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A B S T R A C T

Rice yield depends on factors including variety, weather, field management, nutrient and water availability.
We analyzed important drivers of yield variability at the field scale, and developed yield forecast models
for crops in the temperate irrigated rice growing region of Australia. We fused a time-series of Sentinel-
1 and Sentinel-2 satellite remote sensing imagery, spatial weather data and field management information.
Rice phenology was predicted using previously reported models. Higher yields were associated with early
flowering, higher chlorophyll indices and higher temperatures around flowering. Successive rice cropping
in the same field was associated with lower yield (p<0.001). After running a series of leave-one-year-out
cross validation experiments, final models were trained using 2018–2022 data, and were applied to predicting
the yield of 1580 fields (43,700 hectares) from an independent season with challenging conditions (2023).
Models which aggregated remote sensing and weather time-series data to phenological periods provided more
accurate predictions than models that aggregated these predictors to calendar periods. The accuracy of forecast
models improved as the growing season progressed, reaching RMSE=1.6 t/ha and Lin’s concordance correlation
coefficient (LCCC) of 0.67 30 days after flowering at the field level. Explainability was provided using the SHAP
method, revealing the likely drivers of yield variability overall, and of individual fields.
1. Introduction

Early crop yield forecasts are important for multiple levels of
decision-making. For agricultural industries and processors, yield fore-
casts enable decision-making regarding grain storage, transport, and
marketing (Basso and Liu, 2019). At governmental and inter-
governmental level, they inform decision-making on food security
(Meroni et al., 2021). For individual growers, yield forecasts can help
with financial planning, organizing on-farm storage and transport of
produce. They can also provide growers with understanding of the
agrometeorological and management factors that impact yield (Delerce
et al., 2016; Paudel et al., 2023), and thus aid decision making regard-
ing management factors such as sowing date and method, nutrient and
water management, potentially leading to improved productivity and
profitability.

Weather has a significant impact on the yield of agricultural crops
with the magnitude and direction of the effect varying relative to
growth stage (Tappi et al., 2023). For rice, the effect of weather varies
by variety (Sivapalan et al., 2007; Delerce et al., 2016), known as
genotype by environment (G×E) interaction. Data mining approaches

∗ Corresponding author.
E-mail address: james.brinkhoff@une.edu.au (J. Brinkhoff).

have been used to show how rice yield is influenced by average
temperatures, solar radiation and rainfall (Delerce et al., 2016). In tem-
perate regions, cold-temperatures during reproductive growth stages
can induce sterility and thus greatly degrade yield (Godwin et al.,
1994; Williams and Angus, 1994). There is some evidence that cold
during vegetative stages can exacerbate this sensitivity (Shimono et al.,
2007). The impact of these cold stress events on yield in temperate
regions is a major cause of large yield gaps, and modeling them is not
straightforward (Espe et al., 2016; Li et al., 2015). Heat stress can also
impact yield, particularly when experienced during panicle initiation
(PI) to flowering (Espe et al., 2017; Ali et al., 2019). The predictions
from process-based rice crop models (such as APSIM-ORYZA, CERES-
Rice etc.) have large uncertainties and often deviate from actual yields
in the presence of such high and low temperature conditions (Li et al.,
2015).

Rice yield is also influenced by biophysical and crop management
factors including nitrogen status (Dunn et al., 2016), leaf area in-
dex (Hashimoto et al., 2022), water application timing (Dunn and
Gaydon, 2011) and water stress (Bouman and Tuong, 2001). Many
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of these factors can be detected using remote sensing (Myneni and
Williams, 1994; Brinkhoff et al., 2021, 2022). Biomass depends on the
interception of solar radiation by photosynthesizing leaf area, and yield
is determined by the total plant biomass multiplied with the harvest
index, which is typically around 50% for rice (Hashimoto et al., 2022).

The spectral reflectance of rice plants is predictive of yield. This
has been demonstrated in numerous studies using ground-based sen-
sors (Varinderpal-Singh et al., 2021; Chang et al., 2005). However, the
relationships are variable with growth stage and cultivar (Varinderpal-
Singh et al., 2021). Many studies have found that spectral reflectance
measurements taken around the PI or booting growth stages are most
related with yield (Varinderpal-Singh et al., 2021; Eugenio et al., 2023).
The commonly used normalized difference vegetation index (NDVI)
depends on near infrared and red reflectances. However, many works
have found that indices involving green (Soriano-González et al., 2022)
or red edge (Zhou et al., 2017) bands are more predictive of rice yield.

In regions where cloud frequently obstructs optical remote sensing,
synthetic aperture radar (SAR) has been adopted (dela Torre et al.,
2021). For example, Setiyono et al. (2019) used SAR data from the
Sentinel-1 constellation to find start-of-season and leaf area index,
which were then coupled with the ORYZA crop growth model to predict
yield. Yu et al. (2023) found that integrating SAR and multispectral
data resulted in improved rice yield predictions when the number of
cloud-free multispectral observations were low.

Process-based crop models can assimilate environmental and bio-
physical information as well as information such as LAI derived from re-
mote sensing to predict yield (dela Torre et al., 2021). Often, however,
empirical models using statistical and machine learning techniques, can
provide higher accuracies (Wang et al., 2023a), providing sufficient
previous yield data is available for model training. The latter rely on al-
gorithms to learn a predictive relationship between observed variables
(remote sensing, weather, field information) and the target variable
(yield) and as such, intermediate biophysical variables (LAI, fAPAR
etc.) are not always required. Interpreting such models to derive useful
information on the drivers of yield is challenging. However techniques
such as Shapley values that summarize prediction dependencies on
input variables have provided a level of explainability (Huber et al.,
2022; Shendryk et al., 2021)

Yield prediction models that exploit multiple spectral and tempo-
ral features can provide more accurate predictions than single linear
regression models (Kang et al., 2020; Brinkhoff and Robson, 2021;
Cao et al., 2021; dela Torre et al., 2021). Finding statistics such as
maximum, mean and minimum of a time-series of vegetation indices
may provide good features for yield estimation (Rahman and Robson,
2020; Nguyen et al., 2022; Von Bloh et al., 2023). Using features
derived from images taken at different times directly in ML models may
improve accuracy relative to data taken from a single time points (Zhou
et al., 2017). More advanced techniques to generate features from
remote-sensing time-series include harmonic regression (Deines et al.,
2020), wavelet transforms (Gu et al., 2022), or training time-series
specific neural networks (such as 1DCNN and LSTM) to discover time
series relationships (Paudel et al., 2023). However, some studies have
found that standard ML algorithms with flattened time-series features
provide as good predictions as time-series specific algorithms in general
regression problems (Guijo-Rubio et al., 2023) and in yield prediction
problems specifically (Kang et al., 2020; Von Bloh et al., 2023; Sabo
et al., 2023). Yield prediction accuracy can be improved when remote-
sensing indices are resampled according to thermal time since sowing
or phenology stages (Desloires et al., 2023; Bolton and Friedl, 2013;
Ji et al., 2022), particularly when there is variability in the timing of
phenological events between crops, seasons and regions.

There were two overarching aims of this work. Firstly, to analyze
drivers of rice yield in a temperate growing region. Secondly, to pro-
duce optimized rice yield forecasting models using time-series features.
2

In particular, we aimed to investigate the following:
• What is the relationship between yield and factors such as variety,
management, weather and remote sensing information?

