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Abstract. An exact algebraic expression is derived for the diffusivity for diffusion between 
interstitial e and g sites in the cubic C15 Laves phase AB 2 in terms of four jump rates between 
the interstitial sites. The result is for the low concentration limit of diffusing atoms and is valid 
for arbitrary positions of the e and g sites. The expression reduces to simple forms in some 
special cases. Some examples of diffusion of H in C15 intermetallic compounds are discussed. 

PACS numbers: 66.30.Dn, 66.30.Jt 

1. Introduction 

The diffusion of H In cubic C15 Laves phase intermetallic compounds AB 2 has been 
studied extensively (Skripov 2004). The H diffuses between interstitial e and g sites 

which are located in irregular tetrahedra of metal atoms. The diffusivity of the H can 
be measured by a pulsed-field-gradient nuclear magnetic resonance technique (see for 

example Majer et al. 1995), and an aim in these studies is to relate the diffusivity D to 
the microscopic details of the H jumps. A limitation in this procedure has been the lack 
of a suitable theory relating the diffusivity to the H jump rates between the interstitial 

sites. 
The relationship between the diffusivity and the jump rates is complicated because 

the structure formed by the interstitial sites is not a Bravais lattice and because 
there are four different jump rates between the sites. Some Monte Carlo simulations 
of the diffusivity in the C15 structure have been undertaken by Herrmann et al, 

(1997), but in the absence of any rigorous theoretical framework, analysis of the 
experimental diffusivities of H in C15 Laves phase intermetallic compounds has used 

simple phenomenological models (see for example Skripov 2004). An exact expression 
for the diffusivity D in terms of the jump rates between the e and g interstitial sites 

in the low concentration limit is derived in this paper. The low concentration limit is 
often relevant to H in intermetallic compounds. 

The details of the structure formed by the e and g sites is discussed in the 

following section. This is followed by the derivation of the general expression for the 
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diffusivity. This expression simplifies considerably in special cases and examples of these 

are described and discussed in section 4. 

2. Structure and jump parameters 

The C15 AB 2 structure has eight formula units per cubic unit cell. The interstitial e 

sites are within AB 3 tetrahedra and the g sites are within A2B 2 tetrahedra. There are 

also interstitial b sites within B4 tetrahedra, but these do not appear to be occupied by 

H in intermetallic compounds and will not be considered. There are twelve g sites and 

four e sites per formula unit. It is convenient in the theory in the next section to use a 

primitive unit cell that contains two formula units, 8 e sites and 24 g sites. 
The positions of the e sites involve a parameter X; and the positions of the g sites 

involve parameters X, and Zg (Hahn 1989, space group no. 227). There are ideal 
values of these parameters which correspond to the close-packing of spheres: X e = 1/4, 

X g = 1/16 and Zg = 7/8. The e sites form a face-centred-cubic structure with half the 
AB 2 lattice parameter for the ideal value of X e • 

The g sites form linked hexagonal structures. Each g site has two neighbours on 

a hexagon and one g site neighbour on an adjacent hexagon. A g site also has one 

neighbouring e site. An e site has three neighbouring g sites which are each on different 

hexagons. A diagram of the structure of the e and g sites for the ideal structural 

parameters has been given by Eberle et at. (2002) and reproduced by Skripov (2004). 

Diffusing atoms have jump frequencies f 1 from an e site to a particular neighbouring 

g site, f 2 from a g site to a neighbouring e site, f 3 from a g site to a particular 

neighbouring g site within a hexagon, and f 4 from a g site to a neighbouring g site 

on an adjacent hexagon. The probabilities Ce and Cg of occupation of e and g sites are 
determined by the principle of detailed balance and the jump rates I'1 and I'2 between 

the e and g sites so that cef 1 = cg f 2 • It will be assumed that the occupation probabilities 

are normalised to one atom per unit cell so that 8(Ce + 3cg ) = 1 and therefore 

f 2 f 1 

c e = 8(3f1+f2 ) C
g = 8(3f1+f2)' (1) 

Direct atom jumps between neighbouring e sites do not appear to occur (Skripov 2004) 
and have not been included in the diffusion model. 

3. Diffusivity 

The diffusivity D is defined by 

(R2
)

D= (2)
6t 

where (R2 ) is the mean square displacement of an atom in a long time t. One approach 

to evaluating D is to write the displacement R of an atom as R = R 1 + R 2 + ... + R n 
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for a sequence of n steps in a time t (see for example Allnatt and Lidiard 1993). If the 

cross terms Ri.Rj (i #- j) in (R2
) average to zero, the diffusivity can be written as 

1 '"' 2D av = - LJ rkckfknk (3)
6 k 

where rk is the length of a jump of type k, Ck is the probability of an atom at a site of 

type k: f k is a jump rate from a site of type k and nk is the number of these jump paths 

from the site. For diffusion between the e and g sites for the ideal e and g parameters 

in the C15 structure, equn. (3) has the simple form 
2a f l(3f2+3f3+2f4 ) (4)ti; = 128 3fI + f 2 

where a is the cubic lattice parameter and the expressions for Ce and Cg in equn. (1) 

have been used. The cross terms average to zero, however, only if there is sufficient 

symmetry and this is not the case for diffusion between the e and g sites in general. 

