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Abstract. The spectral density functions for relaxation of nuclear spins due to time-
dependent electric quadrupole interactions are studied for diffusion of atoms on a
crystal structure. It is shown that, for an arbitrary concentration c of diffusing atoms,
the spectral density functions and consequent relaxation rates scale with concentration
as c(1 − c). The detailed form of the functions can be obtained simply from analysis
of the low spin concentration limit, unlike the analogous case for magnetic dipolar
relaxation. Some applications to metal-hydrogen systems are described.

PACS numbers: 76.20.+q, 76.60.Es

1. Introduction

Nuclear spin relaxation in condensed matter is often caused by fluctuating magnetic

dipolar interactions between spins undergoing relative translational diffusion. An

example is the relaxation of the proton magnetisation of hydrogen diffusing between

interstitial sites in metals. For nuclei with spin I > 1/2, another common relaxation

mechanism is fluctuating electric quadrupolar interactions between a nuclear quadrupole

moment and the electric field gradient at the nuclear site which is time-dependent due

to atomic diffusion. An example is the relaxation of the deuteron magnetisation of

deuterium diffusing in metals.

Nuclear spin relaxation rates, for both the dipolar and quadrupolar mechanisms,

may be expressed as linear combinations of spectral density functions which are the

Fourier transforms of the correlation functions of the fluctuating magnetic dipolar or

electric quadrupolar interactions (see for example, Abragam 1961, Wolf 1979, Kelly and

Sholl 1992). The time-dependence of the correlation functions arises from functions

describing the probability of a pair of nuclei having a particular separation at time t

relative to the separation of a pair of nuclei at time zero.

It has been recognised for many years (Sholl 1967) that the probability functions

for quadrupolar relaxation are different from those for dipolar relaxation. The dipolar

interaction is a coupling between pairs of spins and so the relevant probability function

decribes the time evolution of the separation of a particular pair of spins. On the

other hand, quadrupolar interaction is a coupling between a particular nucleus and the

total electric field gradient due to the collective effect of all other diffusing atoms. The
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relevant probability function in this case is therefore the probability that, relative to a

particular quadrupolar nucleus, there is an atom at a particular separation at time zero

and an atom (but not necessarily the same atom) at a particular separation at time t.

At low concentrations of diffusing species the probability functions are the same for both

the dipolar and quadrupolar cases. In general, the probability function for quadrupolar

relaxation can be expressed as the sum of the dipolar probability function (a two-particle

term) and a three-particle term which describes the probability of the final separation

of atoms corresponding to a different atom to that for the initial separation.

For the dipolar case, methods have been developed for calculating the probability

functions and spectral density functions for a range of physical systems (see for example,

Sholl 1988). The quadrupolar case is more difficult because of the three-particle terms.

It is known that the two- and three-particle terms tend to cancel for liquid metal

systems (Sholl 1974). There has also been an attempt at deriving approximate results

for diffusion in crystals (Barton 1982, Barton and Seymour 1982).

The purpose of this paper is to show the surprising result that, for diffusion

in crystals, the quadrupolar spectral density functions for an arbitrary concentration

of the diffusing species may simply be related to the case for a low concentration.

Since the low concentration case is much easier to solve, the quadrupolar functions

at arbitrary concentrations are much easier to treat than the corresponding dipolar

functions. The analysis is presented in section 2 and the implications for analysing

quadrupolar relaxation data are discussed in section 3.

2. Theory

The spectral density functions J (p)(ω) for quadrupolar relaxation are the Fourier

transforms of the correlation functions

G(p)(t) =< F (p)(0)F (p)∗(t) > (1)

where F (p)(t) are the electric field gradient (efg) functions at a nuclear site at time t

(Wolf 1979) and the diagonal brackets denote an ensemble average. It will be assumed

that the total efg at a site may be written as the sum of contributions from atoms at

crystal sites so that

F (p) =
∑

i

u(p)(ri). (2)

The correlation function may then be written as

G(p)(t) = c
∑
i,j

u(p)(ri)u
(p)∗(rj)P (ri; rj, t) (3)

where c is the probability, at time zero, of an atom at ri (assumed the same for all sites),

and P (ri; rj, t) is the probability that there is an atom at at rj at time t given that there

was an atom at ri at time zero. The vectors are all relative to a quadrupolar nucleus at

the origin, which may diffuse in the time t. The atom at rj at time t may be the same

as that at ri at time zero, or it may be a different atom that was at some other site at
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time zero. The analogous correlation functions for magnetic dipolar relaxation may be

written in a similar form to equation (3) where the particles at the origin and at ri are

a pair of interacting spins undergoing relative diffusion. But in this case, the atom at

rj at time t must be the same as that at ri at time zero because the magnetic dipolar

interaction is between a pair of spins.