• Can composing time-series variables (weather and remote sens-
ing) according to per-field growth stages provide suitable features
for yield forecast models, and do time-series models incorporating
data aggregated from multiple stages across a growing season
provide better predictions than those using data from a single
period?

• What are the achievable yield prediction accuracies using only
variables from either field management information, time-series
weather data or remote sensing data, and how does accuracy
improve when these variable sets are combined using linear or
nonlinear machine learning algorithms?

• Can data analysis using the developed feature engineering meth-
ods and model explainability techniques be used to provide in-
formation on the drivers of crop yields, that could improve field
management decisions towards greater productivity?

2. Methods

We collated a dataset of field-level rice yield and predictive vari-
ables. This included information on rice sowing method and date and
variety. We then derived phenological and time-series information from
remote sensing and weather datasets. The process is shown in Fig. 1 and
is described in the following sections.

2.1. Field and yield data

The study area is the Murray and Murrumbidgee Valleys in New
South Wales, where the majority of Australian rice is grown. The
climate is temperate (Jena, 2012), which allows a single crop to be
grown each year, with reproductive growth stages occurring during
summer (December–February). Crops are typically sown in October and
harvested in April. Throughout this paper, ‘year’ refers to the year of
harvest rather than the year of sowing.

We obtained records of all rice crops from 2018–2023. The average
field size was 34 ha. Data included geo-referenced field geometries, rice
variety, sowing date and sowing method. The main sowing methods
adopted in the area are drill, aerial and dry broadcast (Ward et al.,
2021). Aerial and dry broadcast are quite similar, as the field is ponded
(flooded) for the majority of the season. In contrast, drill sowing starts
the season with intermittent irrigation, then ponding usually around
the three-leaf stage. The nine varieties included in the study are the
dominant ones grown in the area (Dunn and Dunn, 2023), including
long grain (Doongara, Langi, Topaz) medium grain (Reiziq, Sherpa,
V071), short grain (Koshihikari, Opus) and short-season medium grain
(Viand) varieties.

We collected predictors (e.g. remote sensing VIs, variety, sowing
dates etc.) on a per-field basis. However, the processor’s yield data were
recorded per-crop (unique farm × variety × year). Therefore, some yield
records were aggregated from multiple fields on the same farm, which
may have had diverse management (sowing date and method, fertilizer
application). Since it was not clear how field-level predictors should be
aggregated to match crop-level yield records, for model training, we
used only crop records that came from a single field. On the other hand,
during inference and model testing, we were able to predict yield for
all fields, since predictors were available for all fields. These field-level
predictions were then aggregated to the crop level for comparison with
the processor yield data.

Data were screened to remove records with unrealistic sowing date
(<September 1 or >December 31), field area errors (<0.5 ha), yield
errors (<0.1 or >18 t/ha), or low normalized difference vegetation
index at peak of season (<0.6, usually a result of a crop being associated
with the wrong field). After this process, there were n = 1324 one-
field crop records from 2018–2023. The number of datapoints per year,

variety, sowing method and region is provided in Section 3.1.2.
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Fig. 1. Data collation process. Data includes time-invariant variables such as variety and sowing date, and time-series (TS) variables such as weather and remote sensing information
from Sentinel-1 (S1) and Sentinel-2 (S2) satellites. Intermediate predictive models were used to estimate ponding (or flooding) date and the panicle initiation (PI) and flowering
growth stages. These were then used to engineer features from the time-series data, to train and test yield prediction models.
2.2. Predictor variables

2.2.1. Time-invariant predictor variables
The yield predictors considered are listed in Table 1. They included

time-invariant variables that do not change during a season, such as
rice variety, sowing method, and the dates of sowing, ponding, PI and
flowering. The ponding (or flooding) date is the date when the water
level is raised above the soil for the majority of the season, and was
predicted using a logistic regression model based on a time-series of
Sentinel-2 reflectances, as described in Brinkhoff et al. (2022). The PI
and flowering dates were predicted using additional logistic regression
models based on variety, sowing method, sowing date, predicted pond-
ing date and accumulated temperatures, as described in Brinkhoff et al.
(2023b).

2.2.2. Time-series predictor variables
Remote sensing data from the Sentinel-1 (S1) and Sentinel-2 (S2)

constellations of the European Space Agency were accessed and pro-
cessed in Google Earth Engine (GEE) (Gorelick et al., 2017). The S1
synthetic aperture radar (SAR) backscatter data included vertical trans-
mit polarization, and both vertical and horizontal receive polarization
(VV and VH channels), in decibels (dB).

The S2 optical top-of-atmosphere (TOA) remote sensing data in-
cluded the ten 10 m and 20 m resolution reflectance bands (Ta-
ble 1). Important vegetation indices (VIs) were derived from the re-
flectances (Zeng et al., 2022). Though S2 surface reflectance (SR) data
is also available in GEE, that dataset only starts from December 2018,
so would not allow use of 2018 and 2019 yield data to train models.
Further, TOA data has been found in other work to provide models
with similar accuracy to those based on SR data (Brinkhoff et al.,
2022; Wolters et al., 2021), and we similarly found rice yield model
3

results (based on 2020–2023 yield records) using SR data were no
better than those using TOA data. Clouds were masked in the S2 data
using the s2cloudless product (Skakun et al., 2022) with threshold 40%.
Cloud mask speckle was first removed using a focal minimum filter
(radius 30 m), then the cloud masks were buffered by 500 m to avoid
contamination of data from cloud edges and shadows (Brinkhoff et al.,
2022). To ensure high-quality observations were used, only imagery
with more than 99% unmasked pixels within each field was used.

For each field and image date, the spatial mean of all S1 and S2
pixels were calculated. This resulted in time-series tabular data with
columns being the image bands listed in Table 1. These time-series were
linearly interpolated to a daily time step. A Savitzky–Golay filter was
then applied to smooth each time series.

The weather data was gathered at a daily time step for each farm
from the spatially interpolated SILO dataset (Jeffrey et al., 2001). To
attempt to model cold-temperature induced sterility, a feature was
engineered from the daily minimum temperature, quantifying how
far below a critical temperature the daily minimum temperature was,
similar to Shimono et al. (2005). This was defined as:

𝑇𝑚𝑖𝑛 < 𝑇 𝑐𝑟𝑖𝑡 = 𝑚𝑖𝑛(𝑇𝑚𝑖𝑛 − 𝑇 𝑐𝑟𝑖𝑡, 0) (1)

After testing 𝑇 𝑐𝑟𝑖𝑡 = 12,15,18,21, it was found that 𝑇 𝑐𝑟𝑖𝑡 = 15 offered
the greatest improvement in model prediction accuracy, so only that
critical temperature was retained, with the variable named Tmin <
15 in the following. We note that this threshold was chosen em-
pirically based on improvement of model predictions, while other
works (Godwin et al., 1994; Espe et al., 2016) have discussed critical
night temperatures from 12–20 ◦C depending on variety and region.
While we did analyze the correlation between solar radiation and yield,
we found it added no accuracy to ML yield model predictions, so it was
omitted from the models.
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Table 1
Time-invariant and time-series predictor variables. Time-series variables were aggregated both to calendar months, and to 30-day windows
relative to the predicted flowering date.
Type Feature set name Name Details

Time-invariant

Variety Variety Categorical [Reiziq, V071, Langi, Sherpa...]

