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Abstract
The recent establishment of a minimum age estimate of 39.9 ka for the origin of rock art in

Sulawesi has challenged claims that Western Europe was the locus for the production of

the world’s earliest art assemblages. Tantalising excavated evidence found across northern

Australian suggests that Australia too contains a wealth of ancient art. However, the dating

of rock art itself remains the greatest obstacle to be addressed if the significance of Austra-

lian assemblages are to be recognised on the world stage. A recent archaeological project

in the northwest Kimberley trialled three dating techniques in order to establish chronologi-

cal markers for the proposed, regional, relative stylistic sequence. Applications using

optically-stimulated luminescence (OSL) provided nine minimum age estimates for fossil-

ised mudwasp nests overlying a range of rock art styles, while Accelerator Mass Spectrom-

etry radiocarbon (AMS 14C) results provided an additional four. Results confirm that at least

one phase of the northwest Kimberley rock art assemblage is Pleistocene in origin. A com-

plete motif located on the ceiling of a rockshelter returned a minimum age estimate of 16 ± 1

ka. Further, our results demonstrate the inherent problems in relying solely on stylistic clas-

sifications to order rock art assemblages into temporal sequences. An earlier than expected

minimum age estimate for one style and a maximum age estimate for another together illus-

trate that the Holocene Kimberley rock art sequence is likely to be far more complex than

generally accepted with different styles produced contemporaneously well into the last few

millennia. It is evident that reliance on techniques that produce minimum age estimates

means that many more dating programs will need to be undertaken before the stylistic

sequence can be securely dated.
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Introduction
The rock art sequence of the rugged and remote Kimberley region of tropical northwestern
Australia is likely to prove one of the longest and most complex anywhere in the world. Rock-
shelter substrates, where much of the art is located, are ideal for the preservation of paintings
being comprised of particularly hard and stable King Leopold Sandstone, a strongly bedded
quartzarenite [1]. Although the production of Kimberley rock art spans many thousands of
years, unlike the ancient cave art of Europe [2] or the paintings recently dated in Indonesia [3],
it remains central to the cultural beliefs of the Indigenous population of the region today. Eth-
nographic accounts confirm that painting and ‘retouching’ of rock art was still practised well
into the twentieth century [4–6]. The relative sequence of Kimberley rock art styles inferred
from studies of superimpositions and differential weathering at many hundreds of sites across
an area of 423,517 km2 shows that there have been changes in artistic conventions, subject mat-
ter, context of production and function through time [7–17]. The rock art assemblage thus pro-
vides a unique dataset from which to identify changes in social structure, ideology, economic
practises, material culture and marine contact across northwestern Australia [11]. While many
of these changes are evident in the figurative elements of the art, especially the anthropomor-
phic figures that dominate the assemblage, they also manifest in the relationships between the
art, and the environmental and social contexts in which it was produced. If these changes are
to be placed in a temporal framework and set against the excavated evidence of past life-ways,
the rock art assemblage needs to be securely dated. Recent excavations in the northwest Kim-
berley reveal that occupation in the area had been initiated by at least 36 ka indicating that
modern humans were in the region by this time and could have potentially been producing art.
However, excavated evidence from the southern Kimberley indicates that occupation of the
region could be as early as 42yka (O’Connor 1995). The greatest challenge is to align the chro-
nology of the art with the archaeological and contextual evidence.

Prior to our research, there were a limited number of age estimates available on which to
anchor the Kimberley rock art sequence and, with one exception, all are of Holocene age [9,18–
21]. Pleistocene dates were obtained from two fossilised mudwasp nests using what was at the
time, an experimental optical dating technique not previously trialled on rock art–optically-
stimulated luminescence (OSL). Quartz grains from a mudwasp nest (KERC4) partially cover-
ing a Gwion Period anthropomorphic figure (that overlies a hand stencil and underlies and
Painted Hand Period zoomorph) provided a minimum age estimate of 16,400 ± 1,800 years. A
slightly older minimum age estimate of 17,500 ± 1,800 years was obtained from the core of the
nest (KERC5) adjacent to, but not directly associated with the motif [20]. Subsequently, the
dating technique, the structure of the nests and the location of the nests in relation to the
Gwion figure have all been challenged [22–25] Although Roberts stands by the technique and
the age estimates [24–25], additional dated motifs are required to confirm the antiquity of
aspects of the Kimberley assemblage.

Despite the conjecture surrounding the age of the Kimberley assemblage, there is compel-
ling archaeological evidence that suggests that at least some art across northern Australia has a
Pleistocene origin. Evidence for the early use of ochre was recovered from excavations in Arn-
hem Land to the east of the Kimberley where ground ochre ‘crayons’ were recovered from a
strata dated to around 53,000 BP using thermo-luminescence (TL) at Nauwalabila I and from
strata bracketed by 61,000 ± 13,000 and 45,000 ± 9000 year-old TL age estimates from Malaku-
nanja II (now known as Madjabebe) [26–28].

In the southern Kimberley, a rock slab covered in red haematite was excavated from depos-
its dated to a minimum of 42,700 BP [29]. In the northeast of Australia in Cape York, a layer of
yellow haematite pigment sandwiched between mineral crusts was dated using AMS 14C to
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about 25,000 BP [30]. However, the earliest, generally accepted Australian date for rock art was
obtained from a recently excavated slab with an indeterminate black pigment motif recovered
at Nawarla Gabarnmang in Arnhem Land dated to 26,913–28,348 yr cal BP [24]. The age of
the artwork was determined both indirectly by chrono-stratigraphic association and by obtain-
ing an Accelerator Mass Spectrometry radiocarbon (AMS 14C) age on ash adhering to the
painted stone’s back surface [31].

In the Kimberley, geochronologist, Alan Watchman [21] obtained AMS 14C estimates from
mineral encrustations covering paintings of the Irregular Infill Animal Period (IIAP) and
Gwion Period, the two earliest painting styles identified in the relative regional sequence [14].
Analysis of samples from five sites on the lower Drysdale River showed that pigments used to
produce the paintings did not contain organic material such as binders and therefore could not
be directly dated [21]. Instead, samples for dating were obtained from mineral crusts lying as
close to the paint layers as possible in order to determine minimum or maximum age estimates
for the paintings [21]. Two minimum age estimates were obtained for Tassel Bradshaws (now
known as Mambi Gwion–an earlier sub-group within the Gwion Period). Results produced
minimum AMS 14C ages of 538–623 AD and 240–852 AD (both calibrated) for the accretion
over a Mambi Gwion, but an older minimum age (2,559–2,149 B.C. calibrated) for the mineral
skin over a Cane Bradshaw (now known as Gwion) considered to be a more recent Gwion sub-
style in Walsh’s proposed sequence. As these are all minimum age estimates, and if Walsh’s rel-
ative stylistic sequence is accurate, the Mambi Gwion style would also predate the minimum
AMS 14C age estimate of 2,559–2,149 B.C. obtained for the ‘Cane’ Gwion. A sample overlying
an IIAP zoomorphic figure, the stylistic period thought to predate the Gwion Period, returned
a minimum AMS 14C age estimate of 1,875–930 (B.C. calibrated). Watchman et al.’s [21] ‘pre-
liminary results’ show that Gwion Period paintings are at least mid-Holocene in age.

An AMS 14C age of 3,780 ± 60 years BP (2,457–2,033 BCE calibrated) for a simple Wanjina
head made from beeswax pellets provided a direct date for the emergence of the Wanjina
Period [9]. ‘Classic’Wanjina-style paintings appeared more recently, however, with ages for
black pigments associated with such painting ranging from 1,210 ± 140 BP to modern [9,20]
dated organics embedded within mud-dauber wasp nests overlying a Wanjina Period motif,
and obtained a minimum AMS 14C age estimate of 990 ± 60 BP for the oldest sample [24].

The divergence of these findings illustrate the difficulties arising when chronologies are
based on just a few minimum ages as these date the timing of the development of accretions or
nests over the art only, and do not account for the potential time-lag between the painting or
engraving episode and the formation of the skin or nest [23]. The relationship between the age
estimates obtained for overlying nest, crust or skin and the creation of the image may not be
closely aligned [32]. Therefore, it will be essential to build an extensive database of minimum
(and maximum) age estimates before a realistic temporal framework for the Kimberley rock art
sequence can be established.

With this as a major aim, a rock art dating project was undertaken to apply independent
dating techniques to different Kimberley rock art styles. The research forms part of a much
broader archaeological research project: Change and Continuity: archaeology, chronology and
art in the northwest Kimberley, Australia focused on the Mitchell and Lawley River drainage
basins (Fig 1).

Background
The research has been undertaken with agreement and participation of the Wunambal Gaam-
bera people, who are the recently determined Uunguu native title holders for Wunambal
Gaambera country; their Wanjina Wunggurr culture is also listed as part of the West
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Kimberley included on the National Heritage List. The story that researchers are building sits
alongside Wunambal Gaambera people’s Wanjina Wunggurr culture and religious beliefs,
which have been integrated into an understanding and exploration of the material evidence in
order to supplement the Wanjina Wunggurr traditions and their cultural world view. With
modern research techniques, results can assist Traditional Owners to gain knowledge and
insights into their ancestors’ life and existence and contribute to Wunambal Gaambera capac-
ity to manage and keep their country and culture healthy. The Traditional Owners granted per-
mission to obtain samples for dating from over the art, but requested that pigment was not
removed in the process. Therefore, samples from under the art were not collected for analysis.

