
RE S EARCH REV I EW

Fire in Australian savannas: from leaf to landscape
J A SON BER INGER 1 , 2 , L INDSAY B . HUTLEY 3 , DAV ID ABRAMSON1 , S TE FAN K . ARNDT 4 ,

P ETER BR IGGS 5 , M I LA BR I STOW3 , JO SEP G . CANADELL 5 , LUCAS A . CERNUSAK6 ,

DEREK EAMUS 7 , ANDREW C . EDWARDS 3 , BRADLEY J . EVANS 8 , BENED IKT FEST 4 , KLAUS

GOERGEN9 , 1 0 , 1 1 , SAMANTHA P . GROVER 1 , 3 , J ORG HACKER 1 2 , VANES SA HAVERD 5 ,

KASTUR I KANNIAH 1 , 1 3 , S TEPHEN J . L IVE SLEY 1 4 , AMANDA LYNCH1 , 1 5 , S TE FAN

MAIER 3 , CA I TL IN MOORE 1 , M ICHAEL RAUPACH5 , J EREMY RUSSELL - SM ITH 3 , S IMON

SCHE ITER 1 6 , N IGEL J . TAPPER 1 and PETTERI UOTILA17

1School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia, 2School of Geography and

Environmental Science, Monash University, Melbourne, Vic. 3800, Australia, 3School of Environment, Research Institute for the

Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia, 4Department of Forest and Ecosystem

Science, The University of Melbourne, Melbourne, Vic. 3121, Australia, 5CSIRO Marine and Atmospheric Research, GPO Box

3023, Canberra, ACT 2601, Australia, 6School of Marine and Tropical Biology, James Cook University, Cairns, Qld 4878,

Australia, 7School of the Environment, University of Technology, Sydney, NSW 2007, Australia, 8Department of Biological

Sciences, Macquarie University, North Ryde, NSW 2113, Australia, 9Meteorological Institute, University of Bonn, Bonn,

D-53121, Germany, 10Juelich Supercomputing Centre, Research Centre Juelich, Juelich 52425, Germany, 11Centre for High

Performance Scientific Computing in Terrestrial Systems, Research Centre Juelich, Juelich 52425, Germany, 12Airborne Research

Australia/Flinders University, Salisbury South, SA 5106, Australia, 13Faculty of Geoinformation & Real Estate, Department of

Geoinformation, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Malaysia, 14Department of Resource Management and

Geography, The University of Melbourne, Melbourne, Vic. 3121, Australia, 15Department of Geological Sciences, Brown

University, Providence, RI 02912, USA, 16Biodiversity and Climate Research Centre (LOEWE BiK-F), Senckenberg Gesellschaft

f€ur Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany, 17Finnish Meteorological Institute, Helsinki

FI-00101, Finland

Abstract

Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and

provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The cur-

rent structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by

the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and

biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates

from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review

our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in

turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon

cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of sav-

annas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire

regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from

savanna ecosystems through changes in savanna fire management.
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Introduction

Tropical savanna ecosystems account for around 22%

of the global land surface (Ramankutty & Foley, 1999).

Annually, up to 75% of global tropical savanna

landscapes are burned either by natural or anthropo-

genic fires (Hao et al., 1990) and accordingly, 50% of the

total annual amount of biomass burned globally takes

place in the savanna region (Hao & Liu, 1994). The wet-

dry tropics of northern Australia include extensive

areas of savanna vegetation, which occupy approxi-

mately 1.9 million km2. This area accounts for 12% of

the world’s tropical savanna ecosystems, making this
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savanna biome of global significance. In this region, fire

is arguably the greatest natural and anthropogenic

environmental disturbance, with vast tracts burnt each

year through lightning strikes and by pastoralists,

aboriginal landholders and conservation managers

(Russell-Smith et al., 2003; Andersen et al., 2005).

While these frequent savanna fires are extensive in

area, they are of relatively low intensity when com-

pared to the infrequent but intense fires of southern

Australia (Williams et al., 1998). Fire intensity is sea-

sonal, with early dry season fires being of low intensity

(<1000 kW m�1) and causing minimal canopy damage.

As the dry season progresses, the fuel load accumulates

and cures, generating greater fire intensities. Conse-

quently, by the late dry season and premonsoonal per-

iod (August–October), fire intensity can be an order of

magnitude greater than those in the early dry season

(Williams et al., 1998). Such late dry season fires usually

burn over very large fronts and cause more damage,

resulting in crown scorching of over 90%. Such intense

fires reduce foliage cover and blacken the soil (see typi-

cal example from Howard Springs – Fig. 1).