Dates+Method (D+M)

Sowing date Supplied by growers
Ponding date Predicted (Brinkhoff et al., 2022)
PI date Predicted (Brinkhoff et al., 2023b)
Flowering date Predicted (Brinkhoff et al., 2023b)
Sowing method Categorical [Drill, Aerial/Dry broadcast]

Time series

Reflectances (Refs)

B Blue (490 nm, 10 m)
G Green (560 nm, 10 m)
R Red (665 nm, 10 m)
RE1 Red edge (705 nm, 20 m)
RE2 Red edge (740 nm, 20 m)
RE3 Red edge (780 nm, 20 m)
NIR1 Near infrared (835 nm, 10 m)
NIR2 Near infrared (865 nm, 20 m)
SWIR1 Shortwave infrared (1610 nm, 20 m)
SWIR2 Shortwave infrared (2200 nm, 20 m)

Vegetation indices (VIs)

GRVI (𝐺 − 𝑅)∕(𝐺 + 𝑅)
GNDVI (𝑁𝐼𝑅 − 𝐺)∕(𝑁𝐼𝑅 + 𝐺)
NDVI (𝑁𝐼𝑅 − 𝑅)∕(𝑁𝐼𝑅 + 𝑅)
NDRE (𝑁𝐼𝑅 − 𝑅𝐸1)∕(𝑁𝐼𝑅 + 𝑅𝐸1)
CIG 𝑁𝐼𝑅∕𝐺 − 1
CIRE 𝑁𝐼𝑅∕𝑅𝐸1 − 1
LSWI (𝑁𝐼𝑅 − 𝑆𝑊 𝐼𝑅1)∕(𝑁𝐼𝑅 + 𝑆𝑊 𝐼𝑅1)
MNDWI (𝐺 − 𝑆𝑊 𝐼𝑅1)∕(𝐺 + 𝑆𝑊 𝐼𝑅1)

SAR (S1) VV Vertical-vertical backscatter (dB)
VH Vertical-horizontal backscatter (dB)

Weather (Temps+Srad)

Tmin Minimum daily temperature (◦C)
Tmin < 15 min(Tmin-15,0) (◦C)
Tmax Maximum daily temperature (◦C)
Srad Solar radiation (MJ/m2)
w

2.2.3. Time-series feature engineering
Temporal aggregations of the time-series variables was performed

firstly on a monthly basis. All observations within a calendar month
were averaged. Secondly, they were also aggregated on a phenological
basis. An example of the feature engineering process is illustrated in
Fig. 2, showing how the time-series variables were aggregated to 30-
day windows relative to each field’s predicted flowering date. There
were 15-day overlaps between the windows. For example, a window
centered on 30 days before flowering was denoted Fl-30 (where the
‘–’ indicates before flowering, while ‘+’ is used for windows after
flowering, Fig. 2), and Fl-30 window averages data from 45 days
before flowering to 15 days before flowering. These aggregated time-
series features were used in correlation analyses and as inputs for the
yield prediction models. The nominal models used all windows from
Fl-90 to Fl+30, though we also tested inclusion of later windows in
Section 3.2.3.

2.2.4. Field cropping history
In order to investigate the influence of field cropping history on rice

yield, we found which fields from each year intersected fields from the
previous one and two years. A variable (rice-rice) was then added to
each field’s record, to indicate if the rice crop was following a rice crop
planted in the same field from the previous year. Another variable (rice-
rice-rice) was added to indicate if the field had been planted with rice
in both of the previous years. As there were very few crops planted in
2019 and 2020 due to lack of availability of water during drought, we
performed this analysis for 2022 and 2023 crops.

2.3. Model algorithms and explanations

We compared two contrasting ML algorithms to build yield forecast
models using scikit-learn (Pedregosa et al., 2011). Firstly, the Ridge
regression algorithm, which applies L2 regularization to the multiple
linear regression problem, so that the coefficients of less important
4

variables are shrunk towards zero (Hastie et al., 2009). Secondly, the
LightGBM (LGB) algorithm, which is a very efficient gradient boosting
decision tree framework (Ke et al., 2017). It is able to quickly solve
problems with a large number of features and instances, while achiev-
ing high accuracy. Gradient boosting decision tree models such as this
are still often outperform other algorithms such as neural networks
for tabular data problems (Grinsztajn et al., 2022). Ridge is a linear
algorithm, while LGB allows fitting of nonlinear relationships.

For the Ridge algorithm, all input features were normalized based
on the distribution of the training data, using a standard scaler. This
step was not necessary for LGB, as it is a tree-based method. Categorical
features (variety and sowing method) were one-hot encoded for Ridge,
which again was not necessary for LGB as it can deal with categorical
features directly.

We explored the impact of different features (field information,
weather, remote sensing) on yield using the TreeExplainer method of
the SHAP library, which is based on Shapley values (Lundberg et al.,
2020). This was used firstly to provide global model explanations,
showing the most important variables in predicting yield, and whether
they had a positive or negative impact. Secondly, yield predictions for
individual fields were explained, demonstrating the likely causes of low
and high yields in specific cases.

2.4. Model selection

Models were assessed using standard error metrics. Bias is the
average error between actual and predicted yields:

𝐵𝑖𝑎𝑠 = 1
𝑁

𝑁
∑

𝑛=1
(𝑌𝑛 − 𝑌𝑛), (2)

here 𝑌𝑛 are the actual yields and 𝑌𝑛 are the predicted yields.
The root mean squared error (RMSE) is:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1

𝑁
∑

(𝑌𝑛 − 𝑌𝑛)2. (3)

𝑁 𝑛=1
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Fig. 2. Example of deriving time-series predictors for a drill-sown Reiziq crop from the 2022 season, illustrating the feature engineering process. The original chlorophyll index
red edge (CIRE) time series is shown in (a), with vertical lines indicating sowing (1), predicted ponding (2), PI (3) and flowering (4) dates. Then (b–c) plot CIRE and Tmin relative
to the flowering date, and the mean of the observations within the 30-day windows.
The relative RMSE (RRMSE) is the RMSE divided by the average
actual yield, in %:

𝑅𝑅𝑀𝑆𝐸(%) = 𝑅𝑀𝑆𝐸∕𝑌 × 100 (4)

where 𝑌 is the mean of the actual yields.
Lin’s concordance correlation coefficient (LCCC, Lin (1989)), ranges

from 0–1. It measures both how much of the variability in actual yields
are predicted, and how closely the predicted yields are to the actual
yields:

𝐿𝐶𝐶𝐶 =
2𝑠𝑌 𝑌

𝑠2
𝑌
+ 𝑠2𝑌 + (𝑌 − 𝑌 )2

(5)

where 𝑠𝑌 𝑌 is the covariance between predicted and measured yields,
𝑠2
𝑌

and 𝑠2𝑌 are the variances of the predicted and measured yields

respectively, and 𝑌 is the mean of the predicted yields.
We held out the 2023 data for final model testing. To rigorously

test various combinations of algorithms and predictor variables, we
used the 2018–2022 data from one-field crops (n = 1072, see Fig. 4).
To ensure models were not overfit to in-season data, and to obtain
realistic expectation of model accuracy, we adopted a leave-one-year-
out (LOYO) cross validation (CV) procedure, instead of using standard
random training-validation splits such as in K-fold CV (Brinkhoff et al.,
2019; Meroni et al., 2021). K-fold CV often produces lower errors than
LOYO CV (Yu et al., 2023), and these lower errors do not represent
the realistic operational scenario of forecasting yield in an independent
season where no training data is yet available.