Mudwasps
Mud dauber (sometimes called “dirt dauber”, “dirt digger”, “dirt dobber”, “dirt diver”, or
“mudwasp”) is a name commonly applied to a number of wasps from either the family Spheci-
dae or Crabronidae that build their nests from mud. Most common to this region of the Kim-
berley is black and yellow mud dauber wasp (Sceliphon laetum) [33–34] that are long, slender

Fig 1. Mitchell and Lawley River drainage basins, northwest Kimberley, Australia.

doi:10.1371/journal.pone.0161726.g001
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wasps about 1-inch (25 mm) in length (Fig 2A–2C) that are common in tropical to sub-tropical
sandstone areas [35]. Their name is derived from their distinctive nests moulded into place by
the female wasp’s mandibles, which take the form of a simple, sausage-shaped cells containing
one egg that are clumped together to make a cluster of parallel cells arranged with their long
axes horizontal (Fig 3D). This cluster is plastered over to form a smooth nest and developed
into a series of mud corrugations that fall off the older nests [33] (Fig 2D–2F). The wasps col-
lect material to make the nests from the surrounding landscape from 25–200 m away [33]
using surface sediments so it contains sand-sized quartz and feldspar, pollen and other organ-
ics. It is these nests, constructed in crevices, cracks and other shielded locations like rockshel-
ters, which are sometimes found in a fossilised state (Fig 2F) over and under rock art motifs
thus providing potential material for dating. This species may occupy the same sites year after

Fig 2. The black and yellowmudwasp (Sceliphon laetum) commonly found in the Kimberley region
and their associated mud nests. This wasp creates single-urn shaped cells that are joined by
successive nest building to form a series of cells that are smoothed with mud on the outside to form
one larger nest. Some wasp are primary nest builders on the bare surface of rock but most are
secondary builders in that they build the nest on the stub of a former nest. (A) the wasp (B) collects a
ball of sediment and (C) flies holding the ball–this is most probably when most of the sediment bleaching
occurs, (D) a fresh nest of single cells that has been smoothed with an outer layer of sediment (E) an older
nest that has dried out and (F) a fossilised nest in situ and on-art.

doi:10.1371/journal.pone.0161726.g002
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Fig 3. Bleaching tests and results for the off-art nests from amodern sample (CA-MOD, A-D) and an
ancient sample (UP1B, E-F). (A) a combined radial plot of the 4 separate layers measured within the nest to
demonstrate how the grain populations increase with distance towards the core. (B) The large nest sampled
in the Upper Lawley region–the upper on-art section (UP1A) was used for dating while the lower off-art
section was used for bleaching tests. (C) when the De values for all the layes are combined and analysed
using the FMM, three dose populations have been determined and plotted on this radial plot. (D) a sketch of
the mudwasp nest construction in relation to the sampling procedure for the bleaching tests. (E) A radial plot
of the accepted grains from the entire modern nest (CA-MOD), the majority of grains lie within 2 sigma of the
central age–as determined by the CAM at 0.23 ± 0.1 Gy, which at at dose rate of 1.11 ± 0.5 Gy/ka-1

represents an age of only 220 ± 10 yrs. (F) The location of the modern off-art nest CA-MOD in LR02 situated
close to the CA-7 nest and Argula motif.

doi:10.1371/journal.pone.0161726.g003
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year creating large numbers of nests that can remain in situ in protected locations for extended
periods of time. Usually, the wasp favour the stub of a former nest to construct their new nests
[33], thus at least two phases of nest formation can be observed in each nest [20,36].

Establishing a chronology for Mudwasp nests using optically-stimulated
luminescence (OSL) dating
OSL is a light sensitive signal that builds up over time during a period of ‘burial’ or cover. Pro-
vided the samples are not exposed to light during burial or collection, the signal can be stimu-
lated in laboratory conditions and measured. When divided by the natural radioactivity of the
soil or substrate, the amount of light (luminescence) produced is proportional to the period of
burial time. OSL is the main method used for establishing chronologies for excavated occupa-
tion deposits that pre-date the maximum AMS 14C boundary, or in deposits that lack ample
carbon samples. Samples of sediment found within the cave environment have no direct associ-
ation with the art, but sediments may be collected by wasps and then ‘buried’ within mudwasp
nests found on top of the art. Dating of mudwasp nests using OSL was first introduced by [20].
They initially worked with large nests and sampled each layer to determine the extent to which
the light no longer penetrated the nests and the quartz was effectively ‘buried’ and supported
their OSL age estimates with AMS 14C dating of organics found within two nests [20].

In their pioneering work, Roberts et al. [20] recognised that in certain circumstances the
paucity of large nests suitable for dating necessitated the used the entire nest to maximise the
number of quartz grains used for dating. However, the procedure was further developed by
Yoshida et al. [37] using linearly modulated OSL (LM-OSL) where the power of the stimulating
laser is increased slowly during measurement as opposed to the traditionally used continuous
wave (CW) stimulation. This allows the ‘fast’ component of the OSL signal (that is easily
removed by sunlight or ‘bleaches’ rapidly) to be distinguished from the slow component (that
bleaches very slowly). The differences between the two signal components can provide evi-
dence for the degree of bleaching received by each grain prior to burial, thus they retrospec-
tively identified the ‘light-safe’ grains. Aubert [22] in his review of rock art dating
recommended that to obtain robust age estimates using the mudwasp nest technique: 1) the
relationship between the quartz grains and the art must be clearly established, 2) phases of nest
development are established with a consideration of the nest stub, and 3) only large nests are
sampled.

Methods
Research was completed under Western Australian Department of Indigenous Affairs, Section
16 Permit Nos. 465 (2010), 490 (2011–12), and Authority 4 Permits from the Western Austra-
lian Department of Environment and Conservation (DEC), CE002829 (2010), CE003254
(2011), and CE003574 (2012).

In order to develop a robust regional chronology for the art, we trialled three different dat-
ing techniques to act as independent age estimates. 1) OSL dating was applied to quartz grains
in mudwasp nests, 2) AMS 14C dating was applied to beeswax resin deposited over art and for
organic material found in the matrix of mudwasp nests, and 3) Uranium Series (U/Th) was
applied to thin veneers of silica and to precipitated gypsum crusts that had formed over motifs.
Our aim was to target classic examples of each of the major stylistic periods and compare
results from each of the three techniques as a means of confirming the integrity of the age esti-
mates obtained.
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Optically-stimulated luminescence dating
Nest sampling. Sites where suitable dating opportunities existed were selected from the

rock art sites recorded along the Mitchell and Lawley Rivers during the previous years of the
project. Despite the range of rock art sites recorded (204), identifying suitable samples for dat-
ing proved more difficult than we had anticipated but, despite the challenges presented by the
rugged terrain (sites have to be accessed by helicopter or boat), the thinness of some of the
accretions, and the necessity of collecting OSL samples in low light conditions, 11 samples
(from Sphecidae family) were collected for processing. All nine on-art samples were located
directly on top of rock art thus avoiding problems of association and to ensure that all phases
of nest construction are used to constrain the age of the art.

At the request of the Traditional Owners, and with protection of the art as a major consider-
ation, all mudwasp nests sampled were located on top of rock art so that the resulting age esti-
mates represent minimum ages only. These provide a useful baseline for the development of a
chronological sequence but they do not provide an absolute date for the underlying art, neither
do they establish an upper age limit.

The limited sampling situation and the absence of large nests on-art meant that we had to
take the opportunity to use the entire nest in specific cases (where they overlay distinctive rock
art motifs) rather than using the more elusive but ideal larger nests. In these cases, we adopted
the all-nest sampling technique proposed by Yoshida et al. [37].

Despite extensive fieldwork in the region, the large fossilised nests identified as ‘ideal’ by
Aubert [22] were not located on top of art. Instead, we found and sampled nine smaller nests,
typically 15 x 15 mm in width, with a thickness of between 5–20 mm and ~1g, yielding between
1–10 mg of quartz each. One of the nests (UP1A) was larger with ~20 mg of quartz obtained,
so this was used for testing of the luminescence procedures, further analyses and dosimetry
measurements. Seven of the nests were located wholly on top of the art. In these situations the
relationship between the quartz grains comprising the nest and art below is very clear [22] thus
ensuring that results provide a minimum age estimate for the production of the underlying art.
This is important as even if the nest was extended on a nest stub by wasps at a later date, both
the older stub and younger overlying nest provide a minimum age for the art. The two remain-
ing nests, UP1A and BRY-6 extended off art with ~50% of the nest on the surrounding rock. In
these cases, we only sampled the section of the nest that was located directly on top of the art
so that uncertainties about the relationship between the art and the nest were eliminated.

The mudwasp nests were carefully removed from the rock surface using a small razor blade
in subdued red light conditions. Quartz grains of 180–212 μm diameter were separated from
the matrix under dim red illumination using standard purification procedures, including a
final etch in 40% hydrofluoric acid for 45 minutes to remove the external alpha-dosed rinds
[38]. The very low quartz yield meant that for some samples certain procedures were modified
such as removing the 2.62 mg separation to maximize the amount of material prior to a hydro-
fluoric acid (HF) etching procedure. The feldspars were then removed during the HF proce-
dure and the presence of feldspar contamination was checked prior to measurement using an
IR wash and after measurement using a light microscope.

