively. 62,5, and 62, are
the variances of genomic breeding values of traits 1 and 2,
respectively. r is the genomic prediction accuracy for differ-
ent trait combinations (r1, r2), aﬁ is the additive genetic vari-
ance, I is the genetic correlation between the two traits. The
(co)variance structure can be extended for more than two
traits. Different genomic section scenarios based on the sizes
of the reference population were compared with a conven-
tional pig breeding program.

Effective population size (N,) was assumed to be 100
and genomic prediction accuracy was calculated using the

formulas (Daetwyler et al., 2008; Goddard et al., 2011):

Nh?2
Nh* + M,

_ 2NIK
"~ log (N,L)

e

Where r is the genomic prediction accuracy, N is the ref-
erence population size, h? is the heritability of each trait,
M, is the effective number of chromosome segments, L is
the pig average chromosome length in Morgans. The aver-
age chromosome length was assumed to be 1.2 Morgans
(Haberland et al., 2013) and K, the number of chromosomes
was assumed to be 19. The effective number of chromosome
segments could also be estimated empirically from the ge-
nomic relationship matrix among the reference and target
individuals (Lee et al., 2017). Real genotype data of pigs was
not available for this study. Therefore, in this deterministic
simulation study, M, was calculated using the above equa-
tion proposed by Goddard et al. (2011).

A deterministic simulation was used to predict the ge-
netic merit per selection round using the following for-
mula: R=ir;40[, where R is the predicted genetic gain, i is
the selection intensity assuming 1 and r;, is the selection
accuracy (correlation between true and EBV) and o, is the
standard deviation of the breeding objective. The simula-
tion was conducted using MTindex (https://jvanderw.une.
edu.au/software.htm). The percentage contribution of a
trait in the breeding objective was calculated as follows:

((GSD x EW) of a trait / < Y abs(GSD x EW))) x 100,

i=1

where GSD is the genetic standard deviation of a trait, EW
is the economic weight of a trait, and n is the total number
of traits in the breeding objective. The contribution of each
trait to the breeding objective is shown in Table 3.

Different scenarios of GS were created by varying the
accuracy of genomic prediction reflected by the different
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sizes of the reference population. Genomic prediction ac-
curacies of different traits depend on the heritability of
each trait and the sizes of the reference population, these
are both shown in Table 1. Ten different GS scenarios
were defined based on the size of the reference population
ranging from 500 to 5000 pigs with an interval of 500 pigs.
Preliminary results in this study showed that genomic pre-
diction accuracy for different traits marginally increased
when the size of the reference population increased from
5000 onwards. This marginal improvement in genomic
prediction accuracy with the sizes of the reference popu-
lation of more than 5000 individuals and an effective pop-
ulation size of 100 was also reported in the literature (Lee
et al., 2017). Therefore, the reference population size was
only up to 5000 individuals in this study. Furthermore,
the sizes of the reference population were assumed to be
the same for all traits in this simulation study for com-
putational simplicity. In reality, the sizes of the reference
population vary for traits such as growth traits versus
reproductive traits (Song et al., 2017; Wang et al., 2022).
However, it was assumed that the reference population
was available for all traits from previous generations.