Each model was trained on four ‘‘training’’ years of data and then
tested on the remaining ‘‘test’’ year, and this process was repeated five
times, once for each year in the dataset. For example, the first exper-
iment was trained using [2018,2019,2020,2021] data, then tested on
5

2022; the second was trained using [2018,2019,2020,2022] and tested
on 2021; and so on.

We tested all 64 combinations of the feature sets, [Variety,
Dates+Method, Refs, VIs, S1, Temps] (Table 1). We also compared
against a baseline null model with no predictors, which generated all
predictions as simply the average of all yield records in the training
data. Including such baseline models enables testing if more complex
ML models are providing any real benefit in prediction accuracy. Other
simple models included those that used only variety, or only sowing
date and sowing method information. The total number of experiments
was 2 algorithms (Ridge and LGB) × 64 feature sets × 5 LOYO CV
combinations = 640 experiments. The performance of the feature
sets and algorithms was ranked using the mean and maximum RMSE
from the 5 LOYO CV experiments of each feature combination. These
experiments were performed for both the monthly and phenology-based
time-series feature aggregations.

2.5. Model validation

Three feature sets were chosen based on the results of the above
experiments (Variety+Temps, Variety+Temps+CIRE, Variety+Temps+
Refs+VIs, see Table 1). We then trained models using these feature sets
and the 2018–2022 data.

These models were used to predict rice yields from the independent
2023 season for all fields (n = 1580, not just the 252 one-field crops,
see Section 2.1). Where multiple fields came from the same farm ×
variety, the per-field yield predictions were combined to match the
crop-level data from the processor. The 1580 fields were thus reduced
to 762 crops. Finally, these crop-level predictions were compared with
the processor’s data.

To evaluate how prediction accuracy improved as the season pro-
gressed, we also trained and tested models with the time-series data
truncated at various points through the season.
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We also tested the model’s ability to predict inter-annual yield
variability, using independent 2006–2017 yield data for one vari-
ety (Reiziq). As the data did not include precise field locations, and
Sentinel-2 remote sensing data was not available for most of the years,
we used a model that only included the Variety+Temps feature sets.
We estimated the ponding date to be coincident with the sowing data
for aerial and dry broadcast sowing methods, and to be 44 days later
than the sowing date for the drill sowing method (which is the average
delay from sowing to ponding from the 2018–2023 data). These sowing
and ponding dates were then used, together with the weather data, to
predict the flowering date per field following (Brinkhoff et al., 2023b).
The weather data was then aggregated to windows relative to flowering
date as described above. Finally, the variety and windowed weather
data was used to predict the yield per field, which was compared with
the actual yields. 2007 data was excluded, as there was no sowing date
or sowing method information, and 2008–2009 data was excluded as
there were a very small number of fields due to drought.

3. Results

We first report results of analysis on factors affecting yield (Sec-
tion 3.1), including variety, sowing, phenology, and relationship with
weather and remote sensing variables. Secondly, we develop machine
learning models to provide in-season yield forecasts (Section 3.2),
including comparison of feature sets and algorithms, validation of per-
field predictions in an independent year, prediction explainability, and
testing model ability to predict inter-annual yield variation using a
historical dataset.

3.1. Yield factor analysis

3.1.1. Season characteristics
The fields in the study experienced considerable variation in

weather conditions and exhibited diverse characteristics in remote
sensing indices. Fig. 3 shows the average Chlorophyll Index Red Edge
(CIRE, Gitelson et al. (2005)) and temperatures per year and aggrega-
tion period. CIRE and Tmin were some of the most important indices
for predicting yield, as will be shown in following sections.

When CIRE was aggregated to monthly periods (Fig. 3(a)), there
was significant spread in the timing of green-up, peak and senescence
from year-to-year. In particular, 2021 and 2023 exhibited delayed
progression, attributed to a combination of colder conditions, and later
sowing in 2023 due to early-season flooding. In contrast, when CIRE
was aggregated to windows relative to the per-field flowering dates
(Fig. 3(b)), the inter-annual spread was much reduced. There were still
differences in the length of season (e.g. 2021 was longer due to slower
maturing). Additionally, the peak CIRE varied, with 2020 and 2023
seeing lower values and 2021 higher. In general, CIRE peaked at, or
just before, flowering.

There were differences in the temperatures from year-to-year (see
Figs. 3(c)–3(d)). 2019 was a drought year and had significantly higher
temperatures. 2021 experienced warm temperatures at the start of the
season, but became cooler starting around Fl-60. In 2023, temperatures
remained consistently cooler throughout the season.

3.1.2. Categorical factors (season, sowing method, variety, region)
Yield differed between categorical factors (Fig. 4). First, yields were

different between seasons (Fig. 4(a)). The lowest average yields were
observed in 2021, and this year also had the largest yield variability
with a negative skew. Many crops were affected by cold-temperature
induced sterility in this year. The highest yields were observed in 2022,
and there was also relatively less variability in yield. There were very
few crops planted in 2019 and 2020 due to lack of water availability
during a severe drought.

There was variability in the yields between varieties (Fig. 4(b)). The
recently developed V071 variety produced the highest yields. It has
6

similar grain characteristics to the previously dominant Reiziq variety,
but V071 has higher yields and is less susceptible to cold-induced
sterility. This is evident in the reduced negative skew of V071 yields
compared with Reiziq (Fig. 4(b)). The high-value Koshihikari variety
had lower yields, as did the short-season Viand variety.

The median yield of drill sown crops was 0.9 t/ha lower than dry
broadcast and aerial (DB+Aerial) crops, which have longer ponding
duration (Fig. 4(c)). However, following sections will show that this
is likely not due to the sowing methods themselves, but due to drill
sowing being associated with later PI and flowering dates.

Yields varied between growing regions (Fig. 4(d)). The
Murrumbidgee Irrigation Area (MIA) had the highest yields, and the
lowest came from the Coleambally Irrigation Area (CIA). The MIA
is further north and warmer than the Eastern and Western Murray
Valley (EMV and WMV) regions. The lower yields in the CIA could be
at least partly explained by the predominance of the lower yielding
Viand variety (24% of fields) and widespread practice of growing
rice-after-rice on the same fields (40% of fields in 2022 and 2023).

Fields that had rice grown in the preceding year (n = 161) had
.1 t/ha lower yield than those that did not (p < 0.001), see Fig. S1.
hose that had rice grown in both of the preceding two years (i.e. 3
onsecutive years of rice, n = 26) had 2.1 t/ha lower yield (p < 0.001).

.1.3. Management and phenology dates
Next, the relationships between yield and continuous variables were

xplored. The distribution of sowing, ponding, PI and flowering dates
er year are shown in Fig. 5. Ponding date was predicted using remote
ensing methods described in Brinkhoff et al. (2022) and PI and flow-
ring using (Brinkhoff et al., 2023b). The sowing dates were highly
ariable. They were generally later in 2023, due to intense rainfall and
looding at the start of the season, which hindered field access. Sowing
ates were earlier for drill-sown fields, as recommended in the growing
uides (Ward et al., 2021). The predicted ponding dates were later for
rill sowing compared with aerial and dry broadcast as expected, as
rill sowing involves intermittent irrigations before ponding later in the
eason.