Stimulation and testing of the quartz grains. We used OSL techniques applied to single-
grains of quartz incorporating a modified SAR protocol [39] for between 100–500 single-grains
loaded on aluminum single-grain discs and measured in a TL-DA-20 Risø unit containing the
single-grain attachment [40–41]. Each of the quartz grains were stimulated for 2 s using a 10
mW 532 nm Nd:YV04 solid-state diode-pumped green laser with 50% power corresponding to
25 W/cm2 [41–42], and the ultraviolet emissions were detected by an Electron Tubes Ltd
9235QA photomultiplier tube fitted with 7.5 mm of Hoya U-340 filter. All of the available
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grains from the entire nest were used for the SG-OSL dating procedure rather than just the
core. The percentage of grains that emitted luminescence was high (typically 20–30%), with
only one sample (BRY-6) with a high rejection rate (91%). As this provided a less than ideal
minimum number of quartz grains on which to base the results, we have flagged this in our
results. All of the grains from the small nests were measured with a continuous laser power
(CW). In addition, we adopted Robert et al.’s [20] techniques for the larger nests (sample
UP1A and the two off-art test nests UP1B and CA-MOD) using linearly-modulated OSL mea-
surements (LM-OSL) to isolate the bleached outer grains and the non-bleached inner grains.
For LM-OSL measurements the laser power was increased from 0 to 90% over a 30 s period at
125°C corresponding to 0–45 W/cm2 of power.

The only nest that contained enough quartz to conduct tests on the luminescence character-
istics was UP1A so preheat plateau and dose recovery tests were performed on this sample.
Small 1 mmmask aliquots of the fresh quartz (180–212 um size fraction) were prepared con-
taining only a few hundred grains, and a SAR run was conducted on three aliquots at each of
the preheat temperatures tested; 200, 210, 220, 230, 240, 250, 260, 270°C for 10 s (a total of 24
discs). When plotted, this revealed a preheat plateau at ~250°C so this temperature was chosen
to perform dose recovery tests. The natural OSL signal was bleached using 100 s of blue diodes
at 50°C temperature and a SAR run was conducted on 8 aliquots using a surrogate dose of 20
Gy. All 8 aliquots returned a dose within 2 sigma error of the surrogate dose confirming that
the measurement protocol was valid, the recycling ratios were low and there was negligible
recuperation (Fig 2).

Estimating the environmental dose rate. To estimate the environmental dose rate at the
sites in situmeasurements were made using a Canberra Inspector 1000 portable gamma spec-
trometer. To assess the gamma contribution from just the sandstone bedrock it was impractical
to create holes large enough to accommodate the 2-inch gamma spectrometer probe to allow a
4 π geometry around the scintillation crystal. More importantly, the holes would have had to
be created in the art itself, which goes against the principles of this project. Instead, the probe
was held flush against the sandstone rock surface during measuring. This provided a measure-
ment of the contribution from the surrounding rock shelter but not an accurate measurement
from the bedrock itself. This count, as a 2π geometry, was then compared to counts derived
from a technique used to determine a 4 geometry without burying the probe [43]. Therefore a
comparison could be made between the contribution from the rock alone verses the contribu-
tion from a 30 cm hemisphere around the location of the mud wasp nest.

The samples were divided into motifs that were located on horizontal panels (roof of the
rockshelter) with no other rockshelter walls or floor within at least 1.5 m and motifs that were
located on vertical panels or horizontal panels close to the cave floor. For the former group, the
gamma spectrometry measurement provides a true 2π geometry as there are no other source of
gamma rays to contribute, thus the measurement was doubled to create a 4π geometry and the
equivalent of a probe buried in sandstone. For the second group, we isolated the gamma ray
contribution from the other walls and floor by taking an additional measurement but this time
with a 20 cm radius and 4 cm thick polymethyl methacrylate (Perspex) screen to act as an
attenuator, which lay flat against the rock surface on one side and the probe on the other side
[43]. As Perspex reduces gamma rays the contribution from the rock itself is minimized and
the counts reflect the gamma contribution from the cave floor and surrounding walls. Thus,
the data from the Perspex measurement is subtracted from the original measurement to esti-
mation the gamma ray contribution from only the intended rock surface. This is then the
equivalent 2π geometry that is treated in the same manner to represent a 4π geometry.

In addition, concentrations of 238U, 235U, 232Th (and their decay products) and 40K were
estimated using the count rate derived from a Geiger-Muller multi-counter for beta counting
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of dried and powdered sediment samples in the laboratory from a section of the mudwasp nest
and small amount of the sandstone rock surface. Due to the rockshelter environment, cosmic
dose contribution was estimated by taking into account sandstone shielding, rock geometry,
altitude and latitude. To estimate water content a small section of the larger off-art nest
(UP1B) was separated and dried to compare the wet weight verse the dry weight. In addition,
we estimated the weight of its maximum saturation by adding water to a suspended sample
until it began to release liquid. Thus within the known boundaries of dry-saturated and present
day weights, we could more accurately estimate how the water content has changed over time.
We did not detect any change in weight so assigned a water content of 0 ± 0% for all the nests
sampled, apart from the CA-MOD nest which we assigned 2 ± 0.2%.

Disequilibrium in the mud nest and on the rock surface. Disequilibrium is a deficiency
or excess in the daughter nuclides in relation to the parent nuclides. Excesses or deficiencies in
the decay chains of 238U and 232Th can cause over and underestimations in the estimated dose
rate that has a knock on effect on the final age estimation. Disequilibrium is known to occur in
sediments and on rock surfaces, and in addition radon, a daughter nuclide in gaseous form, is
present in sandstones so we tested for these possible effects. Due to the difficulty of establishing
an accurate dose rate for the context of the nests on a sandstone surface, a section of one of the
larger off-art nests (UP1B) and a small section of the recent off-art nest (CA-MOD) were sent
off for high resolution gamma spectrometry (HRGS) to check for disequilibrium in the decay
chains and to compare the dosimetry of a modern verses an ancient nest. This test could not be
conducted for all samples due to a lack of material.

A final dosimetry consideration is the use of HRGS as opposed to Neutron activation analy-
sis (NAA) for investigating the disequilibrium in the decay chains. Some radioisotopes such as
232Th, 234U and 230Th do not emit gamma rays so cannot be measured using the former tech-
nique. Therefore, we have made allowance for this potential loss and have factored this into the
error margin.

Analysis of the single grains of quartz. Quartz SG-OSL analysis allows aberrant and non-
luminescing grains to be removed from the equivalent dose (De) determination and enables an
assessment of the dose populations within one sample. This ensures that the grains that have
been exposed to the light (on the outer sections of the nest) can be separated from the grains
that have acquired a dose during burial (the core of the nest). In a processed sample, the grains
will naturally contain a range of De values called ‘scatter’–in an ideal sample this observed scat-
ter can be explained by a natural statistical variation or a Gaussian distribution, so that 95% of
all De estimates lies within 2 standard errors [35]. However, many samples contain a much
wider range of De values than a normal distribution and this is termed overdispersion and can
be caused by; 1) older or younger grains intruding into the layer from post-depositional mixing
or roof spall, 2) insufficient bleaching of the grains prior to burial and 3) differences in the
microdosimetry influencing individual quartz grains. For the mudwasp nests the post deposi-
tional mixing within a sedimentary layer is not a problem as the grains are separated by the
nest building process but contamination is a potential problem from the host bedrock, so when
analyzing the SG-OSL data we look out for grains with an inherently large dose and a low sensi-
tivity to luminescence [44–45]. We assumed that the second problem is not an issue due to the
bleaching potential of the sampling, flight and nest building processes of the mudwasp (bleach-
ing tests are outlined in the next section), while the third could be a potential problem that is
investigated in the dosimetry section. Grains with undesirable luminescence characteristics due
to contamination or natural occurrence have been rejected according to the procedure outlined
in Jacobs et al. [46–47].

The measurement of single-grains invariably reveals a variation in the precision of each De

value as some grains are inherently much brighter than others, so grains with a similar De

Kimberley Rock Art Chronology

PLOS ONE | DOI:10.1371/journal.pone.0161726 August 31, 2016 10 / 33



value can have a precision of<5% for very bright grains and>50% for dim grains. To incorpo-
rate this information into De determination a radial plot is used [48]. Therefore, the De value of
the grain (read from the left hand axis through the point to the intersect with the right hand
dose axis) can been observed along with its precision (read from the point vertically down to
the precision axis). Using the overdisperson values for the sample combined with the distribu-
tion seen in the radial plot allows an estimation of whether the data represents a single or mul-
tiple populations. A population is defined as a group of grains with De values and errors that
can be described by a Gaussian distribution and that are statistically outside the range of
another distribution. As more than one population has been interpreted in the mudwasp data,
we have analysed the grains using a Finite Mixture Model (FMM) [49]. This statistical analysis
assumes that there is more than one dose population within the grain distribution and aims to
identify the number, De values and overdispersion of each population.