3 | RESULTS

3.1 | Predicted genetic gain

The dam line breeding objective consisted of both repro-
ductive and production traits. Reproduction and produc-
tion traits accounted for 53.80% and 46.20% of the total
dam breeding objective relative to the genetic standard
deviation of traits, respectively (Table 3). In the dam line
breeding objective when production and dam traits were
assumed uncorrelated, overall merit benefited from GS
scenarios but not all the individual breeding objective
traits benefited (Table 6). All reproductive traits and post-
weaning survival achieved additional genetic gain com-
pared to the conventional breeding program, but back fat
thickness, average daily gain and feed conversion ratio
achieved a smaller rate of genetic gain with GS compared
to a conventional breeding program. For example, the
number born alive, sow mature weight, sow longevity and
the average age at puberty achieved 62% to 304%, 50% to
193%, 150% to 705% and 32% to 90% more genetic gain, re-
spectively, in GS scenarios compared to the conventional
program. In comparison, back fat thickness, average daily
gain and feed conversion ratio achieved 6% to 23%, 4%
to 13% and 4% to 5% less gain, respectively, in genomic
scenarios. All the scenarios of GS predicted additional ge-
netic gain for the overall breeding objective per round of
selection, ranging from 7.20% to 44.50% when compared
to the gain in a conventional breeding program.
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TABLE 8 Response per round of selection for the terminal line breeding objective traits and the overall merit of the breeding objective
(in $ value) in different sizes of reference population starting from 500 to 5000 in increments of 500).

Response in GSD
Size of reference population BFT ADG FCR PWS BF DLP MidP $index
0 —0.230 0.550 —0.380 0.100 —0.040 0.010 0.170 4
500 —0.220 0.540 —0.340 0.120 —0.030 0.000 0.190 5
1000 —0.220 0.530 —0.340 0.150 —0.030 —-0.010 0.210 5
1500 —0.210 0.530 —0.340 0.170 —0.020 —0.020 0.220 5
2000 —0.210 0.530 —0.340 0.180 —0.020 —0.030 0.230 5
2500 —0.210 0.530 —0.350 0.200 —0.020 —0.030 0.230 5
3000 —0.200 0.530 —0.350 0.210 —0.010 —0.040 0.240 5
3500 —0.200 0.530 —0.350 0.220 —0.010 —0.040 0.250 5
4000 —0.200 0.530 —0.360 0.230 —0.010 —0.040 0.250 5
4500 —0.200 0.530 —0.360 0.240 —0.010 —0.040 0.250 6
5000 —0.200 0.530 —0.360 0.250 —0.010 —0.050 0.260 6

Note: Size of reference population zero indicates conventional breeding programs.

Abbreviations: ADG, average daily gain (g/d); BF, belly fat %; BFT, back fat thickness (mm); DLP, drip loss %; FCR, feed conversion ratio (kg/kg); MidP,

middle portion %; PWS, post-weaning survival (0/1).

When production and reproductive traits were as-
sumed to correlate with some unfavourable correlations,
GS scenarios provided 9.60% to 56.12% additional ge-
netic gain in the dam line breeding objective compared
to the conventional breeding program (Table 7). With
unfavourable correlations between sow longevity, back
fat thickness, and average daily gain, genetic gain in sow
longevity was in the unfavourable direction in conven-
tional breeding programs and GS with a reference popu-
lation of 500 pigs. As the size of the reference population
increased, genetic gain started to change in a favourable
direction. Pre-weaning survival proportion achieved the
highest additional genetic gain of (83% to 550%) followed
by sow mature weight (123% to 403%); number born alive
(73% to 351%) and sow longevity (58% to 278%) in GS sce-
narios, compared to the genetic gain in a conventional
breeding program (Table 7). With unfavourable genetic
correlations between production and reproduction traits,
production traits such as back fat thickness, average daily
gain and feed conversion ratio had 6% to 14%, 4% to 11%
and 7% to 9% smaller rates of improvement in GS scenar-
ios, respectively, compared to a conventional breeding
program. When the feed conversion ratio was assumed
uncorrelated with reproductive traits, it achieved more
genetic gain than assuming correlations with reproduc-
tive traits. However, the overall dam line breeding objec-
tive benefited more from GS by 2.40% to 11.60% when
production and reproductive traits were assumed to be
correlated in comparison to assuming zero correlation
between production and reproduction traits.

