
COLLECTION |RESEARCH PAPER 
https://doi.org/10.1071/MF23226 

Impact of severe drought on movement and survival of freshwater 
turtles in the Gwydir Wetlands, Australia 
Annette R. DeppeA,* , Deborah S. BowerA and Donald T. McKnightB 

For full list of author affiliations and 
declarations see end of paper 

*Correspondence to: 
Annette R. Deppe 
School of Environmental and Rural Science, 
University of New England, Armidale, 
NSW 2351, Australia 
Email: adeppe@myune.edu.au 

Handling Editor: 
Paul Frazier 

Received: 7 November 2023 
Accepted: 13 April 2024 
Published: 10 May 2024 

Cite this: Deppe AR et al. (2024) 
Impact of severe drought on movement and 
survival of freshwater turtles in the Gwydir 
Wetlands, Australia. Marine and Freshwater 
Research 75, MF23226. doi:10.1071/MF23226 

© 2024 The Author(s) (or their 
employer(s)). Published by 
CSIRO Publishing. 
This is an open access article distributed 
under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 
International License (CC BY-NC-ND). 

OPEN ACCESS 

ABSTRACT 

Context. The increasing number and length of droughts is a threat for many freshwater turtle 
populations. Aims. Our study investigated the movement and survival of Emydura macquarii, 
Chelodina expansa and Chelodina longicollis in drought and flood conditions. Methods. Turtles 
were captured in the Gwydir Wetland, New South Wales, Australia. We assessed the species 
composition of live captures and carcasses over the drought to assess relative survival among 
species. Using radiotelemetry, we compared the movement of E. macquarii and C. longicollis 
over a severe drought followed by a flood. Key results. For tracked turtles with known fates, 
28.6% of E. macquarii and 7.1% of C. longicollis, died during the drought. The proportional 
composition of captured turtles compared with those of desiccated shells suggested that C. 
expansa had the highest mortality. E. macquarii and C. longicollis both appeared to navigate 
terrestrially and moved further in the flood water than in the drought, but C. longicollis 
moved further generally. Conclusions. Our findings suggest that turtles in isolated wetlands of 
the northern Murray–Darling Basin are at high risk of mortality during severe drought. 
Implications. Environmental water delivery during periods of sustained drought will be critical 
to ensure persistence of populations of long-lived species such as turtles. 

Keywords: Chelodina expansa, Chelodina longicollis, drought, Emydura macquarii, flood, 
movement, radio transmitter, refuge, survival, tracking, turtle, wetland. 

Introduction 

Increased wetland drying resulting from climate change and extraction of water negatively 
affects freshwater biodiversity (Kingsford 2000; Dudgeon et al. 2006; Aldous et al. 2011). 
Over-allocation of water and prolonged drought reduce the quality of floodplain environ-
ments by decreasing the extent and the resilience of wetland vegetation (Kingsford 2000; 
Bunn and Arthington 2002). Furthermore, wetland loss has caused declines in populations 
of wetland fauna such as frogs (Wassens et al. 2013), birds (Campos-Cerqueira and Aide 
2021) and fishes (Chessman 2013). Many Australian freshwater turtle species also use 
floodplains and wetlands to sustain populations (Chessman 1988; Fordham et al. 2008; 
Bouma et al. 2020). 

Turtles are declining globally (Dudgeon et al. 2006; Kingsford et al. 2011) and are 
likely to be negatively influenced by reduced periods of inundation (Gibbons et al. 1983; 
Chessman 2011; Stanford et al. 2020), which influences both survival and movement of 
freshwater turtles, as a lack of water can cause dehydration (Chessman 2018), reduce 
growth rate (Ferronato et al. 2017), lower reproduction (Kennett and Georges 1990), 
increase risk of predation (Chessman 2011) and decrease survival (Purcell et al. 2017; 
Beard and Powell 2023). Aquatic freshwater turtles can respond to drought by 
congregating in refuge pools where there is high competition for food (Meathrel et al. 
2002), leaving the pool in search of another more permanent refuge (Roe and Georges 
2008) or estivating terrestrially (Ligon and Stone 2003). If the refuge pool dries 
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completely, some highly aquatic turtles can emigrate 
terrestrially (Cann and Sadlier 2017), exposing them to 
desiccation and terrestrial predators (Chessman 2011), or 
bury themselves in the mud of the dried waterbody 
(Gibbons et al. 1983). 