The bleaching and burial of grains in the nests. The assumption of this technique is that
the quartz grains were all well-bleached before being buried in the nest so that any signal that
accumulates is derived from radioactive nuclides in the nest and on the rock surface rather
than from a residual OSL signal. It was also assumed that, even for the small nests, there is suf-
ficient light shielding for the inner core grains to accumulate a signal that can be measured.
Therefore, the differences in the OSL signal between grains in a nest results from differential
exposure of grains to light during nest construction, that is, the outer grains are bleached due
to light exposure, the middle grains are semi-bleached due to some exposure before being cov-
ered, while the inner grains should retain the largest signal due to longest ‘burial’ period. How-
ever, Roberts et al. [36] found that even grains found close to the surface of their nests still
retained a small residual dose, which they attributed to the timing of mud sampling in freshly
exposed sediment. In addition, some of the nests retained their outer coating of mud, but for
some, this layer has fallen away either during the fossilization process, or when the young
wasps exited the cells. It is therefore important to determine the difference in signal retention
between the nest with and without the original crust. To test these assumptions at our sites and
to establish a baseline of bleaching we conducted bleaching tests. As only small nests were dis-
covered, all of the available nest material was used for sample processing so testing this
assumption on these samples proved difficult. Instead we used SG-OSL techniques applied to
off-art nests by:

1. Measuring bleaching of the grains within a modern nest (sample CA-MOD 20 x 20 mm).
This nest was determined to be modern as it was still fresh (wet) with no fossilization and
the team could verify that it was not present at the time of the previous year’s fieldtrip so its
age is< 1 yr. The nest still retains its original outer coating. In theory, the grains should
only contain very small OSL signals; larger OSL signals may indicate that the grains are
retaining a residual dose prior to being buried in the nest (Fig 3E and 3F)

2. Measuring and comparing the difference in signal between the grains that form the inner
and outer parts of a large (65 x 20 mm) ancient nest (sample UP1B) by sampling each layer
within the nest for OSL dating. This sample represents the bottom half of the UP1A sample
used for dating, but this section is much larger and lies off-art. In addition, the outer layer of
the nest is absent in places so this provides a useful test of signal retention (Fig 3B). In the-
ory, there should be a gradation of signal with the inner core containing the most signal and
the outer grains containing the least.

Before sampling the nests, we considered their construction and taphonomic history by
observation and using footage of nest construction. It was determined that the nests have a
core that is a residual stub of a former nest, and each cylindrical tube is built separately on the
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base core and then joined with mud. Therefore, we sampled the ancient nest in four layers. The
outer layer (L1) comprised the outer 1–2 mm of the nest, then the next two layers (L2-L3) com-
prised of mud from successive layers towards the core, and finally the fourth layer (L4) com-
prised of the nest core or stub (Fig 3D). A comparison of the layers was used to test for initial
bleaching, signal accumulation and bleaching of the outer layer, while for the modern sample
we used the entire nest to test the distribution of doses within the grains. Due to the large size
of these nests, we were able to measure single-grains using both CW-OSL and LM-OSL laser
measurements for both the modern and ancient nests. The first 5 s of the 30 stimulation
LM-OSL measurements were used to represent the fast component, while the last 5 s were used
as the slow component with a blank disc used to provide a background measurement. The De

values derived were then divided to provide a fast:slow ratio (f:s).
The results of these tests (see results) justified the bleaching assumptions, the use of the

entire nest for sample processing and the use of a finite mixture model (FMM) to analyse the
SG dose populations [49]. Therefore, in this context it has been used to isolate the bleached
outer from the semi-bleached inner and non-bleached core of the nest. Prior to running this
model, a 10% overdispersion value was added to the standard error as an estimate of the inher-
ent overdispersion within the grains. This value was determined by bleaching fresh aliquots of
sample UP1B using a solar lamp (Philips MLU 300Wmercury-discharge sun lamp) for four
hours and measuring the overdispersion between the resulting De values.

Where possible we compared the OSL results from mudwasp nests with AMS 14C dating
of either beeswax resin found on the art of the same motif or from AMS 14C dating of pollen
from the actual mudwasp nest. Due to the limited amount of material available for OSL dat-
ing we used pollen found in the<90 um size fraction that is usually not used for OSL dating.
Only one sample (BRY-6) yielded enough material from this size fraction to be processed
by 14C.

Accelerator Mass Spectrometry radiocarbon dating
The material sampled for AMS 14C dating is a resinous compound originating from native
stingless bees rather than pure wax. Australia has around 12 species of native stingless bees,
three of which are found in the Kimberley and recognised by Wunambal Gaambera people
[50–51]. These three species are divided into two genera: Austroplebeia and Trigona; the latter
comprises two distinct species within the genus: Tetragonula hockingsi and T.mellipes (Tetra-
gonula is a subgenera of the genus Trigona) [51–52].

Native stingless bees are small (about 3–5 mm in length), compact, black bees and, as the
name suggests, have no sting. They build their nests in hollow tree trunks, branches, fallen
logs, or in termite mounds or between and under sandstone boulders, in rock crevices, or on
cliff faces [50–51,53]. Their nests are made of wax and a resinous compound. These elements
are likely to incorporate aggregations of pollen grains, pieces of young adult bee exoskeleton
and fragments of xylem fibres and vessels [54] making them ideal for AMS 14C dating. Sam-
ples were collected in a similar manner to those obtained for OSL dating although all were
collected during the day. Standard AMS 14C dating techniques were using to process the
samples.

Uranium Series dating of rock surface coatings
Twenty-three samples of gypsum rich coatings and amorphous silica skins were collected for
U-series dating. The results yielded either insufficient U-series isotopes for dating or proved to
be too contaminated with detrital material to provide a meaningful age estimate. Therefore no
comparisons could be made using this technique. (M. Aubert, pers. comm.)
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The Rock Art and Samples Selected for Dating
Fig 4A. A large motif painted in a ‘star-yam’ form was located on the back wall of a large rock-
shelter (UBSC02) at the headwaters of Bush Spirit Creek. The shelter contains a substantial
body of rock art with most phases of the Kimberley stylistic sequence represented. The red/
orange motif is infilled with roughly painted dashed lines. A small (15 x 5 mm, JS-11) circular
mudwasp nest with a hard outer coating that has been partially eroded was located on the
perimeter of the motif.

Fig 4B. An anthropomorphic figure (280 mm high) with raised legs, large ears and exagger-
ated male genitalia is painted on a vertical white wall at the rear of the large cavern (LR03D)
and was identified by Traditional Owners as an Argula (S1 Fig). Argulas are one of a number of
spirit figures that still play a role in the belief system of the local Wunambal Gaambera people
today [5,8]. A small oval nest (30 x 20 mm, CA-7) comprised of three mudwasp nest tubes with
an intact fossilised outer covering is located on the left shoulder of the motif.

Fig 4C. Two motifs were sampled from Brremangurey (OTB01), a large rockshelter adjacent
to the shoreline on Admiralty Gulf, which contains an extensive body of rock art representing
all stylistic periods (S2 Fig). The first, a large red anthropomorphic figure (1380 mm high)
located on the ceiling in the centre of the shelter. The motif is depicted with a ‘shocked’ head-
dress, in full frontal position, with out-turned feet, and sloping arms with two-fingered hands.
A small circular nest (15 x 15 mm, BRY-3) with a fossilised hard outer coating is located in the
centre of the body.

Fig 4D. The second motif from Brremangurey, a bichrome fish painted on the rear ceiling
overlies two polychrome anthropomorphic figures (both 2,500 mm high). These are depicted
with halo headdresses, three-fingered hands and turned out feet. The overlying fish is painted
in plan perspective and has outlined eyes, double gill bands and a row of ordered short-lined
infill. A small round nest (15 x 15 mm, BRY-6) with a fossilised outer coating covering two
mudwasp nest tubes partially covers the fin of the fish.

Fig 4E. A large macropod motif painted in polychrome (yellow, red and white) is located on
the ceiling of a large overhang (LMR02C) that forms part of a cluster of art sites east of the
Lower Mitchell River Falls (S3 Fig). The site contains an extensive body of rock art, including
‘classic’Wanjina figures and 21 animal depictions that can be attributed to the Wanjina Period.
Both the body and limbs of the macropod are depicted in profile and are divided into sections
at the neck, shoulder, elbow and foot. Both eyes and ears are shown with a twisted perspective.
The macropod is depicted with a central backbone and kidneys in a manner similar to the X-
ray art of Arnhem Land. The entire motif is infilled with fine longitudinal lines, while white
dotting has been added to the shoulders, forearms and kidneys. A small, round, well-fossilised
mudwasp nest with a partial outer covering (20 x 25 mm, LM-13) is located on the upper sec-
tion of its tail.

Fig 5A. A large (910 x 500 mm) anthropomorphic figure with a distinctive triangular ‘robe’
shaped body with a dome-shaped hatched headdress and shoulder spikes was recorded at a site
on the slope above Bush Spirit Creek (UBSC01). The dark red and orange figure is painted on
the ceiling of a small overhang and is partially covered by a washy orange echidna motif (Fig
6). The echidna is painted in profile with thick outline and segmented body. An oval nest (30 x
15 mm area sampled, JS-10) with a partially removed top section was located on the hemline of
the figure’s ‘robe’. The echidna motif covers the lower edge of the nest. This section was left in
situ. A red hand stencil underlies the anthropomorphic figure.