In the sire line breeding objective, production traits ac-
counted for 79% of the total breeding objective based on
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a genetic standard deviation of traits. Meat and carcase
quality traits accounted for 21% of the total breeding ob-
jective. Not all objective traits benefited equally from GS
scenarios in the sire line. Some traits achieved less gain
in GS scenarios, for example, back fat thickness, average
daily gain and feed conversion ratio achieved 4.4% to 13%,
1.8% to 3.64% and 25% to 75% less genetic gain compared to
conventional breeding program, respectively. By contrast,
the genetic gain for post-weaning survival, middle portion
and drip loss percentage increased by 20% to 150%, 11% to
53% and 200% to 600% using genomic information, respec-
tively. The overall responses on the sire line breeding ob-
jective increased by 3.50 to 27% in GS scenarios, compared
to conventional breeding programs (Table 8).

3.2 | Selection accuracy

The overall increase in accuracy varied from 5% to 40%
but with ever-diminishing increases as the reference
population increased in the dam line breeding objective.
Selection accuracy for all the traits in the dam line breed-
ing objective increased in GS compared to conventional
breeding programs. Reproductive traits achieved more
accuracy than production traits in GS. The accuracy of
multi-trait EBVs in the most accurate GS scenario with
a reference population of 5000 pigs for individual dam
line breeding objective traits such as number born alive,
sow mature weight, sow longevity, survival proportion
at birth, pre-weaning survival proportion, average age
at puberty and maternal average daily gain increased by
140%, 106%, 248%, 225%, 214%, 79% and 33%, respectively.
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FIGURE 1 Accuracy of multi-trait EBV for breeding objective traits and the overall dam line index in scenarios with conventional

breeding program (reference population size zero) and genomic selection with different size of reference population starting from 500 to

5000 in increments of 500). Production traits and reproduction traits were assumed uncorrelated. For trait definitions, see Table 1. [Colour

figure can be viewed at wileyonlinelibrary.com]|

Selection accuracy for production traits in dam line breed-
ing objectives such as average daily gain, backfat and feed
conversion ratio increased by 15.40%, 12.50%, 25.29%, re-
spectively, in GS with a reference population of 5000 pigs
(Figure 1). When reproduction and production traits were
uncorrelated in the dam line breeding objective, selec-
tion accuracy for the overall breeding objective increased
by 43% in GS with a reference population of 5000 pigs
(Figure 1). When reproduction and production traits were
correlated in the dam line breeding objective, selection
accuracy for the overall breeding objective increased by
55% in GS with a reference population of 5000 pigs com-
pared to the conventional breeding program (Figure 2). In
comparison, the selection accuracy of multi-trait EBV for
belly fat percentage, drip loss percentage, and middle por-
tion percentage in the terminal sire line increased by 9%
to 41%, 16% to 77% and 13% to 58%, respectively, in the
GS scenarios compared to the conventional breeding pro-
gram. Production traits such as backfat thickness, average
daily gain and feed conversion ratio increased by 1.40%
to 12.60%, 1.40% to 14% and 1.90% to 25.40%, respectively
(Figure 3).

4 | DISCUSSION

4.1 | Genetic gain (dam line breeding
objective)

This study compared the potential for additional genetic
gain when genomic information is used for pig breeding
in dam and sire lines. This study compared genetic gain in
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two breeding objectives and at different levels of accuracy
of GS. Not all the breeding objective traits achieved higher
genetic gain in GS scenarios than in the conventional
breeding program. However, the overall breeding objec-
tive benefitted from GS. Knol et al. (2016) gave an exam-
ple of a commercial pig breeding where the overall benefit
in breeding objective increased by 50% using GS for eight
different breeding objective traits in a pig line. The genetic
improvements for individual breeding objective traits
were not outlined. van der Werf (2009) and Lillehammer
et al. (2020) studied the magnitude of genetic improve-
ment for individual breeding objective traits using GS in
sheep. van der Werf (2009) investigated both meat and fine
wool merino sheep breeding objectives, showing that GS
shifted the emphasis on traits. Lillehammer et al. (2020)
also found similar trends in Norwegian white sheep. The
Norwegian white sheep breeding program was simulated
with a breeding objective consisting of growth, carcass
and maternal traits. Authors found that growth and ma-
ternal traits achieved larger genetic gain in GS compared
to the pedigree-based selection, whereas the carcase trait
was accompanied by a reduction in genetic gain. These ex-
amples show the impact of GS on a multiple-trait breeding
objective, with a more positive impact on traits with those
with the greatest accuracy increase. In pig breeding pro-
grams, the traits that benefit most are reproductive and
post-weaning survival traits, as these are typically meas-
ured later in life or are lowly heritable. Traits that were
disadvantaged were production traits such as average
daily gain and back fat thickness, these are typically meas-
ured on selection candidates and have moderate to high
heritability or had antagonistic correlations with the traits
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FIGURE 2 Accuracy of multi-trait EBV for breeding objective traits and the overall dam line index in scenarios with conventional