The land surface is the interface for the exchange of

radiation, heat, moisture, CO2, aerosols, and other trace

gases with the atmosphere (Fig. 2). Fire (Beringer et al.,

2003; Chambers et al., 2005) and other disturbances

(Hutley & Beringer, 2011; Hutley et al., 2013) change

the ecosystem characteristics such as structure, species

composition, and physiological function (Beringer et al.,

2011a). These changes result in altered biophysics,

including energy partitioning (e.g. an enhanced sensi-

ble heat flux) and shifts in albedo (Beringer et al., 2003;

Jin & Roy, 2005). In addition, the aerodynamic proper-

ties of the ecosystem may change, affecting surface-

atmosphere coupling. For example, a fire that causes a

loss of canopy leaf area, will lead to a subsequent

reduction in canopy photosynthesis and evapotranspi-

ration, which will greatly influence postfire fluxes of

water and carbon. Therefore, the influence of fire on

ecosystem structure, and function, and biophysical pro-

cesses, have implications at a range of scales (Fig. 2)

(Bonan, 2008; Beringer et al., 2011a).

Variability in ecosystem characteristics modifies sur-

face–atmosphere exchanges, which in turn influence

the overlying atmospheric boundary layer. At the local

scale, enhanced sensible heat fluxes over patches of

burnt landscape can induce and affect mesoscale circu-

lation systems (Knowles, 1993). Variations in atmo-

spheric heating rates above burnt and unburnt savanna

generate horizontal pressure gradients which drive

atmospheric motion at a range of scales. At the regional

scale, savanna fires can have significant impacts on

Fig. 1 Unburnt and burnt savanna at Howard Springs

(12°29039.12″S 131°09009″E) a typical Eucalypt open forest. Dom-

inant overstorey species Eucalyptus miniata and Eucalyptus tet-

rodonta with a sorghum tall grass understorey.

Fig. 2 The important linkages between the land surface and the

earth system. Modification of ecosystems through fire will influ-

ence on ecosystem properties (structure, composition and func-

tion) and then through biophysical and biogeochemical

feedbacks at multiple scales from local boundary layer to global

climate. The important exchanges are listed using black bold-

face text. Reprinted from Beringer et al. (2011a, p. 1467).

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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water, energy, and CO2 exchanges (e.g. Lynch & Wu,

2000) and as a result, are likely to have important feed-

backs to regional climate. For example, spatial variabil-

ity in ecosystem characteristics can generate contrasts

that influence regional-scale climate systems such as

the Australian monsoon (Lynch et al., 2007). Previous

studies have focussed on the influence of land use and

land-cover change on these coupled dynamics (Evans

et al., 2011; Pielke et al., 2011; Mahmood et al., 2014).

However, the extent and frequency of fires in Australia

make this a crucial yet under represented research

issue.

Ecosystems also interact with the earth through bio-

geochemical cycling (C, N, P, etc.) (Fig. 2). Ecosystems

can be sinks or sources of CO2, trace gases and aerosols

and can therefore enhance or diminish the overall

greenhouse gas concentration in the atmosphere. Burn-

ing of savannas makes a positive contribution to global

CO2 concentrations through the emission of greenhouse

gases (GHG), while the ensuing regrowth makes a neg-

ative contribution as CO2 is assimilated from the atmo-

sphere. The impact of fire on ecosystem productivity

and non-CO2 trace gases is poorly understood (Berin-

ger et al., 2007), in particular the influence of below-

ground process such as termite gas exchange and

greenhouse gas emissions from soil (Jamali et al., 2011).

Furthermore, alterations in global greenhouse gas con-

centrations influence climate and the global circulation.

Therefore, understanding the biogeochemical and bio-

physical processes of savanna ecosystems and the influ-

ence of fire (and other disturbances) is important for

assessing interactions between climate, greenhouse gas

budgets, and water budgets from regional to global

scales (Arneth et al., 2010).

The objective of this article is to review our under-

standing of the impact fire has upon biophysical and

biogeochemical properties in Australian savannas at

multiple scales, from leaf level physiology to regional

climate. We use an earth system framework to elucidate

the impact of fires in savannas on (i) emissions from

biomass burning, (ii) leaf to ecosystem carbon budgets,

(iii) long-term regional carbon budgets, (iv) soil non-

CO2 greenhouse gas exchange, (v) energy and water

cycles, (vi) local climate and the atmospheric boundary

layer and (vii) regional climate feedbacks. The focus of

the article is on biophysics and biogeochemistry rather

than ecological drivers, because these have already

been documented in previous studies, including eco-

logical theory (Sankaran et al., 2004), evolutionary ecol-

ogy (Bowman et al., 2010), phenology (Williams et al.,

1997), environmental drivers (Williams et al., 1996),

nutrient cycling (Holt & Coventry, 1990), plant demo-

graphics (Prior et al., 2009; Midgley et al., 2010) and fire

(Williams et al., 1999; Yates et al., 2008; Murphy et al.,

2010). The spatial variability in savanna ecosystem

characteristics have been previously documented by

Hutley et al. (2011) and a description of the spatial pat-

terns and processes across the landscape is given in Be-

ringer et al. (2011a, b). While acknowledging the scale

of the Australian savanna ecosystems, we draw exam-

ples from the tropical savanna region of Australia

where we have sufficient information to assess many of

the connections in an earth system framework.