Despite extensive extraction of water and increased 
drought severity in the Murray–Darling Basin, we still lack 
an understanding of the impact of floodplain drying on 
freshwater turtles (Aldous et al. 2011; Francis et al. 2022). 
Many knowledge gaps still exist for freshwater turtles, such 
as movement cues, cognitive abilities and baseline ecological 
information (Bower et al. 2023). Different species have 
different habitat requirements, including lakes, rivers and 
ephemeral water bodies (Chessman 1988), and this suggests 
that they have differing responses to hydrological change. 
During drought conditions, the decrease or loss of refuge 
pools can have a major effect on freshwater turtles, especially 
for highly aquatic species that are not adapted for terrestrial 
survival (Gibbons et al. 1983; Chessman 2011). The threat 
of prolonged drought in areas where alternative refuge 
pools are not available makes the survival of isolated 
populations tenuous (Purcell et al. 2017). Understanding 
the needs of freshwater turtles will further our ability to 
manage wetlands and increase the survival prospects of 
Emydura macquarii, Chelodina expansa and Chelodina 
longicollis. 

Here, we examined the behaviour of turtles during a severe 
drought in the northern Murray–Darling basin, with the aims 
of (1) comparing survival of three species of turtle during 
severe drought and (2) comparing the movement of a highly 
aquatic species (E. macquarii) and an aquatic species that 
is known to frequently migrate and estivate terrestrially 
(C. longicollis). This study illustrated the resourcefulness of 
freshwater turtles in movement and survival during a severe 
drought, while also highlighting the need for continued 
conservation effort. 

Materials and methods 

Study species 
Emydura macquarii, C. longicollis and C. expansa are 
freshwater turtle species broadly distributed on the eastern 
coast of Australia (Chessman 2018). Emydura macquarii 
and C. expansa are highly aquatic turtles that generally 
inhabit rivers and wetlands or tributaries that are close to a 
main channel (Chessman 1988; Van Dyke et al. 2019). Emydura 
macquarii prefers water more than 2 m deep (Chessman 1988) 
and C. expansa is capable of moving extensively in a river 
system (Bower et al. 2012). Chelodina longicollis also requires 
water, but they generally inhabit shallow or ephemeral bodies of 
water (such as networks of farm dams) and frequently migrate 
or estivate terrestrially (Chessman 1988, 2022; Graham et al. 
1996). Chelodina longicollis is also active through larger 

changes in temperature and has a lower level of evaporative 
weight loss than do E. macquarii and C. expansa (Chessman 
1984). These three freshwater species are sympatric in the 
waterbodies of the Gwydir Wetland State Conservation Area. 

Study area 
The Gwydir Wetland State Conservation Area is located in the 
lower Gingham Watercourse north-west of Moree, in New 
South Wales, Australia. It receives an average annual rainfall 
of 585 mm, and summer temperatures often exceed 35°C 
(Bureau of Meteorology 2022). Our study encompassed 
the period from November 2019 through October 2020, 
during a portion of the driest 4 years on record for this 
area (Commonwealth Environmental Water Office 2021). 
Conditions were generally dry and hot, with the tempera-
ture on 22 December 2019 reaching a record 45.9°C and 
only 125.4 mm of rainfall in 2019 (Bureau of Meteorology 
2019). This area was in severe drought offering a unique 
opportunity to study the behaviour of the three species of 
freshwater turtle that inhabited the drying wetland. 