A general practical method for calculating D for diffusion between sites in complex 

unit cells has been described by Braun and Sholl (1998). The following is an outline of 

the procedure. The sites within a unit cell are labelled a = 1, ... ,s and /'1,ai10,ao are the 
jump rates from site ao in the unit cell 10 to site a in the unit cellI. A square matrix 

A(k) of dimension s is defined by 

Aa,ao(k) = (C a o / ca r/2 L exp[ik. (l - 10)] [61,1060"0'0 L/'I',a'jl0,ao -/,I,a ilo,ao] (5) 
1 I' .a' 

where Co' is the equilibrium occupation probability of site a normalised to one atom 

per unit cell. The site 10 may be chosen arbitrarily because of translational symmetry. 

Matrices Ao, Al and A2 are then constructed which are defined by 
2 

Ao = lim A(k), Al = lim 88 A(k), A2(k) = lim 88 A(k). (6) 
k-eO k-s-O kx k-e-O kx2 

An s-dimensional vector Yo is defined by (Vo)a = c;/2 and a vector VI is the solution of 
the set of s linear equations 

(7) 

The determinant of Ao is zero so that one of the components of VI may be chosen 

arbitrarily and s - 1 of the equations (7) solved for the other linearly independent 

components. For isotropic diffusion the diffusivity D is finally calculated from 

D = V~AIVI + ~V~A2VO' (8) 

The evaluation of the second term in equn. (8) is straightforward, but an analytic 

solution of the linear equations (7) can be formidable for a large number s of sites per 

unit cell. For e and g sites in the C15 structure s = 32 and so it is necessary to solve 

a system of 31 linear equations involving the jump rates fa (a= 1,4) if the occupation 

probabilities Co' are expressed in terms of I' I and T2 using equn. (1). An analytic solution 
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of these equations was achieved with the assistance of a computer algebra package. The 

final result is 
2 

D = a r, ){4f4(1 - f I/f2 ) + 3f2 - Sf1
 
32(f2 + 3f1
 

[f2(f3 + fd + 3f3f1](4f4 +Sf2 ) + f~(2f4 - 10f3 - 3f2 ) 

+ f 2(f2 + 3f3 ) 

_ 2f4(8f3f4 + Sf~ +2f2f3 + 3f2f4)} (9) 
•(f 2 + 3f3)(f3 + f 4 ) 

This expression is valid for arbitrary values of the positional parameters that determine 

the location of the e and g sites within the unit cell. This is because the input to the 

above calculations involves only the lattice parameter a and the jump rates between the 

sites. The distances between the interstitial sites are not used. The distances between 

the sites will physically influence the jump rates, but it is the jump rates and the network 

connections within the system and between unit cells that determines the diffusivity. 

The expression (3) for D av does depend on the distances between the sites, as does the 

contribution to D from the cross terms in this method. The cornbination of these terms 

would be independent of the relative distances between the sites. 

In cases such as diffusion of H in intermetallic compounds the complicated 

expression (9) is likely to simplify because of significant differences in the magnitudes 

of some of the jump rates. Some special cases are considered in the following section. 

4. Special cases 

4.1. No jumps within hexagons 

If f 3 = 0 jumps within hexagons are excluded. In this limit, expression (9) gives D = 0 

and long range diffusion cannot occur. In this case, jumps can occur between adjacent 

hexagons and back and forth between neighbouring e and g sites, but jumps within 

hexagons are necessary for an atom to escape its local environment. 

4.2. Only g site occupation 

In the limit I'2 --+ 0 the jump rate from g to e sites becomes negligible, c; --+ 0, and the 

diffusion occurs only between g sites. Taking this limit in the expression (9) gives 
2a ] 

D = 48 f-1 + f-1. (10)
3 4 

This result is similar in form to the diffusivity for a one-dimensional lattice (Kehr ei 

al, 1978, Braun and Sholl 1998) for which D = a 2 f where f- 1 is the residence time 

averaged over all of the sites. In these cases the diffusivity becomes zero if any of the 

jump rates are zero. For diffusion between the g sites this corresponds physically to 

long range diffusion requiring jumps both within and between hexagons and the slower 

of these jump rates is the rate limiting step for diffusion. 
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The results of the low-concentration Monte Carlo simulations of Herrmann et al. 