Biomass burning and emissions

Spatial and temporal patterns of fire emissions in north

Australian savannas result from both strongly seasonal

but annually reliable rainfall periods followed by

drought which are conducive to frequent fires, be they

mostly anthropogenic ignitions or lightning strikes. The

frequency of fire occurrence across Australia is shown

in Fig. 3, derived from 15 years (1997–2011) of

Advanced Very High Resolution Radiometer (AVHRR)

data (updated from Maier & Russell-Smith, 2012). Aus-

tralian tropical savannas (outlined in red in Fig. 3)

experience a high occurrence of fires, with some regions

exceeding 0.5 fires per annum (i.e. they experience a

fire every second year). At the continental scale, fire fre-

quency shows high correlation with total annual rain-

fall and seasonality, while at the regional scale savanna

fires are more strongly influenced by anthropogenic

ignition patterns (Russell-Smith et al., 2007). When

averaged annually, 18% of Australia’s 1.9 million km2

of tropical savannas (Fig. 3) were fire affected over the

period 1997–2011. Over two-thirds of fires currently

occur in the late dry season months (August–Novem-

ber) under relatively severe fire weather conditions

(Russell-Smith et al., 2013).

Globally, it is estimated that landscape and biomass

fires contribute CO2 emissions of between 2 and

4 Pg C yr�1 (Bowman et al., 2009). This is equivalent to

around 20–40% of the 9.5 � 0.5 Pg C yr�1 emissions

from fossil-fuel combustion in 2011 (Le Qu�er�e et al.,

2012). Recent estimates suggest that around half of glo-

bal fire carbon emissions come from Africa, with South

America contributing between 15 and 27%, and Austra-

lia <10% (Schultz et al., 2008; Van Der Werf et al., 2010).

Applying the calculation procedures that underpin

Australia’s National Greenhouse Gas Inventory (NGGI)

(CoA (Commonwealth of Australia), 2013; Russell-

Smith et al., 2009, 2014), we calculate that, over the

period 1997–2013, Australian tropical savanna fires con-

tributed 0.088 Pg C yr�1 to this total (through all

gases), being <5% of global landscape and biomass fire

emissions. When spread out over the Australian

savanna biome (Fig. 3) the emissions are 0.46 tC ha�1

yr�1 (Fig. 7).

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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Net annual CO2 emissions from savanna fires are

conventionally regarded as CO2 neutral on the assump-

tion that wet (growing) season growth balances out dry

season emissions from associated burns (Ciais et al.,

2011). However, such an assumption is not met when

savanna carbon stocks are degraded under high fre-

quency and/or high intensity fire regimes over longer

time scales (Beringer et al., 2007; Cook & Meyer, 2009).

Moreover, savanna fires generate substantial emissions

of the relatively long-lived GHG methane (CH4) and

nitrous oxide (N2O) (Schulze et al., 2009), which can

ultimately react to produce tropospheric ozone (O3),

itself a significant contributor to global warming con-

tributor (Finlayson-Pitts, 1997). Applying procedures

referenced above for calculating Australia’s NGGI, we

estimate that, over the period 1997–2013, emissions

from Australian tropical savanna fires contributed

0.28 Tg CH4 yr�1 of methane and 0.28 Pg CO2 yr�1

of carbon dioxide (ANGA (Australian National

Greenhouse Accounts), 2013) of which the CO2 emis-

sions are not accountable under the NGGI.

In addition, savanna fires release black carbon aero-

sols; for example, Beringer et al. (1995) calculated that,

during 1992, savanna fires in the Northern Territory

produced a large quantity (5.23 � 0.37 9 109 g) of total

particulate matter <2.5 lm in diameter. These black car-

bon aerosols potentially have strong positive radiative

forcing (Ramanathan & Carmichael, 2008) and may

change the surface albedo of savanna areas thereby

increasing solar energy absorption (Govaerts, 2002).

Leaf to landscape carbon budgets

Leaf carbon

Canopy performance is significantly altered following

fire events. This is caused both by the reduction in func-

tional leaf area due to senescence of scorched leaves,

Fig. 3 Fire frequency of large fire events (generally >4 km2) in Australia for the period 1997–2013 derived from AVHRR burnt area

mapping. Frequencies range from less than 0.1 pa (dark blue) to 1 pa (dark red). Areas in white have not been marked as burnt during

the mapping period. Tropical savannas are outlined in red (updated from Maier & Russell-Smith, 2012, p. 84). A histogram illustrates

the spatial heterogeneity of fire frequency.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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and by altered gas exchange characteristics of newly

expanding leaves that flush to replace those killed by

the fire. The new foliage that emerges in the weeks to

months following a fire is not immediately photosyn-

thetically competent with leaf respiration rates exceed-

ing leaf photosynthesis rates in the weeks and months

following fire (Cernusak et al., 2006). Thus, the oversto-

rey trees must not only expend carbon resources in con-

structing new foliage, but additionally suffer an

opportunity cost associated with net negative assimila-

tion during the canopy reconstruction phase.