We trapped turtles at two locations within the Gingham 
Watercourse in the Gwydir Wetland State Conservation 
Area (Fig. 1). Sites were chosen for their accessibility and 
availability of water. The first site, Gingham Waterhole, is a 
natural pool surrounded by cumbungi (Typha orientalis), 
marsh club-rush (Bolboschoenus fluviatilis), lignum 
(Muehlenbeckia florulenta), and river cooba (Acacia 
stenophylla) shrubland, coolabah (Eucalyptus coolabah) 
and river red gum (Eucalyptus camaldulensis) woodland. 
At the start of our study, 8 November 2019, the Gingham 
Waterhole had retracted from a full-capacity area of 
57,873 m2 and a depth of ~2 m to a small pool with an 
area of 1116 m2 and a depth of 0.19 m. Under this thin 
layer of turbid water was a thick layer of mud that ranged 
in depth from 0.25 to 0.92 m. Three temperatures were 
taken at Gingham Waterhole (on 10, 14 and 19 November 
2019), contrasting the temperature of the water, which was 
35, 30 and 37°C, with that of the mud at 22, 24 and 22°C 
(based on measurements from a Holman Weather Whiz 
Wireless Weather Reader, Holman Industries, Perth, WA, 
Australia, and a Dreambaby Room and Bath Thermometer, 
Tee-Zed Products Pty Ltd, Sydney, NSW, Australia). On 
13 December 2019, the pool surface dried completely, and 
the area remained without water until 17 February 2020 
(66 days), when the Gingham Waterhole began filling to 
overflowing from an inflow. 

The second site, Moolaboola Dam, was an artificial 
dam 7 km east of the Gingham Waterhole, on the same 
watercourse. It was surrounded by cumbungi (T. orientalis), 
marsh club-rush (B. fluviatilis) and swamp wallaby grass 
(Amphibromus nervosus). Approximately 200 m to the north 
was a coolabah (E. coolabah) woodland area. Moolaboola 
Dam did not dry completely during our study period, but 
evaporated to an area of 2300 m2. On 29 January 2020, an 
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Fig. 1. Study sites at Gingham Waterhole and Moolaboola Dam within 
the Gwydir Wetlands State Conservation Area, in the Lower Gwydir 
Wetlands of New South Wales, Australia. Adapted from the Gwydir 
Selected Area 2021–2022 Annual Summary Report – Appendix A. 
(Department of Climate Change, Energy, the Environment and Water 
2023). 

inflow of water through the channels and across the 
floodplain in the Gingham Wetlands refilled the dam past its 
capacity area of 4200 m2. The water came from two sources, 
including water released from the upstream Copeton Dam and 
runoff from higher-rainfall areas further upstream. 

Study methods 
Turtles were captured from 8 to 20 November 2019 at 
Gingham Waterhole and from 9 December 2019 to 5 January 
2020 at Moolaboola Dam. The low water level in Gingham 
Waterhole made it difficult to place traps successfully; 
so, all but three individual turtles (C. longicollis) were 
captured by hand (muddling hours = 13) (Limpus 2008). 
On 31 January 2020, we observed exposed, desiccated 
turtle carapaces or plastrons on the surface of the cracked 
mud within a radius of 45 m of the last-refuge pool (search 
hours = 3). In Moolaboola Dam, water levels were 
sufficient to deploy three cathedral traps (modified square 
3-cm mesh crab traps, two openings 0.5 × 0.25 m each) 
and two fyke nets (1-m diameter, 3-cm mesh, double 

throat, two 15-m wings) baited with beef liver (trap 
hours = 1034). 

A total of 16 E. macquarii (15 from Gingham Waterhole 
and 1 from Moolaboola Dam) and 15 C. longicollis (9 from 
Gingham Waterhole and 6 from Moolaboola Dam) individuals 
were fitted with radio transmitters (Advanced Telemetry 
Systems Series R1600, Isanti, MN, USA) and tracked from 
8 November 2019 to 5 January 2020. Transmitters were 
attached to the carapace by using marine epoxy resin, and 
they were covered with black silicone for camouflage. The 
resin and silicone were allowed to dry for 30 min before 
releasing the turtles. 

Turtles were tracked using a hand-held scanning receiver 
(Advanced Telemetry Systems, ATS, Model R410, Isanti) 
and a folding three-element Yagi receiving antenna (Model 
F150-3FB, ATS). The turtles were tracked as regularly as 
possible; however, because of unavoidable circumstances, 
such as the evacuation of the reserve because of fire warnings 
or aerial pig shootings, tracking frequency varied between 
once a day and once every 2 weeks from November 2019 
to May 2020. A final tracking period was completed from 
4 to 7 October 2020. In drought, turtles could be detected 
from up to 1 km away, but during flooding (i.e. once 
underwater) they could not be detected if they were more 
than ~500 m away. A turtle’s carapace could be sighted at 
terrestrial locations, or a bump on the ground where they 
had dug under the soil and leaflitter could show their 
location. Terrestrial fixes were recorded to an accuracy of 
3.65 m by using a hand-held GPS (Garmin GPSMAP 64sx, 
Olathe, KS, USA), but when turtles were in water, estimates 
of their locations were less accurate, because they could not 
be sighted. 