(1997) for diffusion between g sites are consistent with equn. (10). These authors 
analysed their Monte Carlo data in terms of an expression for D that is equivalent to 
equn. (4) multiplied by a factor they called a "correlation factor" g. Equating this form 

for D to equn. (10) enables their factor 9 to be obtained. The results as a function of 

f 3/f4 agree with their graphical values of g. 

The expression (10) provides a straightforward method for fitting low concentration 
H diffusion data in C15 intermetallic compounds where only g sites are occupied. An 

example is TaV2Hx . The H diffusivity has been measured as a function of temperature 

for x=1.24 and is close to Arrhenius form in the temperature range 334-484 K (Majer 
et al, 1995). A fit of the diffusion data to an Arrhenius expression gave a prefactor 

Do = 2.75 X 10-8 m 2s- 1 and an activation energy of E=0.267 eV. Spin-lattice relaxation 

rates of H in this system show two peaks as a function of temperature and the high

temperature peak has been associated with the slower jumps between the hexagons 
(Skripov 2004). It was deduced that the H occupy g sites only and jumps within 

hexagons (f3) are much faster than jumps between hexagons (T4) in this temperature 

range. Analysis of the low H concentration spin relaxation data (x=0.06) gave the 
prefactor of these jump rates as 3.8 X 1011 S-1 and an activation energy of 0.22 eV 

(Buzlukov and Skripov 2004). These parameters can also be deduced directly from 

the diffusion data using eqn. (10). This expression becomes D = a 2 f 4 / 48 since the 
slower jump rate will dominate when the jump rates are significantly different. Using 
a = 7.160A (Buzlukov and Skripov 2004) the deduced value of I'4 from the diffusivity 
fit is a prefactor 2.57 X 1012 

S-1 and an activation energy 0.267 eV. The jump rate I'4 for 

x=1.24 deduced from the diffusion data is therefore similar to the rate obtained from 
the relaxation data for x = 0.06 and supports the interpretation of the high-temperature 

relaxation peak as being due to the slower jump rate between hexagons. 

4.3. All g jump rates the same 

The case I'2 = I'3 = I'4 corresponds to the same jump rate from a g site to a neighbouring 
e site and to neighbouring g sites, both within a hexagon and on an adjacent hexagon. 
The expression (9) for D in this case becomes 

a2 1D - - ---,------ (11) - 48 f;-1 + (3f d-1. 

It is interesting that the approximate expression (4) for D av for the ideal e and g 

structural parameters also reduces to the same result. Therefore if the jump rates 
from a g site are similar in magnitude the expression Dav is likely to be a reasonable 
approximation. 

An example is H diffusion in HITi2Hx • The H diffusion and spin-relaxation data 
in this system have been analysed by Bhatia et al. (2004) to obtain the jump rates fa, 
which were assumed to be of Arrhenius form. The diffusivity D was calculated by a 

numerical evaluation of eqn. (8) in this work. For the deduced jump rate prefactors 
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and activation energies, the jump frequencies I'2, I'3 and I'4 differ by less than 50% for 

1000/Trv2.7. The numerical values of D from equns. (8) and (11) are very similar in 

this temperature regime in agreement with the above theory. 

4.4. Mainly e site occupation 

If I' 1 « I'2 the occupation probability of the e sites is much greater than for the g 

sites. This condition alone does not lead to a significant simplification of the general 

expression for D, however, if in addition f 3 « f 4 then

2 
D = a f 1(1 ~)-l (12)

48 + 3f3 

A special cases of this result is that if f 2 « f 3 « f 4 then D = a 2f 1/48 so that the 

diffusion is determined simply by the e to g jump rate. Another special case is that if 

f 3 « both f 2 and f 4 then D = (a 2/ 16)f 1 f 3 / f 2 • In both of these cases the diffusivity 

would have Arrhenius form if the individual jump rates were of Arrhenius form. 

5. Conclusion 

A general algebraic expression has been derived for the diffusivity D of diffusion between 

interstitial e and g sites in the cubic Laves phase C15 structure in the low concentration 

limit. The result is valid for arbitrary positions of the e and g sites. 

The general result is a complicated combination of the four jump rates between 

interstitial sites. The diffusivity will not necessarily be of Arrhenius form if the 

individual jump rates are of Arrhenius form. There are, however, a number of special 

cases for which the general expression for D simplifies considerably. These results 

can produce a quite direct method of analysing diffusion data of H in intermetallic 

compounds to obtain some of the H jump rates in such cases. 

Spatial correlation effects due to the blocking of some attempted jumps 

and consequent correlations between successive jumps will be relevant at higher 

concentrations of the diffusing particles. The low concentration limit results are, 

however, likely to be a good approximation for many cases of H in C15 intermetallic 

compounds. 
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