What might the carbon cost of reconstructing the can-

opy after a fire be? Using the following assumptions, a

rough estimate can be produced: canopy scorch is

0.5 m2 of foliage per m2 ground area, corresponding to

about 80% of dry season canopy cover in the mesic sav-

annas of northern Australia; specific leaf area is

5 m2 kg�1, typical for savanna eucalypts in northern

Australia (Cernusak et al., 2006, 2011); the carbon mass

fraction of new foliage is 0.5; however, 1.25 g of carbon

is required to produce 1 g of foliage carbon due to

growth respiration costs. Under these assumptions, the

carbon cost of replacing scorched foliage would be

roughly 60 g C m�2 ground area, or about 5% of the

annual gross primary productivity (GPP) of the over-

storey. This calculation is simplified, insofar as it does

not take into account the loss of foliage that would

occur during the dry season in the absence of fire due

to natural senescence, but nevertheless it is indicative.

The opportunity cost associated with reduced carbon

assimilation during the canopy reconstruction phase,

when emerging foliage is not fully photosynthetically

competent, is more difficult to quantify. It depends on

the time courses of leaf expansion, the rates at which

gains in photosynthetic capacity proceed as new leaves

expand, and the water becoming available for transpi-

ration. Negative to very low rates of net photosynthesis

can persist in emerging eucalypt leaves until they have

nearly fully expanded, although this will likely vary

somewhat among species (Choinski et al., 2003). Berin-

ger et al. (2007) suggested that the reduction in canopy

photosynthesis could be similar in magnitude to the

carbon cost of replacing burned foliage. Thus, the total

cost to the carbon balance of overstorey savanna trees

associated with dry season fires in northern Australian

savannas could be on the order of 120 g C m�2 ground

area, or about 10% of the annual GPP of the overstorey.

Leaf-scale water-use efficiency is also likely to be

reduced for the period of time during which the canopy

is being re-established. Expanding eucalypt leaves tend

to have lower water-use efficiency than fully expanded

leaves. This is caused by relatively high intercellular

CO2 concentrations in expanding leaves associated with

low photosynthetic capacity and high respiration rates

(Cernusak et al., 2009). At the ecosystem scale, canopy

transpiration has been observed to recover to prefire

rates faster than canopy C assimilation (Beringer et al.,

2007), likely associated with the trajectory in intercellu-

lar CO2 concentrations as expanding leaves develop.

Canopy carbon

Savannas represent a large fraction of the total tropical

vegetation biomass and are highly responsive to their

local environments. The rate of canopy carbon uptake

at seasonal and shorter timescales is strongly controlled

by local environmental drivers such as soil moisture or

rainfall (Eamus et al., 1999; Cook & Heerdegen, 2001;

Kanniah et al., 2013a), nutrient availability (Sankaran

et al., 2005), solar radiation (Kanniah et al., 2010a, 2012,

2013b), vapour pressure deficit (Eamus et al., 2001) and

fire (Beringer et al., 2007). Fire affects the radiative bal-

ance of the ecosystem immediately due to combustion

of the grass-dominated understorey vegetation and

blackening of the soil surface.

Previous studies have shown that low intensity fires

(<1000 kW m�1) at a mesic savanna site (Howard

Springs) caused minimal upper canopy damage and

had a small impact on the surface energy balance and

only a slight increase in Bowen ratio (ratio of sensible

to latent heat fluxes). However, moderate fires (1000–
3000 kW m�1) resulted in complete upper canopy

scorch and almost total defoliation in the weeks follow-

ing (Beringer et al., 2003) (Fig. 1b). Consequently, at the

Howard Springs site, canopy transpiration was reduced

and energy partitioning altered. High intensity fires

resulted in decreased evapotranspiration (Fig. 10) and

carbon uptake (Fig. 4) at Howard Springs (Beringer

et al., 2007). After fire, the Bowen ratio was found to

increase greatly due to large increases in sensible heat

fluxes. These changes in surface energy exchange fol-

lowing fire, when applied at the landscape scale, may

have important impacts on climate through local

changes in circulation patterns and changes in regional

heating, precipitation and monsoon circulation (Berin-

ger et al., 2003).

Aerosols generated from savanna burning have been

found to significantly affect the direct and diffuse com-

ponents of solar radiation as well as its spectral compo-

sition (Eck, 2003; Kanniah et al., 2010a), which could

feedback to affect the canopy GPP of savannas (Kann-

iah et al., 2012). For example, Kanniah et al. (2010b)

found that smoke aerosols and humidity haze pro-

duced varying aerosol optical depths (0.1–0.4) which

enhanced the fraction of diffuse radiation from 11 to

22% and resulted in an increase change in net ecosys-

tem exchange. The effect of aerosols on regional circula-

tion is discussed later.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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Long-term regional savanna NPP and NEP