Statistical analyses 
We examined both the effects of the hydrological state 
(drought or flood) and species (E. macquarii, C. longicollis) on  
the daily displacement (i.e. the minimum daily movement 
based on a straight line between points) of turtles. To deter-
mine the effect of waterhole drying during the drought, 
we subset our data to 23 turtles from Gingham Waterhole 
(24 turtles were tracked, but 1 turtle was excluded because 
it did not move from the mud even after water flooded 
the waterhole, so was assumed to have died). R statistical 
software was used (ver. 4.2.2, R Foundation for Statistical 
Computing, Vienna, Austria, see https://www.r-project.org/) 
with the following packages: ggplot2 (ver. 3.4.0, see 
https://CRAN.R-project.org/package=ggplot2; Wickham 
2016), performance (ver. 0.10.2, see https://cran.r-project. 
org/package=performance; Lüdecke et al. 2021), car (ver. 
3.1-1, see https://CRAN.R-project.org/package=car; Fox 
and Weisberg 2019) and lme4 (ver. 1.1-32, see https:// 
CRAN.R-project.org/package=lme4; Bates et al. 2015). Our 
data were not normally distributed, so we used a mixed-
effects negative binomial model with metres moved in a 
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straight line from the previous fix as the response variable. 
The fixed effects were turtle species, drought conditions 
(before or after the arrival of water) and the interaction 
between these factors. Because the number of days between 
fixes varied, we limited the data to points with a maximum 
interval of 30 days between fixes, and included the natural 
log of the number of days from the previous fix, as an 
offset. The model was assessed with a Type II ANOVA and a 
significance level of 0.05. 

To determine whether the tracked turtles moved 
randomly, the bearings of their tracks were analysed by 
testing the uniformity of the circular spread of fixes around 
the individual wetlands by using the Rayleigh Test of 
Uniformity (ver. 0.4-95, C. Agostinelli and U. Lund, see 
https://rdrr.io/cran/circular/man/rayleigh.test.html), with 
the mean bearing of each individual (from its original 
location in Gingham Waterhole or Moolaboola Dam) as the 
response. The following packages were used: dplyr (ver. 
1.1.2, H. Wickham, R. Francois, L. Henry, K. Muller and 
D. Vaughan, see https://CRAN.R-project.org/package=dplyr), 
circular (ver. 0.4-95, U. Lund, C. Agostinelli, H. Arai, 
A. Gagliardi, E. Garcia-Portugues, D. Giunchi, J. Irisson, 
M. Pocernich and F. Rotolo, see https://CRAN.R-project. 
org/package=circular), sp (ver. 2.0-0, see https://cran.r-
project.org/package=sp; Pebesma and Bivand 2005) and 
geosphere (ver. 1.5-18, R. J. Hijmans, C. Karney, E. Williams 
and C. Vennes, see https://cran.r-project.org/package= 
geosphere). We conducted a separate test for each species 
at each waterhole in each hydrological state (Gingham 
Waterhole or Moolaboola Dam in drought or flood). 

To test for interspecific differences in the ability to survive 
a drying waterhole, we used a Pearson’s Chi-Square test to 
compare the number of each species captured at Gingham 
Waterhole in November 2019 (when it had water) to the 
number of corresponding desiccated shells found in January 
2020 (when it was dry). The survivorship of the tracked 
turtles at Gingham Waterhole was also tested for the period 
from transmitter attachment to 7 October 2020, by using a 
log rank Kaplan–Meier estimate. The packages used were: 
readr (ver. 2.1.5, H. Wickham, J. Hester and J. Bryan, see 

Industries Scientific Collection Permit Number P19/0047-
1.0. Every effort has been made to acknowledge any owners 
of copyright material. 