The PI dates were predicted to be later for drill-sown fields than
erial and dry broadcast fields by an average of 6 days, and flowering
y 9 days . The average PI and flowering dates were the 8th of January
nd 8th of February respectively. The phenology dates in 2023 were
lso much later, attributed to both later sowing, and cold temperatures
s discussed above.

The trend of yield against management and phenology dates are
hown in Fig. 6. The yield decreased for crops subjected to later sowing,
onding, PI and flowering dates (p < 0.001). The relationship between
ield and sowing date, and between yield and ponding date, were
ifferent according to the sowing method employed. There was more
egative impact on yield with delayed ponding dates for drill than for
erial and dry broadcast.

Conversely, the yield vs. PI and flowering date relationship among
he different sowing methods was similar (Figs. 6(c)–6(d)). On average,
ield declined by 0.09 t/ha per day PI and flowering were delayed.
his suggests the key driver of yield decline with date is PI and flower-

ng timing rather than sowing and ponding dates or sowing method
hemselves. Later PI and flowering dates expose the crop to higher
isk of encountering low temperatures during the sensitive reproductive
rowth stages (Farrell et al., 2006; Brinkhoff et al., 2023b). Thus, the
ater phenology dates of drill sown crops compared with aerial and dry
roadcast crops could explain the lower yields of drill sown crops noted
reviously (Fig. 4(c)).

.1.4. Correlation of yield with weather and remote sensing indices
We investigated the relationship of yield with the time-series vari-

bles (remote sensing and weather). The correlation coefficients be-
ween the variables aggregated to calendar months is shown in



Agricultural and Forest Meteorology 353 (2024) 110055J. Brinkhoff et al.
Fig. 3. Average chlorophyll index red edge (CIRE) and temperatures for the 1324 fields, aggregated per month (a) and phenology period (b–d). The shaded areas show the
standard deviations.
Fig. 7(a), and aggregated to 30-day windows relative to each field’s
flowering date in Fig. 7(b).

The monthly aggregations showed higher correlations between yield
and remote sensing variables, reaching r = 0.61 for LSWI and 0.58
for CIRE in January. Higher VIs in January are associated with higher
yields, while higher VIs in March onwards (closer to harvest) are associ-
ated with lower yields. The correlations between monthly aggregations
of weather variables and yield were much lower (r ≤ 0.3), as were those
of the SAR coefficients.

Temperatures were more related with yield when aggregated to
phenology windows (Fig. 7(b)) than when aggregated to months, while
the opposite was observed for remote sensing variables. Higher temper-
atures were associated with higher yield after Fl-30, and correlations
increased after flowering (r > 0.45). Tmax was less correlated with
yield than Tmin or the critical temperature feature Tmin < 15. Solar
radiation (Srad) was less correlated with yield then temperatures.
Later investigations revealed that including Srad in the yield prediction
models did not improve accuracy and so this variable was not used
further.

Most VIs had the highest correlations with yield 15 days before
flowering (Fl-15). The most important VIs were LSWI (r = 0.45) and
CIRE (r = 0.44). NDVI was less related to yield (r = 0.33). The SAR
predictors VV and VH were relatively less correlated with yield (r <
0.25) than temperature or multispectral variables.

Examples of the relationship between yield and two of the important
predictors, CIRE(Fl-15) and Tmin(Fl+15), are shown in Figs. 7(c)–7(d).

These correlations are global, including all varieties, sowing meth-
ods and sowing dates. Higher correlations are sometimes obtained
when, for example, only a single variety is included. This motivates
the use of ML methods that can exploit categorical variables (such as
7

variety) and learn the possibly distinct relationship between predictors
and yield per variety as well as use many of the predictors simultane-
ously. The correlations in Fig. 7 are thus not necessarily indicative of
our ML model performance (results below), rather they indicate which
predictors are most related with rice yield overall.

Two contrasting seasons were compared, by examining the yield,
phenology, Tmin and CIRE of low, medium and high yielding fields
(Fig. S2). Many fields in 2021 were affected by cold-induced sterility,
and this may be related to the late phenology and corresponding mini-
mum temperatures experienced by the low yielding fields. In contrast,
2022 was a typical year, and the difference in yield between the groups
was less extreme, and was more related with the chlorophyll index
CIRE.

3.2. Machine learning yield prediction models

3.2.1. 2018–2022 Leave-one-year-out model selection
The results of the LOYO-CV model selection experiments using

2018–2022 data are summarized in Fig. 8 for models built both using
calendar month-based and phenology-based aggregations of the time
series variables. The RMSE was calculated for each test year and
results were ranked by the mean RMSE (corresponding LCCC results
are shown in Fig. S3). The worst RMSE over the 5 years is also shown,
which generally came from 2021, the year significantly affected by
cold-induced sterility.

The month-based aggregation models (Fig. 8(a)) generally produced
lower errors than phenology-based models (Fig. 8(b)) over the 2018–
2022 dataset. For example the lowest mean RMSE for month-based
aggregation was 1.72 t/ha, compared with 1.86 t/ha for phenology-
based aggregation. On the other hand, the month-based results were
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Fig. 4. Yield vs. categorical factors: year (a), variety (b), sowing method (c) and growing region (d). The numbers to the left of the boxes indicate the number of data points and
median yield respectively.
worse than phenology-based results for the Variety+Temps feature set
(compare line #59 in Fig. 8(a) to #33 in Fig. 8(b), indicating that
phenology is important to make good use of the weather variables.
Following results in this paper will show the phenology-based models
gave better results in the challenging 2023 test season, which had
significantly later PI and flowering dates than other years. Therefore, in
the following, we focus on the phenology-based LOYO CV experiments
(Fig. 8(b)).

Generally the Ridge models had slightly lower average RMSE than
the LGB models, particularly for models including many features. How-
ever, the maximum RMSE for LGB models was often lower when less
features were available, potentially indicating better generalization to
challenging years.

The null model (#64, with no predictors, simply predicting the
average of training set yields) had average RMSE across the five test
years of 2.5 t/ha, and worst RMSE of 3.3 t/ha (in 2021). The best
models gave much better performance than models using no predictors
(#64). Very little improvement from the null model is obtained when
only including either S1, Dates+Method or variety (#60-63). These
results indicate the value of forecasting yield using our methodology
over simpler approaches.

A model built around weather and variety (#33) was similar to the
model using only remote sensing and variety (#34), and both are worse
than models that combine weather and remote sensing (#1–10).

Variety and Temps are included in all the 10 best feature sets
(#1–10), and S2 reflectances (Refs) in all of the top 5. Reflectances
may be slightly better than VIs (comparing #5 and #7), but in-
cluding both of them (#2) is better than including either one. The
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complete set of features (#9) had near to best performance (mean
RMSE within 0.08 and 0.01 t/ha of the best LGB and Ridge models
respectively). However, there was no real penalty in performance
when the S1 and Dates+Method predictor sets were omitted (#2,
Variety+Temps+Refs+VIs).