breeding program (reference population size zero) and genomic selection with different sizes of reference population starting from 500 to

5000 in increments of 500). Production traits and dam traits were assumed correlated. For trait definitions, see Table 1. [Colour figure can be

viewed at wileyonlinelibrary.com|

that benefited in GS. For example, average daily gain and
back fat thickness were assumed uncorrelated or unfa-
vourably correlated with sow mature weight. However, in
either case of uncorrelation and unfavourable correlation
between sow mature weight, average daily gain and back
fat thickness, average daily gain and back fat thickness
achieved a smaller rate of genetic gain in GS than pedigree
selection while sow mature weight benefited more in GS.
This increase resulted the overall merit of breeding objec-
tive in GS. This demonstrates that smaller rates of genetic
gain for some traits in GS compared to traditional selec-
tion are not of concern if the overall breeding objective
benefits from the GS. These findings are relevant for any
species with a multiple-trait breeding objective.
Individual breeding objective traits had different rates
of genetic improvement in the GS scenarios. The relative
improvement of different dam line breeding objective
traits can be explained by the relative economic weight,
correlation structure between production and reproduc-
tion traits and selection accuracy. Accuracy is determined
by the sources of information available before selection.
Phenotypic information for reproduction traits was not
available on the selection candidates until after the first
farrowing. In contrast, production traits in the dam breed-
ing objective had phenotypic records on the selection
candidates except for post-weaning survival. As a result,
the accuracy of multi-trait EBV for reproduction traits
was lower than production traits, for example, the accu-
racy of sow longevity and feed conversion ratio was 0.40
and 0.52; respectively. With a 5000 reference population,
sow longevity achieved 243% more accuracy, whereas
feed conversion ratio achieved 35.40% more accuracy.
Furthermore, reproduction traits contributed 53.80% to
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the total breeding objective. As a result, reproduction
traits achieved larger genetic gain than production traits.
However, smaller responses in some traits came at the
same time as much larger responses response in other
traits that increased the overall response by 9% (in $ value)
in the least accurate GS scenario with 500 reference pop-
ulations. This indicates that in a multi-trait context, GS is
particularly beneficial for improving the traits that have
fewer records or because of unfavourable correlation with
other breeding objective traits.

In a simulation study by Wolc et al. (2015), the authors
included 16 egg production and egg quality traits in breed-
ing objectives for laying hens. The authors found that GS
outperformed pedigree selection for all traits. However,
phenotypic records of all the traits were not available on
selection candidates at the time of selection. This is in
agreement with our results because all reproduction traits
in our study also benefitted from GS. However, the dam
line breeding objective in the current study also included
production traits, which were recorded on selection can-
didates and consequently, production traits had less ad-
ditional genetic gain using GS. The magnitude of genetic
improvement for different traits indicates a shift of genetic
improvement towards the traits that have a limited num-
ber of records, a feature of GS that has not been well re-
ported in pig breeding programs but has been reported in
sheep breeding studies (Lillehammer et al., 2020; van der
Werf, 2009). Therefore, our study can be used as a refer-
ence to explain if some traits in pig breeding programs are
found to have a smaller rate of genetic gain in GS com-
pared to pedigree selection.