Results 

Tracked-turtle movement 
Emydura macquarii and C. longicollis responded differently to 
the drying of the Gingham Waterhole. During the drought, the 
E. macquarii at Gingham Waterhole travelled significantly 
less per day, on average, than did the C. longicollis (F = 4.87, 
P = 0.027; E. macquarii mean 3.19, median 0.00 and s.d. 
27.03 m day–1; C. longicollis mean 16.81, median 0.00 
and s.d. 60.64 m day–1; Fig. 2). Both species increased 
their movements once flood waters arrived (F = 6.81, 
P = 0.009; E. macquarii mean 38.65, median 5.45 and s.d. 
116.85 m day–1; C. longicollis mean 37.37, median 60.06 
and s.d. 67.80 m day–1), and there was no significant 
interaction between species and hydrological state (F = 0.67, 
P = 0.403). 

Of the 15 E. macquarii individuals tracked at Gingham 
Waterhole, all remained in the mud of the waterhole at 
least until all surface water dried completely (13 December 
2019). In total, 5 E. macquarii individuals never left the 
waterhole and remained in the mud until water returned 
after 102 days (66 of these days had no surface water and 1 
of the E. macquarii died in the mud). The remaining 10 
E. macquarii individuals left the Gingham Waterhole after 
it dried. Three individuals died on their first move out 
of the mud and were found desiccated at a short distance 
(13, 74 and 122 m) from their previous location in the 
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https://cran.r-project.org/package=readr), survival (ver. 3.5.0, 
T. M. Therneau, see https://cran.r-project.org/package= 
survival; Therneau and Grambsch 2000) and survminer 
(ver. 0.4.9, A. Kassambara, M. Kosinski and P. Biecek, see 
https://cran.r-project.org/package=survminer). Moolaboola 
Dam was not included in this test because it held water for 
the entire study period. 

Animal research ethics 
Research was conducted under the University of New 
England’s Ethics Permit AEC19-081, a scientific licence from 
the New South Wales Government Department of Planning, 
Industry and Environment Licence Number SL1022308, and 
the New South Wales Government Department of Primary 

Fig. 2. Box plot of tracked Emydura macquarii and Chelodina 
longicollis daily displacement (i.e. the minimum daily movement 
based on a straight line between points) at Gingham Waterhole and 
Moolaboola Dam. 
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mud. Predators, such as sea eagles (Haliaeetus leucogaster) 
and foxes (Vulpes vulpes), were observed in the area, and 
scavengers such as goannas (Varanus varius), pigs (Sus 
scrofa) and crows (Corvus spp.) were also frequently seen. 
Two of the E. macquarii individuals still had their desiccated 
heads, one with four limbs and the other with only one. The 
third turtle was found consumed, and the carapace and 
plastron had been separated. 

Of the seven E. Macquarii individuals that remained alive 
after climbing out of the mud, one walked terrestrially up the 
Gingham Watercourse for 1.7 km to an artificial dam that 
retained water throughout the drought. Four E. macquarii 
individuals went out of range of the transmitter during the 
drought, but two returned when Gingham Waterhole filled 
with water. One E. macquarii sheltered in the large cracks 
created by the drying mud under a clump of hairy carpet 
weed (Glinus lotoides) in the bed of Gingham Waterhole, 
~80 m from the last refuge pool. This turtle made two 
small movements in the weeds (2 and 4 m), but stayed 
in that general location for a total of 28 days. Another 
E. macquarii individual moved out of the mud to hide under 
cumbungi straw (T. orientalis) on the edge of Gingham 
Waterhole, ~85 m from where the last pool of surface 
water had been. This individual E. macquarii changed 
location under the straw after 8 days, remaining in this new 
location under the straw for 19 days until water returned. 

The E. macquarii at Gingham Waterhole had directional 
movement during the drought, often moving in a south-
easterly direction at an average bearing of 127° from the 
waterhole (test statistic = 0.88, P > 0.001), but it did 
not have a consistent directional pattern in movement 
during the flood (test statistic = 0.18, P = 0.800). The one 
E. macquarii individual tracked in Moolaboola Dam stayed 
in the dam until water returned, then moved out onto the 
flooded plain. 