In this section, we assess components of the long-term

net primary productivity (NPP) and net ecosystem pro-

duction (NEP) in the regional savanna carbon budget,

using a land surface model. We define NEP as GPP

minus ecosystem respiration (Re), in the absence of dis-

turbance (Chapin et al., 2006). Re is the sum of auto-

trophic (Ra) and heterotrophic (Rh) respiration. As

described in Haverd et al. (2013a, b), components of

NPP and NEP were derived using the BIOS2 modelling

environment, constrained by multiple observation

types, and forced using remotely sensed estimates of

leaf area index (LAI) and meteorology from the Bureau

of Meteorology’s Australian Water Availability Project

data set (BoM AWAP) (Jones et al., 2009). BIOS2 is a

fine-spatial-resolution (0.05°) offline modelling environ-

ment, including a modification of the Community

Atmosphere Biosphere Land Exchange land surface

scheme (Wang et al., 2011) incorporating the

Soil–Litter–Iso model (Haverd & Cuntz, 2010) plus the

Carnegie–Ames–Stanford Approach with Carbon–
Nitrogen–Phosphorus (CASA–CNP) biogeochemical

model (Wang et al., 2010). This scheme is used in the

Australian Community Climate and Earth System Sim-

ulator. BIOS2 parameters are constrained and predic-

tions are evaluated using multiple observation sets

from across the Australian continent, including stream-

flow from 416 gauged catchments, eddy flux data (CO2

and H2O exchange) from 12 Australian OzFlux sites

(including three from the savanna region), litterfall data,

and soil, surface litter and biomass carbon pool data.

The spatial variability in carbon and water exchanges

as simulated by the model are given in Fig. 5 for the

Australian savanna region using the boundaries of Fox

et al. (2001). The figure illustrates the strong gradients

in the carbon (Fig. 5b, d) and water components

(Fig. 5c) that are driven by the steep decline in annual

rainfall totals (Fig. 5a) from the coast to the interior

(around 1 mm km�1). The resulting patterns of bio-

mass follow the rainfall gradient but are also very spa-

tially heterogeneous (see the histogram insets in Fig. 5).

This illustrates the potential difficulty in spatial scaling

of savanna processes, function and structure. From the

modelled output, we then calculated the mean of the

components (GPP, Rh, Ra, and ET) for the Australian

savanna, where ET is evapotranspiration.

Figure 6(i–iii) shows the annual time series of precip-

itation, NPP and NEP (1911–2011) for Australian savan-

nas. The savanna region defined in the study by

Haverd et al. (2013a) is characterized by high inter-

annual variability (IAV; Smith, 2004) in precipitation

(638 � 137 mm yr�1, 1r), which contributes to the high

IAV in NPP (4.35 � 0.62 tC ha�1 yr�1, 1r) and NEP

(0.092 � 0.36 tC ha�1 yr�1, 1r) and is consistent with

previously understood drivers of savannas carbon

fluxes exchanges (Kanniah et al., 2010a). For compari-

son, the gross C-CO2 emissions (tC) from biomass burn-

ing are equivalent to around 9% of the savanna NPP.

Figure 6(iv) shows the same time series, presented as

10-year running means, converted to percentile rank.

This reveals a strong correlation between precipitation

and NPP at the decadal time-scale. The percentile rank

time series of decadally averaged NEP can deviate sig-

nificantly from that of NPP (e.g. around 1984 and 2000),

corresponding to periods of high heterotrophic respira-

tion following long periods of biospheric carbon accu-

mulation.

The average NEP trend (1990–2011) for the Austra-

lian savanna biome was significantly positive

(0.135 � 0.055 tC ha�1 yr�1, 1r) and slightly higher

than the Australian continental average value for the

same period (0.117 � 0.036 tC ha�1 yr�1, 1r). This is

largely attributable to the CO2 fertilization effect (i.e.

the positive response of NPP to rising CO2) (Haverd

et al., 2013b). The NEP values, by definition, exclude

the influence of disturbances such as fire, which are dis-

cussed in the following section.

Net ecosystem carbon balance and net biome production

Net ecosystem production is defined above as the dif-

ference between GPP and Re (Chapin et al., 2006).

Fig. 4 Changes to net ecosystem productivity (NEP) following

annual fire using a case study during 2003. The savanna changes

from a sink to source after fire and remains a source for approxi-

mately 70 days despite the canopy being rebuilt and evapotrans-

piration returning to prefire levels after 40 days. The difference

between the observed tower fluxes and the neural network (NN)

model estimates of the fire free condition gives an estimate of

the indirect impact of fire (the loss of canopy productivity and

the cost of rebuilding the canopy) on the canopy. The integrated

effect of fire is to reduce NEP on average (2001–2006 events) by

0.7 tC ha�1. Reprinted from Beringer et al. (2007, p. 1000).

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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However, many additional other processes are also

involved in the terrestrial carbon balance, including

fire, methane fluxes, dissolved organic carbon (DOC),

dissolved inorganic carbon (DIC) and particulate

organic carbon (POC) losses to rivers, volatile organic

carbon emissions (VOC), erosion, disturbances (e.g.

insect outbreaks, storms, cyclones) and land-use

change. In most terrestrial ecosystems, carbon is accu-

mulated fairly steadily over time by net plant growth,

but is lost in relatively infrequent, large emission events

associated with episodic disturbance. The resulting net

accumulation is described by the net ecosystem carbon

balance (NECB), defined by Chapin et al. (2006) as NEP

less these episodic carbon losses from additional natu-

ral and anthropogenic disturbances. Thus, the NECB is

representative of long-term ecosystem productivity,

and better represents a system that experiences fre-

quent disturbance. We follow the convention that NEP

and NECB are negative for carbon losses from the eco-

system to the atmosphere. The net biome productivity

(NBP) is then NECB extrapolated to larger spatial scales

(Chapin et al., 2006).