Overall response in the breeding objective benefited
from the GS scenarios, for example, the least accurate
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5000 in increments of 500). For trait definitions, see Table 1. [Colour figure can be viewed at wileyonlinelibrary.com]

GS scenario with 500 reference populations achieved 9%
more overall response ($value) in the dam line breeding
objective compared to the conventional breeding program.
Lillechammer et al. (2013) found 9% more overall genetic
gain (in GSD) in the GS scenario compared to conventional
breeding programs for a dam breeding objective that con-
sisted of one dam trait and one production trait where the
traits were unfavourably correlated. Additional genetic
gain in the GS scenario resulted from the increased accu-
racy of the GS index. In this current study, the accuracy of
the GS index was about 9% higher than the accuracy of the
pedigree selection index. In our study, individual breeding
objective traits also had increased accuracy with genomic
information. However, increased accuracy for individual
traits did not necessarily translate into higher genetic gain
in the multi-trait breeding objective context, as was found
in the current study. This implies that selection accuracy
alone cannot be used to compare different breeding pro-
grams in a simulation study. Both genetic gain and selec-
tion accuracy should be used to assess breeding programs.

When the size of the reference population increased,
the overall response to the breeding objective also in-
creased in all scenarios. However, the overall response
did not increase linearly with the increased size of the
reference population. This non-linear increase in over-
all response is also in line with the findings reported by
Shumbusho et al. (2013). Response to GS with the increase
in the sizes of reference population can be explained by
the changes in the accuracy of EBVs. The accuracy of the
breeding objective did not increase linearly with the in-
crease in the size of the reference population. The mar-
ginal effectiveness of extra records for increasing the size
of the reference population is important for optimising
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the investment into genotyping animals. As the accuracy
did not increase linearly, there should be an optimal size
of the reference population that would be economically
efficient. Furthermore, members of the reference popula-
tion might not be phenotyped for all the traits that require
more investment. Therefore, it would be worthwhile to
investigate the economic efficiency of the optimum size
of the reference population for new traits that require
investment.

Genomic prediction accuracy depends on the rela-
tionship between the selection candidates and the ani-
mals in the reference population. Updating the reference
population is important for maintaining genomic pre-
diction accuracy (Wolc et al., 2011). Genotyping more
animals in successive generations will also contribute
to updating SNP effects (Lillehammer et al., 2013). The
number of animals genotyped in different studies is dif-
ficult to compare because of differences in population
structure and phenotypic information (Lillehammer
et al., 2020). Keeping the number of genotyped animals
constant, the composition of the reference population
can vary to increase the accuracy of GS and the rate of
genetic gain. 1) Crossbred pigs might be included in the
reference population because the inclusion of cross-
bred pigs in the reference population can increase the
selection accuracy of purebred pigs. The inclusion of
crossbred pigs in the reference population is more im-
portant for traits that are not usually recorded or not
expressed in the nucleus population. For example, the
length of productive life of a sow is only available in
crossbred pigs because purebred sows are not kept for
a long time in the nucleus population to limit the gen-
eration interval. However, the benefits of genotyping
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crossbred pigs depend on the correlation between pure-
bred and crossbred performance (van Grevenhof &
van der Werf, 2015). 2) Genotyping more males versus
more females also impacts genetic gain. Lillehammer
et al. (2013) showed that genotyping more females in-
creased the relative contribution of maternal traits trait
to the total breeding objective in Norwegian Landrace
pigs. This could be a useful strategy to shift the genetic
gain towards the desired direction without compromis-
ing the total genetic gain.