The following analysis of the quadrupolar probability function is similar to that

used by Kutner (1981) in discussing tracer and chemical diffusion. First consider the

case of a quadrupolar nucleus fixed at the origin with the sources of efg diffusing on

a separate structure. An example is relaxation of fixed metal nuclei due to hydrogen

diffusing on interstitial sites where each hydrogen produces an efg at a metal site. A

differential equation for P (ri; rj, t) is

dP (ri; rj, t)

dt
= Γ

∑

r′j

[
P (ri; r

′
j, rj, t)− P (ri; rj, r

′
j, t)

]
(4)

where P (ri; r
′
j, rj, t) is the probability of an atom at r′j and no atom at rj at time t and

subject to the initial condition for an atom at ri. The sites r′j are the set of sites which
are nearest neighbours of rj to which an atom at rj may jump and Γ is the mean jump

rate of an atom to an unblocked site. The initial condition is

P (ri; rj, 0) = δri,rj
+ c(1− δri,rj

) = c+ (1− c)δri,rj
(5)

where c is the fraction of sites occupied by atoms.

The functions on the right hand side of equation (4) satisfy

P (ri; r
′
j, rj, t) + P (ri; r

′
j, rj, t) = P (ri; r

′
j, t) (6)

P (ri; rj, r
′
j, t) + P (ri; rj, r

′
j, t) = P (ri; rj, t) (7)

where P (ri; r
′
j, rj, t) is the probability of atoms at r′j and rj at time t given there was

one at ri at time zero. The differential equation (4) therefore becomes

dP (ri; rj, t)

dt
= Γ

∑

r′j

[
P (ri; r

′
j, t)− P (ri; rj, t)

]
(8)

since P (ri; r
′
j, rj, t) = P (ri; rj, r

′
j, t). But equation (8) is the same as the differential

equation for the random walk of a single atom on the structure. The physical

explanation of this result is that as c increases, the number of successful jumps decreases

because of site blocking, but the number of atoms that can be found at rj increases.

These two effects cancel so that the time evolution of P (ri; rj, t) is independent of c.

The first term c on the right hand side of the initial condition (5) has the solution

P (ri; rj, t) = c to equation (8). This constant term does not lead to relaxation and may

be ignored. The second term of the initial condition gives a solution that is (1−c) times

the probability function for a random walk of an atom starting at ri.

The correlation function (3) may therefore be written as

G(p)(t) = c(1− c)
∑
i,j

u(p)(ri)u
(p)∗(rj)P (ri; rj, t) (9)
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where P (ri; rj, t) is the solution of equation (8) with the initial condition P (ri; rj, 0) =

δri,rj
. The correlation function is therefore c(1− c) times the correlation function for a

single atom undergoing a random walk on the structure. The spectral density functions

and nuclear spin relaxation rates may therefore be simply expressed in terms of the

corresponding theory for the low spin concentration limit.

The above analysis is not applicable to the case of the probability functions for

magnetic dipolar relaxation because the symmetry condition following equation (8) is

not then valid. In the dipolar case the atom at r′j must be the same as that at ri

initially, whereas rj is the location of any atom.