Fig 5B. A pair of large, Mambi Gwion anthropomorphic figures (1,240 mm high) is located
on a vertical panel that forms the wall of a narrow passageway through a rocky outlier (UL01)
adjacent to the Lawley River. The figures are painted with red pigment and have a distinct,
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Fig 4. Wanjina Period rock art. (A) JS-11, ‘star-yam’ form, sampled mudwasp nest is indicated and
enlarged. The resulting radial plot is also shown with a De according to the FMM 0.85 ± 0.15 Gy. (B) CA-7,
Wanjina Period ‘Argula’ figure with sampled mudwasp nest for OSL dating (circled left and enlarged) and
sampled beeswax resin for 14C (circled right and enlarged). This motif offered an opportunity for a
comparison between OSL and 14C dating. The resulting radial plot is shown on the left with a De according to
the FMM of 2.49 ± 0.13 Gy, while the 14C returned an age of 687–884 yrs cal BP. (C) BRY-3, Wanjina Period
large red anthropomorphic figure, sampled mudwasp nest circled and enlarged, scale is 10 cm. Radial plot
fitted with FMM provides a De of 0.99 ± 0.04 Gy, while the 14C returned a minimum age estimate of 346–321
yrs cal BP (D) BRY-6, Wanjina Period fish superimposing two anthropomorphic figures, sampled mudwasp
nest circled and enlarged. Radial plot fitted with FMM provides a De of 1.97 ± 0.72 Gy. (E) LM-13Wanjina
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darker red outline. They include features such as tassels attached to the head, clearly defined
fingers, paunch, narrow chest and hunched shoulders with decorative adornments at wrists
and elbows They are superimposed by a red and yellow ‘cage-shape’motif that outlines and, in
turn overlies the larger of the Gwion figures. The top half (45 mm) of an elongated nest (110 x
20 mm, UP1A) is situated directly on top of the outer cage. The section sampled as UP1A
retains a hard fossilised outer coating, but the lower section sampled for bleaching tests has a
partially absent outer coating.

Fig 5C. A horizontal composition of ten, small transitionary Gwion/Wararrajai Gwion
Period anthropomorphic figures is located in the same cavern (LR03D) as the Argula figure
(Fig 4B) and the ‘yam-like’motif discussed below (Fig 5D). The cavern forms part of an exten-
sive network of underground caves, several of which contain rich assemblages of rock art. The
complex is located under a rocky outlier, adjacent to a permanent water hole on a tributary
that runs into the Lawley River as it approaches the shores of Admiralty Gulf. The composition
of the figures into a frieze suggests a single painting episode although two distinct coloured pig-
ments (dark red and red/orange) have been used. Some figures are depicted with paired boo-
merangs, bent knees and drooped dunce cap headdresses, while others have bodies formed by
parallel lines, have straight legs and are shown in full frontal position. Similar friezes of small
anthropomorphic motifs have been recorded at other classic Gwion sites. A small oval nest (10
x 5 mm, CA-9) located over the head of the central figure is comprised of just one or two mud-
wasp nest tubes wedged in against a fissure in the rock surface. It has lost all of its outer
coating.

Fig 5D. An elongated ‘yam-like’motif with a bifurcated ‘root’ or ‘tail’ is painted on a low
section of the ceiling of the same large cavern (LR03D). The motif (1,200 x 1,100 mm) is
painted in mulberry coloured pigment, typical of the colour of many of the older style motifs
found across Australia’s northern regions [55]. However, at one end of the motif, the pigment
has weathered to a deep red. While the extremities of the motif are solidly filled, the infill across
most of the motif is best described as dense and irregular. The small round mudwasp nest (20 x
20 mm, CA-8) is located directly on top of one of the curved extremities. The nest still retains
all of its outer coating and displayed the greatest amount of nest fossilisation of all the nests
sampled.

Fig 5E. Three samples of beeswax resin (LR03C-2, LR03C-3, and LR03S-01) were collected
overlying motifs located in the same complex of caverns (LR03). One sample, (LR03S-01) over-
lay the Argulamotif (Fig 4B) described above, while the remaining two samples covered the
legs of one of a pair of red anthropomorphic figures painted on the vertical wall of the adjacent
cavern (LR03C). The figure is classified as a Wararrajai Gwion and is depicted in full frontal
position with an outlined torso infilled with irregular lines, stick arms, a solid head, and legs
that end in squared extremities and a headdress that sweeps off to the side.

Results
The radial plots have been presented in Fig 4 and Fig 5, and De values using the CW FMM
have been presented in Table 1. These results showed a wide spread of minimum age estimates
for art motifs ranging from 530 years up to 16 ka. These age estimates have been determined
using between 56–170 accepted grains For each sample, the FMM determined between 2–3
dose populations, the lowest of these (the lower population) correlated with the baseline of
bleaching provided by the analysis of the modern nest, while the middle (if present) lies in

Period macropod, sampled mudwasp nest circled and enlarged, photograph digitally enhanced using
D-Stretch. Radial plot fitted with FMM provides a De of 6.44 ± 0.12 Gy.

doi:10.1371/journal.pone.0161726.g004
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Fig 5. Gwion Period rock art. (A) JS-10—Anthropomorphic figure with a distinctive triangular ‘robe’ shaped
body, sampled mudwasp nest circled, scale is 10 cm. Radial plot fitted with FMM provides a De of 1.32 ± 0.04
Gy. (B) UP1A—A pair of Mambi Gwion (Tassel Bradshaw) anthropomorphic figures superimposed by a
‘cage-shape’motif, sampled mudwasp nest circled and enlarged. Note only the upper section of the nest
(UP1A) was sampled for dating, the lower section (UP1B) was used for bleaching tests as an off-art ancient
nest. Radial plot for UP1A fitted with FMM provides a De of 4.61 ± 0.12 Gy. (C) CA-9—Horizontal composition
of transitionary Gwion/Wararrajai Gwion Period anthropomorphic figures, sampled mudwasp nest circled and
enlarged, scale is 10 cm. Radial plot fitted with FMM provides a De of 0.63 ± 0.11 Gy. (D) CA-8, an elongated
‘yam-like’motif with a bifurcated ‘root’ or ‘tail’with location of sampled mudwasp nest circled and enlarged.
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between, and upper population contains the grains with the largest De values and was subse-
quently used for De estimation with between 15–25 grains being used for the upper dose popu-
lation. As we are dealing with low grain number we have defined a population as statistically
significant if it contains ~10% of the accepted grains, and as most of samples have between 56–
170 accepted grains this represents ~6–17 grains. A statistically significant level i.e. the values
reflect the characteristics of the population rather than just sampling error is usually set to ~5%
[56] so our cut off point is erring on the more conservative. Some of the defined populations
contain less than the desired 10% (typically 2–3 grains), and as these are not statistically signifi-
cant within the wider distribution of grains in the sample they have been defined as outliers
(not reflective of any of the populations) and to be more conservative that population is not
used for De determination. For example, in samples BRY-6, CA-9 and JS-10 only, the upper
dose population consisted of only 1–2 grains, which have been interpreted as residual dose out-
liers and the middle component has been used for De determination instead.

Radial plot for CA-8 fitted with FMM provides a De of 21 ± 1Gy. (E) LRO1C-2, LRO1C-3—Wararrajai Gwion
Period anthropomorphic figure (on left) and LR03S-01—Wanjina Period ‘Argula’ figure (right) both sampled
for beeswax resin (circled), scale is 10 cm. These resin samples provided AMS 14C age estimates of 687–
884 yr cal BP and 666–771 yr cal BP, and 664–770 yr cal BP respectively.

doi:10.1371/journal.pone.0161726.g005

Fig 6. Echidnamotif overlying sampled nest, which overlies the anthropomorphic figure with a
distinctive triangular ‘robe’ shaped body.

doi:10.1371/journal.pone.0161726.g006
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Using the portable gamma spectrometer, we calculated the gamma dose rate of the sand-
stone bedrock to be between 0.210–0.257 Gy/ka-1, with only small variations between the mea-
surements for bedrock only verses bedrock plus rest of the cave. Using beta counting of the
nest we estimated a beta contribution of between 1.07–1.41 Gy/ka-1, with a cosmic dose rate of
between 0.193–0.210 Gy/ka-1, which provided a dose rate of 1.2–1.5 Gy/ka-1. The HRGS analy-
sis of the two nests (UP1B and CA-MOD) provided dose rates of between 2.2–3.5 Gy/ka-1 for
the ancient and modern nests respectively (Table 2).