4.2 | Genetic gain (sire line breeding
objective)

In this study, the sire line breeding objective included
both meat and carcass quality traits as well as production
traits. The importance of including meat and carcass qual-
ity traits in the breeding objective is increasing because
of consumers' desire for better pork quality (von Rohr
et al., 1999; Willson et al., 2020). However, the record-
ing of meat and carcase quality traits is difficult and ex-
pensive. The development of large reference populations
for pork quality traits and the selection of young animals
based on genomic breeding value would be a good strat-
egy to improve pork quality traits (Miar et al., 2014). If the
breeding objective trait is expensive to measure, pedigree-
based selection might use indicator traits for multi-trait
evaluation that are easy to measure. In this case, invest-
ment in building up a reference population for the trait of
interest can be more effective than investing in phenotyp-
ing indicator trait (Calus & Veerkamp, 2011). Therefore,
it is worthwhile to record pork quality traits to build up
a large reference population for the improvement of pork
quality traits.

This study found that the overall response in the sire
line breeding objective increased in GS scenarios from
3.50% to 27%. The aim of breeding objective was to de-
crease the drip loss percentage, however drip loss per-
centage increased in GS with a reference population of
500 pigs and a conventional breeding program since the
drip loss percentage was unfavourably correlated with
average daily gain. GS scenarios with a reference popula-
tion of 1000 or more pigs began to decrease drip loss per-
centage (favourable direction) while losing some gain for
other traits such as back fat thickness, average daily gain
and belly fat percentage. This demonstrates that hard-to-
measure traits even with unfavourable correlations can be
improved in a breeding program but it requires enough
genomic prediction accuracy.

Shifting of genetic improvement for some breeding
objective traits was also found in the sire line breed-
ing objective as was found in the dam line breeding
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objective. Tribout et al. (2012) also found 4% more pre-
dicted response (in GSD) on a breeding objective for a
sire line in a GS scenario using one training population
and 30% more response when two training populations
were used for two breeding objectives traits (one trait
represented easy-to-measure trait and another one
represented expensive or hard-to-measure trait). The
breeding goal for the Norwegian breeding program has
a relative economic value of 19% to 41% for meat qual-
ity traits. As a result, Norsvin Duroc has a good com-
bination of lean meat growth and high-meat quality
(Gjerlaug-Enger et al., 2014).

The genomic selection comes with the extra cost as-
sociated with genotyping animals, sample collection,
DNA isolation and storage, computing infrastructure, etc.
(Abell et al., 2014). Extra genetic gain in the GS scenar-
ios should compensate for the extra cost of implementing
GS. It is also important to explore the possible economic
value of each breeding objective trait based on the market-
ing system to make sure that farmers are paid for all the
breeding objective traits.

In the current study, GS showed the opportunities
for improving genetic gain both in the dam and sire line
of pigs in different scenarios of GS on a breeding ob-
jective consisting of multiple correlated traits. However,
GS caused a shift in emphasis among breeding objective
traits resulting in more improvement in some traits at
the expense of other traits. This study also found non-
linear relations between genetic gain and the size of the
reference population, an optimum size of the reference
population should be further explored in terms of eco-
nomic efficiency. The breed was undefined in this de-
terministic simulation. The ballpark figure of this study
could be validated with stochastic simulation where
genotypes of a particular breed and realistic population
size could be simulated.

5 | CONCLUSIONS

GS made more genetic improvement for reproductive
and pork quality traits than traits that are easily re-
corded such as average daily gain and back fat thick-
ness. However, improvement in the overall responses
for sire and dam line breeding objectives was found
in all the GS scenarios. Improvement in genetic gain
diminished as the size of the reference population in-
creased. Improvement of genetic gain for pork quality
traits showed the potential for incorporating meat qual-
ity traits in the sire line breeding objective. Because of
the marginal improvement of overall response with the
increase in the reference population, economic analy-
sis should be conducted to investigate the optimum
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size of the reference population for the specific trait. It
is important to investigate which traits need more in-
vestment, particularly meat quality traits. So, for extra
trait recording, it is good to know how many animals
we need to measure and how many generations of data
can be used.
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