Similar analysis may also be applied to the case of the quadrupolar nuclei diffusing

on the same lattice as the sources of the efg. An example is relaxation of deuterium for

deuterium diffusing on interstitial sites in a metal. The differential equation (4) needs

modification in this case because of the diffusion of the relaxing nucleus and because of

site-blocking effects. The equation becomes

dP (ri; rj, t)

dt
=

∑

r′j

[
W (r′j, rj)P (ri; r

′
j, rj, t)−W (rj, r

′
j)P (ri; rj, r

′
j, t)

]
(10)

where W (r′j, rj) is the jump frequency for atoms with a separation r′j to a separation
rj. Either of the atoms may jump and W (r′j, rj) includes Kronecker delta terms which

exclude jumps which would result in both atoms at the same site. The symmetry

conditions (6) and (7) are still valid and W (r′j, rj) = W (rj, r
′
j), so that equation (10)

becomes

dP (ri; rj, t)

dt
=

∑

r′j

[
W (r′j, rj)P (ri; r

′
j, t)−W (rj, r

′
j)P (ri; rj, t)

]
. (11)

The initial condition (5) is still valid, so that the correlation function may again be

written as equation (9). The function P (ri; rj, t) can be obtained from the differential

equation (11) which is the equation for the low spin concentration limit analogous to

equation (8), but which in this case includes the jump probabilities W (r′j, rj).

3. Discussion

The results of the previous section show that the correlation functions for quadrupolar

relaxation at any concentration c are a scaling factor c(1− c) multiplying the functions

for the low concentration limit. This result also applies to the spectral density functions

and relaxation rates. The implications of this result for the relaxation rates is that the

relaxation rates for different c simply scale as c(1− c) and that the maxima in the rates

as a function of temperature will occur at the same temperature for all c.

An example is the quadrupolar relaxation of 45Sc in ScH(D)x (Barnes et al. 1997).

For a model in which only H(D) nearest neighbours of a Sc nucleus contribute to the efg

at the Sc site, Barnes et al. showed by a direct evaluation of the efg that the correlation

function satisfied the c(1 − c) scaling for t = 0, where c = x/2 for this structure. The

time-dependence of the correlation function was evaluated in the low concentration limit
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from random walk theory. The resulting correlation function agreed very well with the

results of Monte Carlo simulations, as expected from the general result derived above.

The relaxation data for Sc hydrides and deuterides was reasonably consistent with the

maximum relaxation rate being proportional to c(1 − c) and with the maximum rate

occurring at the same temperature for all c. In this case the complications of the theory

of diffusion of many atoms at arbitrary values of c can be straightforwardly taken into

account by using results from the simple random walk of a single particle.

A second example is the quadrupolar relaxation of deuterium in metal-hydrogen

systems. In this case the low concentration limit corresponds to the relative diffusion

of two deuterium atoms on the structure such that the site blocking effects of the two

atoms are taken into account. This model has been solved within the context of magnetic

dipolar relaxation by Sankey and Fedders (1979) and Barton and Sholl (1980) for the

cubic lattices. The resulting spectral density functions have been parametrised by Sholl

(1988). If the efg due to a deuterium atom is assumed to arise from a point charge

then the efg functions u(p)(r) are proportional to the corresponding magnetic dipolar

functions. According to the theory in the previous section, the dipolar spectral density

functions for the low concentration limit can then be used to analyse the quadrupolar

deuterium relaxation data for any deuterium concentration c. The corresponding

quadrupolar relaxation functions would involve a factor of c(1− c) but would otherwise

be proportional to the dipolar results.

The theory in section 2 has assumed atoms diffusing amongst a fixed set of sites

which is an inapproprate model for liquids. The results cannot therefore be applied to

quadrupolar relaxation in liquid metals.

4. Conclusion

It has been shown that quadrupolar relaxation rates due to an arbitrary concentration c

of diffusing species can be calculated rigorously by simply calculating the corresponding

relaxation rates in the low concentration limit and scaling these results by a factor

c(1− c). The complications of analysing the diffusion of many particles do not need to

be addressed. This result does not apply to the analogous case of dipolar relaxation.

The model used has assumed that there is a fixed set of sites amongst which atoms

diffuse at any concentration c. This may not necessarily always be the case. For example,

it is known that hydrogen generally occupies tetrahedral sites in some metal-hydrogen

systems, but that some octahedral site occupation can also occur at high concentrations

(see for example Barnes 1997). It has also been assumed that the efg produced at a

nuclear site is a simple addition of the efg from individual sites. It is possible that the

efg from a site at high concentrations may be modified by interaction effects. Either of

these effects would require modification of the above theory.
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