3.2.2. 2023 Yield prediction validation
Models were trained using 2018–2022 data (1072 single-field

crops), and then used to predict 2023 yield. As analyses reported above
showed, 2023 was an uncharacteristic year, with many late-sown crops,
cold temperatures and a corresponding large spread in phenological
dates. It thus offers a challenging scenario to assess the generalizability
of the yield models. We predicted the yield for all fields (n = 1580,
43,700 ha), then aggregated predictions from multiple fields belonging
to each of the 762 crops (unique farm × variety combinations).

Both LGB and Ridge models were trained for three different feature
sets, chosen from the LOYO-CV experiments (Fig. 8(b)):

1. The Variety+Temps set was ranked #33, and is useful in cases
where remote sensing data is not available.

2. The Variety+Temps+Refs+VIs set was ranked #2, offering near
to best performance with a reduced set of predictors (omitting
S1 and Dates+Management features).

3. An additional feature set was included, Variety+Temps+CIRE.
This used a single VI (CIRE). It was anticipated this would
provide better predictions than the Variety+Temps model, but
would be more interpretable than the full Variety+Temps+
Refs+VIs model, due to having less remote sensing variables.
Thus, this model would be useful to provide explainability
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Fig. 5. Distribution of sowing dates (a), predicted ponding dates (b), PI dates (c) and flowering dates (d). The relationships for different sowing methods (drill, aerial and dry
broadcast (A+DB)) are separated by color.
and insights on yield variability, potentially aiding future field
management decisions to improve productivity.

There was not a large difference between Ridge and LGB models
for each of the 3 feature sets (<0.06 t/ha difference). Model predictions
are plotted against actual yields in Fig. 9. The model that only included
Variety+Temps had higher errors (2 t/ha RMSE) and lower capability
to predict the variability in yield between fields (LCCC = 0.44) than the
models including remote sensing variables. The full model achieved 1.6
t/ha RMSE and LCCC of 0.67. The average error (bias) was less than
0.6 t/ha for the three models. The models were not able to predict the
full extent of yield loss for some fields that had very low yields (<4
t/ha), which was probably due to low-temperature sterility.

We also trained a model using Variety+Temps+Refs+VI feature sets,
but with calendar month-based aggregation of time-series variables
instead of using phenology-based aggregation, also using the Ridge
algorithm. The results (Fig. 9(d)) were worse than the model that
used aggregation windows relative to phenology (RMSE 1.8 vs. 1.6
t/ha). The month-based model had higher bias, and more scatter. In-
terestingly, the month-based model had less tendency to under-predict
high yield and over-predict low yields compared with the phenology-
based model. These observations may indicate the month-based model
is slightly overfitting to the training data, while the aggregation-based
model is regularizing more, thereby giving less variance. Similar results
were obtained using the LGB algorithm (Fig. S4). Though lower errors
were obtained with the phenology-based models in 2023, these results
(and the LOYO-CV results in Fig. 8) indicate the month-based models
may be useful in seasons where sowing and phenology dates and
weather are more typical and reflective of those in the training data.

Spatial prediction and error maps for all 2023 crops using the
Ridge Variety+Temps+Refs+VIs model were produced (Fig. 10). There
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was a tendency to slightly under-predict yields generally, although
in the Coleambally Irrigation Area, the yields were generally slightly
over-predicted (by 0.7 t/ha on average).

When field-level predictions and actual yields were aggregated at
region and variety levels, the errors reduced. For the Variety+Temps+
Refs+VIs Ridge model, the mean yield prediction errors per region were
all less than 9%, and the mean errors per variety were all less than 10%.
The whole industry prediction error was 4.1% (average predicted yield
for all crops was 9.3 t/ha, and the average actual yield was 9.7 t/ha).

3.2.3. Prediction errors vs. forecast timing
Fig. 11 shows how the yield forecast accuracy changed as the season

progressed, using both time-series models (including all windows from
Fl-90) and single-window models. The single window model predictions
were worse than the time-series models, particularly after Fl-15. The
RMSE for the full model was less than 1.8 t/ha by the Fl-15 win-
dow (approximately 50 days before harvest (Brinkhoff et al., 2023a)).
RMSE continued to reduce to 1.6 t/ha by Fl+30. The model with only
Variety+Temps features had higher errors than the model including
remote sensing, but reached RMSE close to 2 t/ha by the Fl+0 window.
There was no advantage in any case to including data beyond Fl+30.

3.2.4. Model and prediction explanations
After training models using 2018–2023 data, the TreeExplainer

method of the SHAP library (Lundberg et al., 2020) was used with
the LGB algorithm to further investigate the relationship between im-
portant features and yield. The contribution of the 12 most important
features to yield predictions for the each of the three feature sets
discussed in the previous section are shown in Fig. 12. Variety, Tmax
at 30 days after flowering and Tmin at 15 days after flowering feature
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Fig. 6. The relationship of yield of all 1324 fields with continuous factors: sowing date (a), ponding date (b), PI date (c) and flowering date (d). The relationships for different
sowing methods are separated by color.
strongly in all the models. Higher temperatures at and after flowering
were generally predictive of higher yields. Lower temperatures early in
the season (before Fl-30) were predictive of higher yields. This may be
indicative of a secondary relationship, as earlier sowing dates encounter
lower temperatures early in the season, and earlier sowing dates are
associated with higher yields (Fig. 6(a)).

For the model that added CIRE to the features (Fig. 12(b)), CIRE
just before flowering (Fl-15) was the most important predictor, and was
positively related with yield, possibly because it is indicative of higher
N uptake (Schlemmer et al., 2013). Conversely, it is not advantageous
to have CIRE remaining high after flowering, as high CIRE(Fl+30) is
predictive of lower yield. Slow decline in CIRE indicates slow maturing
as occurred in 2021 (Fig. 3(b)), possibly caused by sterility.

The complete Variety+Temps+Refs+VIs model explanations
(Fig. 12(c)) show the importance of reflectance bands, and particularly
the red edge bands RE and RE74. Higher RE reflectances before flow-
ering (e.g. RE(Fl-15)) were associated with lower yields. Conversely
higher RE reflectances after flowering (e.g. RE74(Fl+30)) were predic-
tive of higher yields. This can be explained by noting that lower RE
means higher VIs (such as CIRE = NIR/RE-1), and as noted above,
higher VIs are advantageous before flowering, and disadvantageous
after flowering. VIs were also important, particularly CIRE and LSWI,
though not as important as reflectances.

Examples of SHAP local explanations of high and low yield crops
are provided in Fig. S5.

3.2.5. Historical seasonal variability validation using weather-based model
The historical validation test involved Reiziq yields from 2006–

2017 using the LGB(Variety+Temps) model. As expected, the model
could not predict much of the field-to-field variability (LCCC = 0.2), as
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no remote sensing information to characterize such spatial variability
was available. However, the model predicted much of the inter-annual
variability (LCCC = 0.6). This demonstrated the ability of our method to
describe inter-annual rice yield fluctuations due to weather variability.
Interested readers are referred to Fig. S6 for more detail.

4. Discussion

In this study, we have analyzed factors influencing rice yield us-
ing a multi-year dataset of field-level data including information on
variety, sowing date and sowing method. We leveraged previously
developed models that predicted water management (Brinkhoff et al.,
2022) and growth stages (Brinkhoff et al., 2023b), and used these
to engineer phenology-specific time-series features from weather and
remote sensing sources for each field. These phenology-based aggrega-
tions were very important in generalizing yield predictions to a year
(2023) with atypical weather and very different phenology dates to
those in the training data (2018–2022). In more typical years, calendar-
month based aggregation of at least the remote sensing variables may
offer better predictions as our LOYO-CV experiments showed.