Net ecosystem carbon balance and NBP are impor-

tant variables to quantify for Australian savannas as

these ecosystems are subjected to disturbance processes

that range in temporal scales from hours to months

(herbivory via termites, insects, grazers both native,

and introduced), annual to decadal (fire) and for coastal

and subcoastal savannas, decadal to century time

scales, via impacts from extreme storm events and

cyclones (Williams & Douglas, 1995; Cook & Goyens,

2008; Hutley et al., 2013). Disturbance processes play a

fundamental role in savanna dynamics and are impor-

tant for maintaining tree and grass coexistence (House

et al., 2003). Fire frequency, herbivory and climatic vari-

ability are drivers of tree recruitment and growth, with

high levels of disturbance resulting in demographical

bottlenecks that constrain the growth and recruitment

of woody components, resulting in grass persistence or

even dominance, processes that are evident in the Aus-

tralian Eucalypt dominant savanna (Prior et al., 2010).

In Australian savannas, both vertebrate and inverte-

brate herbivory are important. While these systems lack

the large herbivores of African savannas, cattle grazing

is a major land use. Grazing pressure is generally low

across the Australian savanna, with the exception of

central Queensland where stocking rates can be as high

as 100 DSE km�2 (standardized as dry-sheep equiva-

lents; Bastin, 2008). In the Northern Territory and

Kimberly region of Western Australia, rates are typi-

cally 2–10 DSE km�2 with large tracks of the high rain-

fall areas (>1200 mm) not grazed. Since they consume

grass, cattle reduce fuel for fire and create ecological

space for shrub and tree invasion (House et al., 2003).
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Fig. 6 Annual time series of regionally averaged savanna (i)

precipitation; (ii) net primary productivity (NPP) and (iii) net

ecosystem production (NEP) (NPP – heterotrophic respiration

in the absence of disturbance). Shading represents 1-sigma

uncertainties on the mean, and includes contributions from

parameter uncertainties and forcing uncertainties, as evaluated

in Haverd et al. (2013a, b). (iv) Percentile rank time series of 10-

year averaged precipitation, NPP and NEP. Each point is the

percentile rank of the variable (precipitation, NPP or NEP),

averaged over a 10-year window, centred at the time on the

x-axis. A point having a percentile rank of 100% means that all

other points in the time series have lower values.

Fig. 5 Maps of annually averaged quantities from the BIOS2 model (Haverd et al., 2013a, b) for the period 1990–2011. The model esti-

mates are constrained and predictions are evaluated using multiple observation sets from across the Australian continent, including

streamflow from 416 gauged catchments, eddy flux data (CO2 and H2O) from 12 OzFlux sites, litterfall data and data on soil, litter and

biomass carbon pools. (i) Precipitation; (ii) net primary production; (iii) evapotranspiration; (iv) net ecosystem productivity (v) and bio-

mass. Histograms illustrate the spatial heterogeneity of the spatial quantities.
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In the absence of disturbance, particularly fire, savan-

nas tend to become more woody, although canopy clo-

sure may be limited by rainfall (not in mesic northern

savannas) or herbivory (Murphy & Bowman, 2012).

A key component of NECB is the rate of tree and

shrub mortality and recruitment, which is strongly

influenced by fire regime (Liedloff & Cook, 2011).

Extensive experimental assessments of the impacts of

fire frequency and fire intensity on tree and shrub

dynamics have been undertaken since the early 1990s.

Williams et al. (1999) demonstrated that total live-stem

basal area can increase marginally in both control

(unburnt) and early dry season burnt plots in open

Eucalyptus woodland in northern Australia. In con-

trast, substantial live-stem basal area declines (�27%)

were observed over the 4 year experimental study in

plots receiving hot, late season burns. In addition, there

was an increase in tree mortality with increasing fire

intensity (Williams et al., 1999). A similar trend (of

increasing loss of stem basal area and survival with late

compared to early fires) was also reported by Prior

et al. (2010) and Murphy et al. (2010).

The intensity and frequency of fires also impacts

savanna structure. Frequently burned sites tend to have

annual grasses dominating, but the absence of burning

is associated with a decrease in annual grass cover and

either an increase or decrease in perennial grass covers

(Russell-Smith et al., 2003). For frequent, low- to moder-

ate-intensity (<2500 kW m�1) fire regimes, Eucalyptus

and Corymbia dominated savanna were structurally sta-

ble (Russell-Smith et al., 2003). Long-term exclusion of

fire (23 years) can result in grass cover declines and

tree stem density increases, including invasion of rain-

forest taxa (Russell-Smith et al., 2003; Scott et al., 2012a).