For these two mudwasp nests, we observed unsupported excesses in 210Pb and 226Ra (see
Table 2). In the 238U chain of the modern nest there was a 125% excess in 210Pb compared to
226Ra and a smaller 2.7% excess in 226Ra compared to 238U. While in the 232Th chain we
observed a 25% deficiency in 228Th compared to 228Ra. These measurements support the mod-
ern nature of the nest as the 210Pb excess is a recent effect from fallout in the last 100 years, the
disequilibrium between 230Th and 226Ra has occurred within 600 years and any 226Ra excess
still present suggests the sample is<6 kyr. As eight of the nests are older than 600 years the
effects of disequilibrium between 230Th and 226Ra, and 210Pb excess would have decayed to neg-
ligible levels. However, only one nest is older than 6 kyrs so the remaining eight may have been
affected by 226Ra excess. In contrast, the older UP1B sample has no 210Pb excess, negligible dis-
equilibrium between 238U and 226Ra and only a very minor 226Ra excess of 1.8% suggesting that
the sample is not modern but has not yet reached the 6 kyr half-life for the decay of 226Ra.
Therefore, while the modern nest displays excesses, the older nest has only minor disequilib-
rium. The difference in total dose rate between the younger and older nests is ~1 Gy/ka due to
the modern excesses. When the disequilibrium in the modern nest is modelled as a recent
excess that has been adding steadily since time of deposition, a similar dose rate to the ancient
nest is obtained. In addition, the ratio of 210Pb/226Ra provides a 222Rn emanation of just 2.3%
since nest construction–this drops to 0.98% in the older nest. The high resolution gamma spec-
trometry technique applied to the nests provided a higher dose rate than the beta counting/in
situ gamma method.

The initial bleaching test on a modern nest (CA-MOD), processed using the central age
model (CAM), revealed that statistically there was no difference between the inner and outer
grains from the nest (overdispersion = 9%) and that the luminescence signal was at a low level
(0.23 ± 0.01 Gy equivalent to 150 ± 15 yrs). In addition, the age of the layers for the ancient fos-
silised nest (UP1B) increased with distance towards the core from Layer 1; at 0.24 Gy, Layer 2;
0.44 Gy, Layer 3; 0.84 Gy and finally the core; at 4.50 Gy, these De equate to ages of 160, 280,
600 years and 3.09 kyrs respectively, with the inner grains containing an average of 4.5 Gy

Table 2. Total dose rate for the mudwasp nests based on high resolution gamma spectrometry (HRGS) data for UP1B and CA-MOD.

Sample
code

Site 238U (Bq/kg) 226Ra (Bq/kg) 210Pb (Bq/kg) 228Ra (Bq/kg) 228Th (Bq/kg) 40K (Bq/kg) Cosmic
dose ratea

(Gy ka-1)

Water
contentb

(%)

Total dose
ratec

(Gy ka-1)

The Caverns

CA-MOD LR03D 52 ± 6 53 ± 8 120 ± 32 57 ± 20 43 ± 7 120 ± 106 0.193 ± 0.019 2 / 2 ± 0.2 3.5 ± 0.6

Lawley

UP1B UP01 54 ± 5 55 ± 6 54 ± 8 42 ± 4 43 ± 3 118 ± 31 0.199 ± 0.019 0 / 0 ± 0 2.3 ± 0.2

a Time-averaged cosmic-ray dose rates (for dry samples), each assigned an uncertainty of ± 10%.
b Field/time-averaged water contents, expressed as (mass of water/mass of dry sample) x 100. The latter values were used to calculate the total dose rates

and OSL ages. All the nests measured were completely dry so no addition for water content has been added apart from the modern nest CA-MOD with a

water content of 2 +- 0.2%.
c An internal dose rate of 0.032 Gy ka-1 for 200 μm quartz is also included.

doi:10.1371/journal.pone.0161726.t002

Kimberley Rock Art Chronology

PLOS ONE | DOI:10.1371/journal.pone.0161726 August 31, 2016 20 / 33



more dose. Furthermore, there is agreement between the outer bleached layer in the ancient
nest (0.24 ± 0.01 Gy) and the weighted mean of all the grains from the modern nests
(0.23 ± 0.01 Gy). The distinct differences in dose between the layers of the nest suggest that the
partial removal of the outer layer have not affected the signal retention of the grains within the
core.

The LM-OSL results for samples UP1A, UP1B and CA-MOD for both the fast and slow
components provided a ratio of f:s signals for these nests with 57–86% of grains being close to
unity (Fig 7F–7H). However, only a small number of grains had a usable fast and slow compo-
nent signal with low percentages of accepted grains (5–6%). While a useful technique, the low
acceptance makes this approach unfeasible for the smaller nests with minimal amounts of
quartz. Grains containing the highest doses and exhibiting a f:s ratio close to unity provided De

values that were close to the estimate using FMM on the CW data.
The results for the AMS 14C dating of beeswax found over art and organic material found

within a mudwasp nest are presented in Table 3. OSL and AMS 14C samples were obtained
from the same two motifs; one at LR03D (1630 ± 110 yrs and 687–884 yr cal. BP) and one at
Brremangurey (OTB01) (700 ± 40 yrs and 346–341 yr cal BP, respectively). While the results
only provide minimum age estimates for the art (and therefore do not need to agree), they are
coeval within error margins. These comparisons were only conducted on younger art styles as
samples from the older art styles were not available.

The oldest age estimate was obtained for the fossilised mudwasp nest overlying an elongated
‘yam-like’motif with a bifurcated ‘root’ or ‘tail’ (CA-8, Fig 5D, Table 1), dated to a minimum
16 ± 1 ka. Minimum age estimates of 3.3 ± 0.2 were obtained indirectly for two Mambi Gwions
(UP1A, Fig 5B, Table 2) and 0.53 ± 0.08 ka (CA-9, Fig 5C, Table 1), for an anthropomorphic
figure from a transitionary Gwion/Wararrajai Gwion Period. The anthropomorphic figure
with a distinctive triangular ‘robe’ shape returned a minimum age estimate of 0.9 ± 0.1 ka (JS-
10, Fig 5A, Table 1), which also provides the only maximum age for a motif, an orange echidna
(Fig 5A). The large red anthropomorphic figure with the ‘shocked’ headdress returned a mini-
mum age estimate of 0.7 ± 0.1 ka (BRY-3, Fig 4C, Table 1) while the AMS 14C date for the
whole nest over this figure was 346–321 cal BP years (BRY-3, Table 1). AMS 14C minimum age
estimates of 666–771 yr cal. BP (LRO3C-2, Fig 5E, Table 1) and 664–770 yr cal.BP (LRO3C-3,
Fig 5E, Table 3) were also obtained from beeswax resin overlying a Wararrajai Gwion figure. A
minimum age estimate of 650 ± 10 years was returned for the ‘star-yam’motif (JS-11, Fig 4A,
Table 1). Two different dating techniques provided minimum age estimates for the Argula:
1.6 ± 0.1 ka (CA-7, Fig 4B, Table 1) using OSL for an overlying mudwasp nest and 687–884 yr
cal. BP (LR03S-01, Fig 4B, Table 3 [S-ANU 33109.9551]) for AMS 14C on wax resin. The two
zoomorphic figures sampled, returned a minimum age estimate of 1.4 ± 0.5 ka (BRY-6, Fig 4D,
Table 1) for the bi-chrome fish, while the large poly-chrome macropod provided a minimum
age estimate of 5.1 ± 0.2 ka (LM-13, Fig 4E, Table 1).

Discussion
The dose rate for the nest only using the HRGS method had a large gamma dose rate (1.051–
1.678 Gy/ka-1) that far exceeds that estimated by the in situmethod (~0.23 Gy/ka-1) and that
estimated by other authors for a similar geology (e.g., [37] ~0.31 Gy/ka-1, [57] ~0.4 Gy/ka-1).
We attribute this discrepancy to the difference in material used–the HRGS was applied to the
nest only while the dosimetry of the in situmethod (portable gamma spectrometry and beta
counting) was damped down by the inclusion of lower-dose sandstone. The beta dose rate
according to the HRGS method is slightly higher than the beta counting result. We attribute
this to the use of a small amount of parent material in the beta counting sample to provide a
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more accurate representation of the beta contribution. Thus, if the gamma measurement
derived from the HRGS is reduced to that determined by the in situmethod, the total dose rate
for both techniques are in agreement (1.5 and 1.4 Gy ka-1 respectively). This total dose rate is

Fig 7. Luminescence characteristics of the quartz grains found in the mudwasp nests. (A) a preheat
plateau test for sample UP1A. Fresh aliquots of 180–212 μm quartz were run using different preheat
temperatures from 200–270°C and demonstrate a slight plateau at ~250°C, this was chosen as the preheat
temperature for the samples. (B) A dose recovery test using 8 aliquots of fresh quartz and the chosen preheat
temperature of 250°C. All aliquots recovered the 20 Gy surrogate dose (dashed line) within 2 σ error (shaded
box). (C) SG-OSL shine down for a continuous wave laser stimulation of 2 secs. (D) The resulting dose
response curve from the same grain as shown in (C) with a De of 9.2 Gy. (E) LM-OSL shine down over a
stimulation period of 30 s. Note the dominance of the fast component (first 5 s) and the smaller slow
component (last 5 s). (F-G-H) LM-OSL De results for sample F- UP1B, G—UP1A and H—CA-MOD plotted as
a ratio of fast:slow components (rather than their De values) on the radial plot and centred on unity. Therefore
grains with a similar fast and slow component De values will be centred in the middle of the plot. The 2 σ
range depicted by the grey shading indicates the grains closest to unity and their corresponding De values
were used to obtain an LM-OSL age.

doi:10.1371/journal.pone.0161726.g007
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lower than estimated by Yoshida et al. [37] despite having similar estimations of the gamma
dose rates on the sandstone bedrock. This difference is derived from the beta contribution in
the nests (1.4–1.7 verses ~2.60 Gy/ka-1, respectively), which we attribute to a different sedi-
mentary source for the mudwasp nest from different drainage basins (Lawley and Mitchell
River verses the King Edward River). The estimate for radon emanation according to the
HRGS result suggests that radon loss on the surface of the sandstone is not contributing to
the nest disequilibrium and therefore no correction has been made to account for this loss.
However, 226Ra excess may have been an issue for the eight samples that are <6000 ka. To
account for this disequilibrium and the limitations of high resolution gamma spectrometry
for determining the dosimetry based solely on gamma emitting radionuclides, a 2% error
margin was added to the dose rate for these samples to cover the range of difference with and
without this excess.