Our data fusion methodology and analyses facilitated several signif-
icant findings. We observed strong positive association between yield
and remote sensing indices between PI and flowering, and between
yield and minimum temperatures around flowering. It is important
to reach PI and flowering early, before cooler seasonal temperatures
become likely. This can be somewhat controlled by sowing early. We
found significantly decreasing yields for fields that had consecutive rice
crops. The reasons for this warrants further investigation in our study
area, although work in other areas and growing systems suggested one
possible cause is declining nutrient availability (Saito et al., 2006).
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Fig. 7. Correlation between yield and windowed aggregations of the time-series predictors for the 1324 2018–2023 fields. Time-series aggregations are the mean per month in
(a), and per 30-day window relative to flowering date in (b). P-values are indicated with <0.001 = ***, <0.01 = ** and <0.05 = *. The individual relationships between yield
and CIRE(Fl-15) and Tmin(Fl+15) are shown in (c) and (d).
Our yield forecast machine learning models were able to provide
predictions well in advance of harvest in an independent season (2023)
with challenging conditions (later sowing and colder temperatures than
normal). The RMSE was 1.6 t/ha, the RRMSE was 16.3% and LCCC was
0.67. Errors reduced as yield was aggregated to coarser scales (region,
variety or whole industry). Furthermore, we developed models based
11
on a subset of variables to provide explainability of yield predictions for
individual fields and all fields. These showed the negative effects both
of low temperatures around flowering, and of low vegetation indices
related with nitrogen status just before flowering.

These findings have implications for both industry stakeholders and
farmers, as they enable yield forecasts well before harvest, offer insights
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Fig. 8. 2018-2022 LOYO CV experiments (n = 1072), ranked by average RMSE (t/ha). The results with time-series aggregated by month (a) and phenology (b) are shown. Of the
64 possible combinations of feature sets (rank indicated by the # column), only the top 10, and bottom 5, as well as the Variety+Temps and Variety+Refs+VIs sets are shown.
D+M denotes the dates and sowing method feature sets.
into the drivers of yield variability, and suggest actionable strategies to
improve productivity. Such strategies include optimizing sowing date,
crop rotation and nitrogen management.

4.1. Time-series features for enhanced yield forecasting

The integration of time-series data with machine learning tech-
niques has emerged as a dynamic field with substantial potential, and in
tandem with developments in high-cadence remote sensing data, offers
promise for more powerful predictive capabilities (Foumani et al.,
2023). In the context of rice yield forecasting, Zhou et al. (2017)
found an improvement in accuracy when UAV images from two dates
were used instead of a single image and Ha et al. (2023) showed the
12
importance of multi-temporal weather features. Marshall et al. (2022)
found better predictions when all images from a season were used as
predictors. We also demonstrated that models based on a time-series of
features provided better predictions than those based on features from
a single point in time.

Other research has demonstrated the benefit of resampling time-
series data using thermal time from sowing (Desloires et al., 2023), or
aligning time-series features with crop phenology (Bolton and Friedl,
2013; Ji et al., 2022). These methods can provide improved predictions
relative to sampling time-series according to fixed calendar periods,
particularly in situations where phenology is temporally diverse (Bre-
gaglio et al., 2023). This was also the case in our work. In 2023, which
had later sowing due to flooding, delayed phenological progression
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Fig. 9. Independent test year (2023) actual vs. predicted yields for 3 phenology-based aggregation models, LGB with Variety+Temps features (a), LGB with Variety+Temps+CIRE
features (b) and Ridge with Variety+Temps+Refs+VIs features (c). For comparison, (d) shows a model with the same base features as (c), but with monthly instead of phenological
time-series aggregations. The yield points used in SHAP explanations in Fig. S5 are indicated in (b).
and colder temperatures, our method of feature engineering time-series
using per-field flowering dates yielded superior predictions than models
that generated time-series features using fixed calendar months. There-
fore, phenology-based aggregations are important for generalizing to
environments not adequately captured in training data. We also showed
that if remote sensing variables are not available, phenology-based
aggregation is very important to make use of temperature variables,
as models with temperatures aggregated to monthly periods gave very
poor predictions compared to those with temperatures aggregated to
phenological periods.

In contrast to some previous methods (Bolton and Friedl, 2013;
Ji et al., 2022) which use generic land-surface phenology ‘greenup’
to reference time-series against, we used a rice-specific growth stage
model that predicts and was validated against actual physiological
growth stages, such as panicle initiation and flowering (Brinkhoff et al.,
2023b). The advantage of land-surface phenology-based methods is
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that they are inherently scalable, as they rely only on satellite data.
In contrast, our method relies on rice-specific phenology models and
sowing date, which may not be available in other rice-growing areas,
potentially limiting scalability. However, when we tested including
phenology dates and sowing method as model variables, these were not
very important to obtain accurate predictions (Fig. 8). Also, in years
where phenology dates were typical, the monthly aggregations pro-
vided as good or better predictions than phenology-based aggregations,
which may therefore enable scalability of the monthly aggregation
models. However, as discussed above, phenology aggregations were
very important in a season with abnormal sowing and phenology dates
(2023).

We note that our results also showed the importance of including
rice variety as a model input, with the top 10 models in the LOYO-CV
experiments all using variety (Fig. 8). However, variety may not be an
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Fig. 10. Box showing the extent of the study area in New South Wales, Australia (a), 2023 yield predictions (b), distribution of errors per region (c), and map of prediction errors
(d) for the 762 crops using the Variety+Temps+Refs+VIs Ridge model.
important model input in regions where there is less variance in the
yield and phenology characteristics of the varieties grown.

Time-series yield forecasting methods allow a sequence of pre-
dictions to be generated, making use of the latest remote sensing
and weather data available as a growing season progresses. As other
work has demonstrated, this technique provides both early forecasts
with reduced accuracy, and improving forecast accuracy as harvest
approaches (Von Bloh et al., 2023; Potgieter et al., 2022). We showed
continuously improving accuracy from forecasts provided 90 days be-
fore flowering to 30 days after flowering. The later is typically about
20–25 days before harvest (Brinkhoff et al., 2023a).

4.2. Important spectral reflectance bands

In common with other work, we found that the red edge bands
were very important in yield prediction (Zhang et al., 2019). These
wavelengths are strong indicators of chlorophyll and thus nitrogen
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status (Schlemmer et al., 2013; Wang et al., 2023b; Brinkhoff et al.,
2021; Inoue et al., 2012), which may explain their importance. We
also found indices based on short wave infrared bands (LSWI) were
important (Marshall et al., 2022). This highlights the importance of
inclusion of the red edge and shortwave infrared bands in remote
sensing products targeting agricultural applications.

There were positive relationships between yield and CIRE and LSWI
between PI and flowering. Conversely, CIRE 30 days after flower-
ing was negatively related with yield, possibly because higher CIRE
after flowering is indicative of slower maturing. Anecdotally, 2021
crops that suffered low-temperature induced sterility tended to mature
slower. This may be due to a similar effect as that noted by Nakano
et al. (1995), where removal of rice panicles retarded the decrease in
photosynthesis of the rice flag leaf during senescence.