Chelodina longicollis turtles were more mobile than were 
E. macquarii. All the tracked C. longicollis individuals at the 
Gingham Waterhole left the drying waterhole before the 
water receded to 0.07 m in depth, and they frequently 
changed terrestrial locations in the vicinity of the waterhole 

At Moolaboola Dam, one C. longicollis individual stayed in 
the water of the dam throughout the drought and two moved 
onto land until floodwater arrived. The remaining three 
C. longicollis individuals repeatedly moved between the 
water in the dam and terrestrial locations, then moved into 
the floodwater when it arrived. Chelodina longicollis at 
Moolaboola Dam showed a directional pattern, commonly 
moving in an easterly direction at an average bearing of 
103° from the dam during the drought (test statistic = 0.998, 
P < 0.001), and during the flood the tracked C. longicollis 
moved at an average bearing of 96° (test statistic = 0.99, 
P = 0.001). 

Survivorship of turtle species 
A total of 70 individual turtles were captured at Gingham 
Waterhole in November 2019 (before it completely dried), 
and 36 desiccated turtle shells were observed within the dried 
Gingham Waterhole in January 2020. Of the 36 desiccated 
turtle shells, 29 were identifiable to species and included 
16 C. expansa individuals (55%), 11 E. macquarii individuals 
(38%) and 2 C. longicollis individuals (7%). By contrast, the 
distribution of species captured in traps at the waterhole 
was 20 C. expansa individuals (28%), 39 E. macquarii 
individuals (56%) and 11 C. longicollis individuals (16%). 
The difference in species assemblages was significant 
(χ2 = 6.49, P = 0.039), with C. expansa being disproportion-
ately more represented in the desiccated shells (Fig. 3). 

Of the 15 C. longicollis individuals tracked, 13 were 
confirmed alive at the end of our study, 1 died and 1 either 
moved out of range or the transmitter failed. Of the 16 
E. macquarii individuals tracked, 10 were confirmed alive at 
the end of the study, 4 died and 2 were out of range or the 
transmitters failed. The difference in survivorship between 
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throughout the drought. Chelodina longicollis were generally 
found in particular microhabitats, such as buried in soil and 
leaflitter or under or near a log or logs, usually in the shade of 
covering tree canopy. They rested terrestrially in one location 
for an average of 33 days before relocating; however, one 
individual estivated for 84 days in one place and another in 
one location for 67 days. Chelodina longicollis turtles 
at Gingham Waterhole had a pattern in their terrestrial 
movement around the dried waterhole, often moving north-
east at an average bearing of 37° from the waterhole during 
the drought (test statistic = 0.61, P = 0.0301). They 
continued with a consistent pattern of movement during the 
flood, generally moving at an average bearing of 76° while Fig. 3. Species composition of live turtles captured in Gingham 

Waterhole before drying and desiccated shells observed in the dried 
waterhole. 

frequenting the floodplain and its channels (test statistic = 0.84, 
P = 0.003). 
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C. longicollis and E. macquarii was not statistically signifi-
cant (χ2 = 1.63, P = 0.22); however, sample sizes were 
small (Table 1, Fig. 4). 

Discussion 

Movement strategies 
The tracked E. macquarii and C. longicollis turtles showed 
different behavioural strategies for surviving a severe 
drought, as has also been found between other species, 
reflective of their different ecologies (Gibbons et al. 1983; 
Chessman 2018). Terrestrial estivation of E. macquarii has 
not been previously recorded, and they generally travel on 
land only to nest (Chessman 1984) or once a waterbody has 
dried (Cann and Sadlier 2017). Here, we demonstrated that 
during the drying out of the Gingham Waterhole, one-third 
of the tracked E. macquarii individuals stayed in the mud at 
the bottom of the waterhole. This is a strategy that has 
been observed in terrestrially migratory and estivating 

Table 1. Means by which radio-tracked Emydura macquarii and 
Chelodina longicollis survived a severe drought in the Gwydir Wetlands 
in 2019 and 2020. 

Item Stayed in 
water 

Sought refuge 
on land 

Stayed buried 
in mud 

Total 

Gingham Waterhole 

E. macquarii 0 10 (3 died) 5 (1 died) 15 

C. longicollis 0 9 (1 died) 0 9 

Moolaboola Dam 

E. macquarii 1 0 0 1 

C. longicollis 1 5 0 6 

Fig. 4. Survivorship of tracked Emydura macquarii and Chelodina 
longicollis individuals from Gingham Waterhole. Shaded areas show 
the confidence intervals and a vertical line represents the day when 
water flowed into Gingham Waterhole. 