This transition from open eucalypt woodlands to a

taller, more closed forest less dominated by Eucalypt

species is associated with reduced fire frequency aris-

ing from the reduced grassy fuel production in the

shaded understory. Long-term changes in savanna

structure can also be inferred from the analyses of Prior

et al. (2010), who showed that cooler, early dry season

fires result in the largest loss of living stems in small

trees, while late fires have the largest impact on inter-

mediate (3–5 m tall) and very tall (>20 m) trees. Fur-

thermore, recruitment rates were reduced by fire and a

recruitment bottleneck occurred in response to fire

because of the differential effects of fire on small, med-

ium and tall trees (Prior et al., 2010). Increased stem

density and canopy cover are associated with increased

GPP and NPP globally and therefore increased savanna

tree standing biomass and canopy cover will be

reflected in NECB.

To estimate savanna NECB, direct observations of

NEP as well as carbon losses via fire and other loss

pathways are required at the stand scales. These can

then be scaled to regional and biome scales estimates

(NBP) via remote sensing and modelling. There are few

estimates of savanna NECB and NBP available

(Table 1). Several stand scale studies have been con-

ducted in high rainfall (>1400 mm annual rainfall)

coastal sites in the Northern Territory of Australia.

NECB has been estimated at a long-term eddy covari-

ance flux tower at the Howard Springs site in the

Northern Territory, using 5 years of data from 2001 to

2006 (Beringer et al., 2007). The impact of fire on the

latent energy exchange of the canopy was evident for

40 days while foliage regrew; however, the site

remained a source for 70 days during this recovery

phase. Fire had direct impacts through GHG emissions

as well as indirect effects through the loss of productiv-

ity due to reduced functional leaf area index and the

carbon costs of rebuilding the canopy following fire

(Fig. 4). Accounting for these indirect (canopy rebuild-

ing) and direct (consumption of biomass) fire impacts,

allowed them to calculate a NECB of +2.0 tC ha�1 yr�1

for that high rainfall site.

The Howard Springs site is only representative of

mesic, coastal savannas (>1400 mm annual rainfall)

and there is much variation in savanna structure and

composition (Hutley et al., 2011) down to the 500–
600 mm rainfall isohyet (Fox et al., 2001). Williams et al.

(2004) used flux tower derived estimates of NEP and

applied this to a savanna region of western Arnhem-

land in the Northern Territory where the spatial and

temporal dynamics of the fire were managed and asso-

ciated emissions accounted (Russell-Smith et al., 2009).

Table 1 NBP and NECB estimates for Australian savannas. A positive value denotes a net carbon sink

Source Method Spatial scale Temporal scale NECB/NBP* (tC ha�1 yr�1)

Barrett (2011) Model (VAST1.2) Biome (NBP) 3 years +0.016 to +0.20
Beringer et al. (2007) Flux data Stand (NECB) 5 years +2.0
Hutley et al. (2005) Flux data Stand (NECB) 2 years +1.54
Williams et al. (2004) Spatial extrapolation Region (NBP) Annual mean +2.12 to �0.67

Chen et al. (2003) Inventory Stand (NECB) Annual mean +1.1

*NBP, net biome productivity; NECB, net ecosystem carbon balance.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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This study provided a robust estimate of NBP at a regio-

nal scale (32 484 km2) and the range of NEP and burnt

areas were varied to estimate NBP under a variety of sce-

narios. NBP for this Arnhemland region ranged from a

source (�0.67 tC ha�1 yr�1) to a weak carbon sink.

At a savanna biome scale (1.91 9 108 ha), a similar

result was obtained by Barrett (2011) using a modelling

approach, whereby a wide range of NEP and NBP val-

ues were simulated. Data-assimilation methods were

applied with the Vegetation and Soil carbon Transfer

(VAST) model (Barrett, 2002) and GPP, NPP, NEP were

estimated over a 20 year period. Satellite derived esti-

mates of burnt area and carbon emissions were then

used to estimate an NBP of 0–0.2 tC ha�1 yr�1. These

estimates of NBP are close to the global savanna NEP

estimate of 0.14 tC ha�1 yr�1 of Grace et al. (2006).

In this article, we calculate a new NBP estimate for

the Australian savannas using the spatial estimates of

NEP from the BIOS2 model and explicitly accounting

for the losses of carbon from fire, termites, cyclones and

transport (Fig. 7). Carbon losses from cyclones and ter-

mites are estimated from observations as per Hutley

et al. (2013) and fire loss is calculated as described in

the emissions section above. Non-CO2 greenhouse

gases are not presented here and the impact of distur-

bance presented here is via CO2 exchange only. This

integration suggests the Australian savannas are a net

carbon source of �0.63 tC ha�1 yr�1, with fire losses

the largest disturbance pathway. Cyclonic impacts are

small in comparison, given the return interval of ca.