Most yield prediction studies using remote sensing consider only
VIs derived from reflectances. However, we found that using the raw
reflectances themselves were more powerful than VIs, as others have
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Fig. 11. 2023 yield forecast accuracy evolution as models incorporated later data as the season progressed. The graph compares models using only a single time window, to
models using all time windows from Fl-90, for two models.
Fig. 12. Global model explanations, indicating contribution of features to yield predictions using 2018–2023 data for Variety+Temps (a), Variety+Temps+CIRE (b), and
Variety+Temps+Refs+VIs (c) feature sets.
also found (Marszalek et al., 2022; Franch et al., 2021; Skakun et al.,
2021). But combining VIs and reflectances gave even better results.

4.3. Scale of predictions

We predicted yield at the individual field level. This is in contrast
to much previous work that has either predicted at the regional or
county level (Zhou et al., 2023; Bolton and Friedl, 2013; Meroni et al.,
2021; Ha et al., 2023; Liu et al., 2022; Islam et al., 2023) or those that
focus on in-field variability or plot-level predictions using relatively ex-
pensive high resolution imagery from UAV and aerial platforms (Zhou
et al., 2017; Luo et al., 2022; Wan et al., 2020). Both regional-level
yield statistics and plot experiments are sources of more readily avail-
able yield data, compared with large-scale field-level datasets such
as the one used in this work. However, field-level yield predictions
arguably provide the most value, as they provide insights for individual
farmers and fields, and are also scalable to provide accurate regional
forecasts.

Previous works have shown that as fine-scale yield predictions
are aggregated to coarser scales (regional or country), accuracies im-
prove (Deines et al., 2020; Filippi et al., 2020; Yu et al., 2023), which
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is another benefit of providing field-level, rather than region yield
predictions. We similarly found when field predictions were aggregated
to variety and region levels, the errors were lower (<10% over all
regions/varieties, and 4% for all rice crops).

Field-level yield predictions will have benefits for individual grow-
ers, supporting pre-harvest finance and logistic decisions (Filippi et al.,
2020) Additionally, the SHAP model explanations demonstrated im-
portant factors that can lead to low yield, including low chlorophyll
content (related to nitrogen application, Schlemmer et al. (2013) and
Dunn et al. (2016), and late planting, which increases the chance
of encountering low temperatures during the sensitive reproductive
stages (Brinkhoff et al., 2023b). These explanations could be provided
to growers to promote understanding of the causes of low or high yields
of individual fields in previous seasons, thus supporting optimized
decision-making to improve productivity in future seasons.

4.4. The challenge of forecasting the effect of cold-induced sterility

One of the biggest challenges to predicting rice yield in temperate
growing regions is the impact of cold temperature shocks during sen-
sitive reproductive stages, which can result in sterility and thus very
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low yields (Espe et al., 2017; Sivapalan et al., 2007; Alemayehu et al.,
2021). Though the trends are clear, it is very difficult to characterize
the magnitude of the effect of such cold shocks on yield, as seen in the
low correlation coefficients between temperatures and spikelet sterility
in experiments (Farrell et al., 2006). There are complex interactions of
the degree of cold-induced sterility and factors such as nitrogen (Gu-
nawardena and Fukai, 2005; Heenan, 1984) and interaction between
the effects of temperatures experienced at different times during a
growing season (Godwin et al., 1994; Shimono et al., 2007). Crop
models still struggle to describe yield loss due to cold temperatures
adequately (Espe et al., 2016).

Remote sensing alone is unlikely to predict sterility, as sterility
may not significantly affect spectral reflectance. Therefore, we fused
weather and remote sensing data. Our model was able to predict a
large degree of the variability in yields at the field level in a year
where low temperatures were encountered (2023). However, the model
had limited ability to predict the magnitude of yield loss in some
particularly hard-hit fields. Developing machine learning models that
can accurately predict the impact of extreme weather events on yield is
a generally challenging problem (Paudel et al., 2023). One management
factor growers use to minimize risk of cold-induced sterility is to ensure
deep water during microspore, which provides a buffer against cold
night time temperatures (Williams and Angus, 1994). Shimono et al.
(2005) showed that it is the temperature of the panicle which largely
determines spikelet sterility. Therefore predicting the extent of sterility
requires knowledge of multiple variables including water depth and
temperature, air temperature, and the height of the panicle above the
water. However, models based on public remote sensing and weather
data, such as ours, cannot describe most of these factors. This may
explain some of the difficulty in predicting the amount of yield loss
due to cold on a per-field basis. Incorporation of in-field water level and
temperature sensors may improve predictions (Shimono et al., 2005).
However only a limited number of fields across a region are likely to
have such sensors, and the data may be hard to obtain. Additionally,
water levels are not consistent between fields, so measuring one field
does not guarantee good predictions in an adjacent field. Therefore,
solutions based on in-field sensors are not likely to be scalable industry-
wide. Satellite sensors that measure land surface temperature (Wei
et al., 2023) or SAR data that is able to quantify water levels, such
as polarimetric L-band data (Arai et al., 2022), may provide solutions
to these problems in the future. However, the revisit times of such
satellites is currently limited so may not detect the dynamics of temper-
atures and water levels with sufficient temporal detail to characterize
field status at critical timings such as microspore and flowering.

5. Conclusion

We firstly analyzed factors driving rice yield variability in a tem-
perate growing region using a multi-year dataset. Significant factors
included variety, field cropping history (lower yields when a field
was planted with rice in consecutive years) and phenology date (later
panicle initiation and flowering were associated with lower yields).
We then leveraged previously developed rice ponding date and phe-
nological date prediction models to develop phenology-specific win-
dows to aggregate time-series data from remote sensing and weather
datasets. Vegetation indices related to nitrogen status (e.g. CIRE) and
temperatures around flowering were both positively correlated with
yield.

We then developed rice yield forecast models, building on these
analyses and using ML algorithms. The fusion of remote sensing and
weather variables aggregated to periods relative to field-specific flower-
ing dates provided powerful features for these models. They were able
to forecast yield in an independent season with challenging weather
conditions (2023), achieving RRMSE of 16.3% on a per-crop basis,
and the error between average predicted and actual yield for all crops
was 4%. In a further validation experiment, models based only on
16
weather and estimated phenology dates were able to predict a large
degree of the inter-annual variability of yield (LCCC = 0.6) using an
independent historical dataset. We developed a model using a subset of
predictors, which, though less accurate than the full models, provided
enhanced interpretability of yield predictions. This, combined with
Shapley additive explanations (SHAP) explained the reasons for vari-
ability in yield performance of individual fields, identifying factors such
as sowing date, impact on temperatures encountered during flowering,
and chlorophyll content.

The yield analyses and the ML models both showed the importance
of sowing on time, mitigating the potentially harmful impacts of cold
temperatures around flowering, and of achieving sufficient nitrogen
uptake before flowering (indicated by high CIRE). The challenge of ac-
curately predicting the full impact of cold-temperature induced sterility
remains, and we suggested it is likely that additional in-field informa-
tion such as water depth may be needed for this. This work provides
a framework for analyzing yield variability, and a method to develop
models that are suitable to operationally forecast in-season yield, thus
providing value to both individual farmers and to rice industry bodies.
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