Australian turtles such as Chelodina rugosa (Fordham 
et al. 2008) and aquatic cryptodirans such as Sternotherus 
odoratus in South Carolina (Gibbons et al. 1983). Four of 
the five E. macquarii individuals that stayed in the mud at 
Gingham Waterhole survived with no surface water for 
66 days until water returned (the fifth died), suggesting 
that this strategy is moderately successful in the short term. 
Other sites, such as Moolaboola Dam, did not have a thick 
layer of mud, so the success of this strategy may be limited 
to waterholes with specific qualities. 

During the drought, the majority of tracked E. macquarii 
individuals left the drying waterhole, a behaviour that has 
been previously observed anecdotally in Emydura macquarii 
emmotti (Cann and Sadlier 2017). Turtles that attempted to 
relocate by moving terrestrially across the floodplain had 
higher mortality rates than did those that stayed in the 
waterbody, and the success of this strategy is likely to be 
dependant on the distance to the nearest waterbody and 
the condition of the individual turtle (Roe et al. 2008). 
Some individuals moved only a short distance before dying. 
There is the possibility they may have already been in 
low body condition or dehydrated, or they may have left 
at dangerously hot times of day, reiterating the risks 
of leaving a waterhole during drought (Chessman 1984; 
Roe et al. 2008). Emydura macquarii travelled further once 
water was available, moving throughout the flooded area, 
as has previously been found in closely related E. m. 
emmotti (McKnight et al. 2023). This movement in flooded 
areas demonstrates the importance of intermittent flows 
and aquatic connections for the dispersal of aquatic turtles. 

Unlike E. macquarii, C. longicollis in the Gingham 
Waterhole moved onto land when the water became 
shallow. In the Gingham Waterhole, C. longicollis left the 
waterhole before it dropped to 0.7 m, as in a previous study 
where the number of C. longicollis in a wetland decreased 
as the water level dropped from 1.5 to 0.8 m (Kennett and 
Georges 1990). In the Gwydir Wetlands, most C. longicollis 
individuals did not stay in one estivation site, but moved 
frequently throughout the drought. Their choice of resting 
locations demonstrated a preference for particular micro-
habitats akin to other studies that have found that turtles 
such as C. longicollis, Clemmys guttata and Deirochelys 
reticularia miaria are selective in choosing estivation sites 
(Milam and Melvin 2001; Rees et al. 2009; McKnight and 
Ligon 2020). This suggests that maintenance of floodplain 
vegetation that offers cover during times of drought is 
important to freshwater turtles and echoes previous work 
on the need for maintaining large buffer zones around 
wetlands protecting them from activities such as land clearing 
(Semlitsch and Bodie 2003; McKnight and Ligon 2020). 

Behaviour of C. longicollis in the Gingham Waterhole 
is consistent with previous evidence that the species is 
purposeful in its movement when travelling terrestrially 
(Stott 1987; Dalem 1998; Roe et al. 2008). Both C. longicollis 
and E. macquarii moved in a directional pattern, demonstrating 
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an ability to navigate. The terrestrial movement was not 
constrained, as the topography is very flat (average gradient 
~0.001) and the E. macquarii tended to follow the water 
channels, whereas the C. longicollis used the more thickly 
wooded area suitable for estivation. Chelodina longicollis 
turtles can orient their travel over distances of more than 
2 km as they move among wetlands (Graham et al. 1996). 
In our study, only one C. longicollis individual travelled 
more than 2 km during the drought and none of the 
C. longicollis individuals relocated to another waterhole. 
This suggests that the separation of waterbodies by expanses 
of arid land reduces the propensity of attempted overland 
movement to other wetlands. This lack of a network of 
waterholes will make these turtles more vulnerable to extended 
drought than are turtles in areas with more aquatic refugia. 
However, during the flood, C. longicollis was able to travel 
extensively in the water by using the shallow flooded areas, 
and these times of flood are important times for feeding and 
migration (Kennett and Georges 1990). 