The bleaching tests conducted on the modern off-art nest (Fig 3E and 3F), indicate that
most of the grains in the nest are bleached prior to nest construction and this is confirmed
by the high fast:slow ratios from the LM-OSL data and the number of grains close to unity
(Fig 6F–6H). The fast component is known to bleach within a few seconds [38] but the slow
component can take a few hours to be completely removed [62]. Therefore, if both the fast
and slow component retain a similar dose, it implies that the grains must have received at
least a few hours bleaching prior to burial. This bleaching occurred either during exposure
on the sediment surface prior to sampling, during sampling, flying and nest construction by
the mudwasp, or during exposure on the outside of the nest. Therefore, most grains contain
negligible residual OSL signal prior to their burial so the signal measured in the laboratory
represents the dose accumulated since nest construction. The agreement between the De val-
ues for the modern nest and the outer layer of UP1B support this prior bleaching assump-
tion and provide a baseline of bleaching for grains found on the outer layers of the nests.
This baseline of ~0.2 Gy agrees with the lower component of the FMM for all the nests rang-
ing from 0.15–0.34 Gy. Furthermore, the agreement between the De derived from the
LM-OSL f:s ratios close to unity for sample UP1A and the De derived from the upper com-
ponent of the FMM using CW provide confidence for the use of CW FMM for the smaller
nests.

Table 3. Radiocarbon ages and supporting data for the beeswax andmudwasp nest (after [57,58])a.

Sample
code

Motif, Stylistic Period S-ANU#/ ANSTO
Code

Other
ID

δ13C per
mil

Percent Modern
Carbon pMC

D14C 14C age Age yr cal
BPb,c

LR03S-01 Anthropomorphic figure (Argula),
Wanjina Period

33109 9551 -23 ± 2 85.83 ± 0.34 -141.7 ± 3.4 1230 ± 35 687–884

LROIC-2 Anthropomorphic figure,
Wararrajai Gwion Period

33110 9978 -13 ± 2.0 85.20 ± 0.30 -148.0 ± 3.0 1285 ± 30 666–771

LROIC-3 Anthropomorphic figure,
Wararrajai Gwion Period

33111 9979 -14 ± 2.0 85.17 ± 0.30 -148.3 ± 3.0 1290 ± 30 664–770

BRY-3 Anthropomorphic figure, Wanjina
Period

OZQ990 - -27.3 ± 0.1 98.06 ± 0.32 - 155 ± 30 346–321

a δ13C values are the AMS machine quoted values and are used to correct the age. They can differ from IRMS results.

The quoted age is in radiocarbon years using the Libby half-life of 5568 years and following the conventions of Stuiver and Polach [59].

Radiocarbon concentration is given as percent Modern Carbon and conventional radiocarbon age.

Sample preparation backgrounds have been subtracted, based on measurements of samples of 14C-free CO2.
b Calibrated using the CALIB 7.0.4 program [60].
c Calibrated using IntCal 13 curve from OzCal 4.2 [61].

doi:10.1371/journal.pone.0161726.t003
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The measurements on the individual layers of the ancient nest (Fig 3A–3D) indicate that a
shielded inner core exists within the nest, which has accumulated more dose than any of the
other layers tested, and that the amount of OSL signal decreases with distance towards the sur-
face of the nest. This inner core appears to be unaffected by the absence of the outer coating,
which provides confidence for the signal retention of nests with a partial absence of this layer
(e.g. CA-9, JS-10 and JS-11). Thus, a surprisingly small thickness of nest material was required
before the grains are effectively ‘buried’. Based on these findings, the use of small nests is valid.
The number of fast:slow LM-OSL ratios close to unity for the core of the ancient nest (Fig 7F)
indicates that the signals in these grains were not derived from a residual OSL signal but rather
have accumulated during a shielded or burial period. This conclusion is supported by the
higher number of unity grains in the core compared to the other two nests from all layers. The
latter grains with a larger number of lower f:s ratios indicate that they have intermittently expe-
rienced brief bleaching episodes that have removed some of the fast but not the slow compo-
nent signal. We interpret these grains as being located in the outer layers of the nest.

The isolation of the core grains using a FMM was successful in all nine samples with 2–3
dose populations identified. For the majority of the samples we interpreted the lower dose pop-
ulation in each sample as the ‘bleached’ outer layers of the nest, and the middle dose population
as the grains that received some bleaching, while it was the outer layer and some signal accu-
mulation during its part-burial. Therefore, the upper population of grains were considered to
be the ‘unbleached’ inner core of the nest, and the population that best represents the signal
accumulated during the burial period and a minimum age for the underlying art. For eight of
the nests processed, the use of over 100 grains is a statistically significant number for De deter-
mination. For the remaining nest, 56 grains were accepted. The agreement between the De of
the grains with a high doses and f:s ratios close to unity and the FMM upper component indi-
cates that most of these grains previously underwent substantial bleaching prior to burial.

Samples BRY-3, BRY-6, JS-10 and CA-7 are all identified as containing an upper dose popu-
lation of between 2–4 grains that have been interpreted as outliers. Due to the bleaching tests
conducted on the modern nest (CA-MOD) these grains cannot be attributed to partial bleach-
ing. Nor can they be attributed to contamination from the sandstone bedrock as quartz grains
with a low sensitivity from a lack of bleaching or dosing cycles that changed dramatically dur-
ing the measurement process were not observed in SG-OSL processing. Instead, we attribute
these outliers as contaminating grains from inside the ochre paint or from the surface of the
rockshelter prior to nest construction. As these outliers are not observed in all the samples and
seem to predominate in the Brremangurey rockshelter, we speculate that they might be aeolian
in origin, having blown into the rockshelter and adhered to the shelter walls. The limited num-
ber of these grains precludes them from being a significant problem.

It can be observed that the upper dose population contains the widest range of precision
between the De values and the most precise grains. This is due to the presence of very bright
and very dim grains, providing high and low precision, respectively. This is a typical observa-
tion in a radial plot at the same De value, with the lower precision dim grains still providing a
similar De value but due to the reduction in counting statistics produced by the low counts is
the signal harder to measure and therefore less precise. The presence of dim grains in the upper
dose values is not a reflection of inaccurate data but rather a typical characteristic of lumines-
cence dose populations.

The data from the off-art sample, UP1B, provides very useful cautionary evidence for the
use of sections of nest that extend off the art. This section of the nest appears older than the on-
art sample—UP1A. Rather than the nest being constructed before the art, it would seem that
this section of the nest has been constructed on an older stump and therefore provides an older
age using this technique. The UP1A section of the nest was probably constructed at a similar
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time, but as this section was not constructed on the older stump it provides a more reliable
minimum age for the art. Therefore, we caution practitioners against using any section of the
nest that is not directly on the art for fear of incorporating older off-art stumps in to the De

determination.
Using this technique to determine De values and age estimates, the OSL results agree with

independent age estimates obtained from the AMS 14C technique (Tables 1 and 3) in specific
cases. While these comparisons could only be conducted on younger art styles, the agreement
provides a measure of confidence in relation to the upper age range results where lack of suit-
able samples meant that comparisons could not be made.

As we were unable to sample under the art, the mudwasp nests sampled were all on top of
the art (apart from a single example where a motif partially overlay the sampled nest UBSC01),
the resulting age estimates represent minimum ages. These estimates are useful for formulating
a baseline for the relative stylistic sequence, but they do not provide us with an upper age range
or direct dates for individual motifs. The use of the entire mudwasp nests is certainly not ideal
but this became necessary when larger nests were unavailable. However, with the absence of
larger nests on top of art, smaller nests can provide meaningful data if a conservative approach
is adopted.

Implication of the results for the chronology of rock art in the northwest
Kimberley
The minimum age estimate of 16 ± 1 ka for an elongated ‘yam-like’motif with a bifurcated
‘root’ or ‘tail’ (Fig 5D) makes it one of the oldest in situ rock art motif thus far established for
any Australian rock art assemblage. However, the style of the motif differs from the Gwion
Period figure claimed to be of similar age. While the large size and colour used by the artist to
produce the motif are all typical of those used on IIAP motifs, the form and subject matter are
not, nor is the infill as roughly applied as some IIAP motifs making it difficult to assign the
motif to one of Walsh’s stylistic classifications. Two similar motif forms were recorded at other
locations in the northwest Kimberley but neither is painted in a manner that assisted with the
classification of the sampled motif. The rarity of the motif type makes it impossible to extrapo-
late from this result to identify stylistically similar motifs of the same age across the Kimberley
assemblage.