Chelodina longicollis individuals tracked at Moolaboola 
Dam, where water provided a consistent aquatic refuge, 
were not forced to remain on land for the duration of the 
drought as they were at Gingham Waterhole. Chelodina 
longicollis is less likely to cohabit permanent waterbodies 
with E. macquarii and C. expansa when other wetlands are 
available, possibly because of food competition (Chessman 
1988; Beard and Powell 2023), and when animal numbers 
exceed the carrying capacity of a waterbody, C. longicollis 
turtles have low bodyweight (Kennett and Georges 1990). 
Chelodina longicollis turtles feed only aquatically and 
cannot replenish their energy reserves when estivating, which 
limits the length of time they can travel or estivate (Chessman 
2011). Turtles with good body condition may estivate more 
than those that have lower fat reserves (Dalem 1998). 
Individual turtle behaviour is altered by the perceived cost 
of movement in an isolated unpredictable environment and 
the likelihood that an individual will estivate, and the time 
it spends estivating, increases as distance to permanent 
water increases (Roe and Georges 2008). Individual choices 
to stay in a drying wetland or move out to estivate and 
migrate become more unpredictable as isolation of the 
wetland increases (Roe and Georges 2008). In this case, all 
strategies used by C. longicollis at Moolaboola Dam were 
successful in that none of the tracked turtles died. 

Survival in drought 
Chelodina longicollis turtles have adaptations, such as having 
low evaporative water loss and the ability to reabsorb water 
from their bladder, that allows them to estivate terrestrially 
(Chessman 1984). They can survive on land longer than 
can E. macquarii and C. expansa (Chessman 1984), and this 
ability to estivate when water is not available may have 
resulted in lower mortality for C. longicollis than for 
E. macquarii at Gingham Waterhole. However, the difference 

was not statistically significant and the higher ability of C. 
longicollis to move about freely on land may have reduced 
our ability to detect carcasses near the last refuge pool. 
Mark–recapture studies over long periods would be useful to 
document the effects of disappearing refugia and better grasp 
the population-level impacts of drought. 

The relatively over-represented carcasses of C. expansa 
suggest that they may be less tolerant of extended drought 
than are other species. Chelodina expansa turtles are a highly 
aquatic animal that can travel long distances aquatically 
(Bower et al. 2012), but is rarely observed on land outside of 
the nesting season (Chessman 1988), although their evapora-
tive water loss is intermediate between that of C. longicollis 
and that of E. macquarii (Chessman 1984). Chelodina expansa 
is one of the largest Australian species of freshwater turtle and 
has a lower abundance than do C. longicollis and E. macquarii 
(Chessman 2011; Bower et al. 2012; Van Dyke et al. 2019). 
Chelodina expansa appears well placed to withstand a 
drought by remaining in a refuge pool, but in our study, the 
refuge pool dried, and C. expansa shells were predominant 
in the carcasses observed around the waterhole, suggesting 
they may attempt to leave once water has evaporated. As 
there were predators and scavengers at Gingham Waterhole, 
it is also possible that their size made it difficult to carry away 
or they were a larger target and easier to catch than were other 
species, making them the predominant carcass observed 
around the area. Long-term studies are needed to determine 
the effect increased drought duration and drying of 
waterholes may have on C. expansa. 

Our data demonstrated that C. longicollis and E. macquarii 
in the Gwydir Wetland State Conservation Area have different 
behavioural responses to drought, and the majority of 
individuals of both species survived until waters returned. 
Nevertheless, increases in the frequency or severity of these 
droughts as a result of climate change present a signifi-
cant problem, because turtles have generally evolved a life-
history strategy that relies on low adult mortality (Spencer 
2018), and many dead individuals were observed during 
the drought at Gingham Waterhole. Further, 28.6% of our 
tracked E. macquarii adults (with a known fate) died, and 
adult mortality rate is likely to be unsustainable (Spencer 
and Thompson 2005), especially if droughts become more 
frequent. Additionally, if the drought had continued longer, 
the mortality rate of turtles would have likely increased. 
Environmental flows are a critical tool to deliver water 
during periods of waterbody drying and allocating water to 
deliver to terminal wetlands will be paramount to enabling 
the survival of long-lived species, such as turtles, during 
future droughts. 
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