On their own, little can be gleaned from the minimum age estimates of 3.3 ± 0.2 ka for the
‘cage-shape’motif (Fig 5B) (and indirectly, the underlying Mambi Gwion figures), and
0.53 ± 0.08 ka for the fossilised nest built over the headdress of a transitional Wararrajai Gwion
Period figure (Fig 5C). Our analysis of the superimposition of rock art styles undertaken during
the archaeological project supports Walsh’s conclusion that Mambi Gwion depictions predate
Wararrajai Gwion figures although it is possible that the styles were contemporaneous in rare
instances. It is more likely that the results reflect the differences in the timing of the nest con-
struction rather than the emergence of each style. However, the minimum age estimate for the
figure in the frieze (Fig 5C) is stylistically similar to the figures depicted as crew members in
paintings of two canoes documented in a site adjacent to the Mitchell River [11]. If in fact, the
canoe represents outsiders visiting the Kimberley region in the past, the minimum age estimate
of 0.53 ± 0.08 ka would also provide a minimum timeframe for maritime contact and much
earlier than Macassans are known to have visited the coast.

A more recent minimum age estimate of 0.9 ± 0.1 ka for the large anthropomorphic figure
with a distinctive triangular ‘robe’ shape (Fig 5A) with features most commonly found in the
Wararrajai Gwion Period, such as straight limbs and body depicted in full frontal position,
adds little to clarify the relationship between the various Gwion styles. This nest also provides
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the only maximum age estimate obtained during the project. A section of an echidna motif
attributed to the Painted Hand Period (Fig 6) clearly overlies part of the processed nest
(although the section of the nest immediately underlying the motif was left in place). Therefore,
the echidna motif has to have been painted after 0.9 ± 0.1 ka. This is a much more recent date
than has previously been suggested for this style. The Painted Hand Period is usually consid-
ered to predate the Wanjina Period [14]. These results demonstrate that at least some styles
amongst the more recent art were contemporaneous.

The simplicity of the form and the splayed foot position of the large, red anthropomorphic
motif (Fig 4C) at Brremangurey are typical of the Wanjina Period. This classification is sup-
ported by the relatively recent OSL (0.78 ± 0.1 ka) and AMS 14C (346–321 cal BP) age esti-
mates. The slight disparity between the two dates produced for the same nest can be explained
by the difference in the actual material dated: the OSL age estimate was obtained from grains in
the layer of nest closest to the substrate while the AMS 14C age estimate was obtained using
only the fine grained material from the whole nest where there is more chance of modern car-
bon being included [23].

Similarly, the nest overlying the typical Wanjina Period, bi-chrome fish (Fig 4D) painted at
Brremangurey returned a minimum age estimate of 1.6 ± 0.6 ka, in the expected range of ages
for this style. The sample also provides a minimum age estimate for the two underlying poly-
chrome anthropomorphic figures typical of the Painted Hand Period, but again, there is no
way to estimate the difference in the timing of the two painting episodes.

The oldest date for a Wanjina Period motif prior to our project was a AMS 14C date of
3,780 ± 60 yr cal. BP [9] for a Wanjina head made from beeswax pellets, so the minimum OSL
age estimate of 5.1 ± 0.2 ka for a nest overlying a Wanjina Period macropod (Fig 4E and Fig 8)
was unexpected and pushes back the timing of the emergence of the Wanjina style by more
than 1000 years. The body and limbs of the macropod motif sampled are divided into sections
in a manner typical of the Wanjina Period with the entire motif infilled with fine longitudinal
lines, while white dotting has been added to the shoulders, forearms and kidneys.

The depiction of a backbone and kidneys is similar to the manner used in the X-ray art of
the Arnhem Land region to the east. Motifs with simple X-ray elements have been recorded in
three Gwion Period figures during the project, but are more common in the Painted Hand
Period motifs where animals are sometimes depicted with backbone and ribs. Similarities
between the early rock art assemblages of both regions have been flagged, but it may well be
that interactions between the two regions have extended into the more recent past. A much
larger Kimberley rock art sample would need to be analysed before such a claim could be
supported.

The correlation between the emergence of the Wanjina Period style and the ‘Early X-ray’
style paintings in Arnhem Land at around 6 kya [60] adds weight to hypothesized connections
between the two regions [63]. ‘Early X-ray’ art is an ancestral form of the ‘Complete
Figure Complex’, which emerged around 4 kya [64–65]. This age range is supported by two
radiocarbon ages of 4040 ± 80 BP [66] and 4460 ± 80 BP [67] for a beeswax turtle image from
Gunbilngmurrung in Arnhem Land.

Finally, the difference in age estimates for the Argula figure (Fig 4B) with a minimum OSL
age estimate of 1.6 ± 0.1 ka and an AMS 14C age estimate of 687–884 yr cal. BP can again be
explained by the difference in the material dated. The nest and the beeswax resin appear to
have been laid down at slightly different times but provide a minimum age range for produc-
tion of this type of spirit figures, which sits comfortably within the range of direct AMS 14C
dates (433–656 cal. CE, 691–989 cal. CE and 679–1148 cal. CE) obtained by Morwood et al. [9]
for stylistically similar beeswax or charcoal Argulas. The dating of two different samples using
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two different techniques highlights the problems inherent in attempting to develop a temporal
framework based on a small sample of minimum age estimates.

Fig 8. Wanjina Periodmacropod (LM-13) depicted with spine and kidneys, photograph digitally
enhanced using D-Stretch.

doi:10.1371/journal.pone.0161726.g008
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The challenge of classifying some of the motifs covered by the sampled nests highlights the
problem we encountered more broadly during the project: a large proportion of the motifs we
recorded do not fit neatly into one or another classificatory style. Many motifs had stylistic ele-
ments common to more than one stylistic classification suggesting the gradual introduction of
new styles and the concomitant demise of others, indicating that more fine-grained analysis
will need to be done to refine various Kimberley stylistic sequences.

The difficulties inherent in the use of style as a chronological marker have long been flagged
[68–69] and are illustrated by the recent date obtained for a Painted Hand Period motif. Lor-
blanchet and Bahn [70] have argued that, following the introduction of new dating methods
such as AMS 14C, rock art studies would enter a ‘post stylistic era’. Such an extreme approach
however, would mean that each and every motif would have to be dated if it was to be incorpo-
rated into a temporal framework. The approach we have adopted using stylistic classifications
complemented by dating techniques is likely to provide the most useful framework with the lat-
ter used to ‘probe and anchor stylistic sequences’ and the former to ‘identify problems or
inconsistencies in . . . dating’ [71].

The single, older minimum age estimate we were able to obtain during the project, despite
extensive surveys, highlights the limited availability of ancient mudwasp nests suitable for
OSL sampling. In many cases, taphonomic processes have led to the gradual breakdown of
nests leaving only nest stubs comprising limited unbleached grains. The single older mini-
mum age estimate we obtained for the ‘yam-like’motif provides supporting evidence for the
claim that rock art was produced in the Kimberley during the terminal Pleistocene [20]. Fur-
ther, the oldest of the minimum age estimates (16 ± 1 ka) sits well inside the temporal frame-
work proposed for the emergence of Arnhem Land rock art between 26,913–28,348 years,
calibrated BP [24].

Conclusion
The results we have obtained demonstrate the limitations of relying on minimum age estimates
alone to establish a temporal framework for Kimberley rock art. Many more samples will have
to be processed before a sound chronology can be proposed. Nevertheless, our results provide
support for earlier claims of a Pleistocene origin for the production of rock art in the region.
However, the four rock art dating projects undertaken in the Kimberley thus far (Fig 9) have
returned only two Pleistocene OSL minimum age estimates. While these results could be inter-
preted as signifying relatively recent origin for the art assemblage in the Kimberley, alterna-
tively, they may well be a reflection of the paucity of ancient mudwasp nests, mineral skins or
resin available to sample.

Any dating program aims to identify and sample classic exemplars of accepted stylistic
phases so that results can be extrapolated to similar motifs across the broader assemblage.
Although few classic motifs were found to be suitable for sampling during this project, extrapo-
lation from the results of one sampled figure to a group of stylistically similar figures has pro-
vided a means to propose a minimum date for the timing of potential maritime incursions into
the region.

Our results have pushed back the timing of the emergence of the Wanjina Period and
opened up the possibility of contact between past inhabitants of Arnhem Land and the Kim-
berley as recently as the mid-Holocene. Moreover, the results have identified at least one case
of the co-occurrence of recent Kimberley rock art stylistic phases previously considered
sequential, thus signalling that the relationships between styles may not necessarily be tempo-
rally separated. The potential for different contemporaneous art styles performing separate
functions then becomes a possibility emphasising the need for ongoing fine-grained rock art
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analyses and contextual studies. While the results are by no means conclusive or extensive,
they provide a significant step towards our understanding of the complexities of Kimberley
rock art.

Supporting Information
S1 Fig. LR03D floorplan with location of samples CA-7, CA-8, CA-9, LR03S-01, LROIC-2
and LROIC-3.
(TIF)

S2 Fig. Brremangurey (OTB01) floorplan with location of samples BRY-3 and BRY-6.
(TIF)

S3 Fig. LMR02C floorplan with location of samples LM-13.
(TIF)

Fig 9. Summary of 26 results from Kimberley rock art dating projects.

doi:10.1371/journal.pone.0161726.g009
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