500 years for large catastrophic events (Hutley et al.,

2013) and limited area of impact (50 km from the coast-

line). Loss of carbon via lateral or fluvial transport of

DOC, DIC and POC is likely to be low, although there

is considerable uncertainty given the paucity of data

describing those fluxes (Bass et al., 2013; Haverd et al.,

2013b). In addition, the production and fate of soil black

carbon (charcoal) is largely unknown but may be signif-

icant given the frequent fire. The production of black

carbon for savanna and grassland fire is generally <3%
of biomass, but there is considerable uncertainty (Grace

et al., 2006). One of only a few estimates comes from

southern Africa where, Kuhlbusch et al. (1996) found

that 0.6–1.5% of the exposed biomass carbon was con-

verted to black carbon, however, the mass of wind

and/or fluvially exported ash is unknown. A propor-

tion (%) of black carbon is buried within the soil and

becomes a component of the total soil organic carbon

pool and can reduce the temperature sensitivity and

decrease the turnover time of soil carbon (Lehmann

et al., 2008).

Quantifying uncertainties around these estimates is

difficult. A thorough assessment of model uncertain-

ties around NEP is given in Haverd et al. (2013a) but

is not available for the disturbance and transport com-

ponents. Therefore, in this case we provide a qualita-

tive indication of uncertainties of the components in

Fig. 7 and we suggest that the disturbance terms have

high uncertainty. In Australia, we have an excellent

capability in fire remote sensing and ecology, however

improvements can always be made. The general

uncertainties in fire emissions lie in the inability to

determine (i) spatial extent of all fire events, (ii) fire

intensity, (iii) biomass consumed and (iv) appropriate

emissions factors. Fluvial transport and black carbon

production, transport and consumption should be

quantified to establish a more robust cycling for sav-

annas.

Climate, biomass and fire interactions

To understand the current and future links between cli-

mate, biomass and fire interactions of trees and grasses,

we employed the adaptive dynamic vegetation model

(aDVGM) of Scheiter & Higgins (2009). aDVGM simu-

lates plant physiological processes and adds novel pro-

cesses that allow plants to dynamically adjust carbon

allocation and leaf phenology to the environmental con-

ditions. The model is an individual-based model that

simulates state variables such as biomass, height and

photosynthetic rates of single plants which are then

Fig. 7 The net biome productivity (NBP) for Australian

savanna, estimated as the sum of the individual components of

GPP, Ra and Rh derived from the Australian continental terres-

trial carbon budget (Haverd et al., 2013b) and includes the dis-

turbance and lateral transport terms. Carbon losses and

uncertainties for cyclones and termites are estimated from

observations as per Hutley et al. (2013). Fire estimates are calcu-

lated in this article. All unit are tC ha�1 yr�1 except ET and P

which are mm yr�1. Non-CO2 greenhouse gases are not pre-

sented here and the impact of disturbance presented here is via

CO2 exchange only. The size of the arrows are proportional to

the size of the flux. Uncertainty associated with each component

are given (*low, **medium and ***high) based on our expert

opinion.
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integrated to the stand scale. Fire (intensity, timing and

frequency), demographics, phenology, carbon and

water pools and fluxes are simulated. The aDVGM

requires precipitation, temperature, atmospheric CO2

concentration, humidity, wind speed, soil carbon, soil

nitrogen and it typically simulates vegetation at 1 ha

stands. It has been validated in African savannas (Sche-

iter & Higgins, 2009). A number of experiments were

undertaken by Scheiter et al. (2014) and a summary is

provided below and in Fig. 8.

Simulations were conducted to examine the effects of

climate change, precipitation seasonality, fire regime

(as described by fire return interval and fire timing)

and subsequent fire intensity on tree/grass biomass in

Australian savannas. Experiments were undertaken

which varied precipitation seasonality, fire return inter-

val and fire timing (Scheiter et al., 2014). Climate driv-

ers were taken from the SRES A1B scenario from the

MPI Hamburg ECHAM5 model (Roeckner, 2013). In

this scenario by 2100, carbon dioxide concentration

[CO2] increased to ca. 700 ppm, air temperature (T)

increased on average by 4° C and mean annual precipi-

tation (P) increased by 13%. A description of the

experiments is provided in the caption for Fig. 8. The

model showed that under the single climate scenario

that both tree and grass biomass increased by 18.6 and

0.7 tC ha�1 yr�1, respectively (Fig. 8). A full factorial

set of simulations that varied climate change drivers T,

P, and [CO2] showed that most of the increase in tree

biomass was due to the CO2 concentration increase

(ANOVA effect size as partial eta squares of 0.97),

whereas grass biomass increased due mainly to the

temperature increase (ANOVA effect size as partial eta

squares of 0.94). Increasing the seasonality of precipita-

tion reduced the growing season and resulted in a

decrease in biomass of both trees and grasses with a

feedback to lower fire intensities due to lower fuel

loads. We then examined the effect of fire regime on

tree and grass biomass and found that changing fires to

occur in the early dry season or reducing fire frequency

both increased the tree biomass by 20.3 and

4.9 tC ha�1 yr�1, respectively. Increases in tree biomass

were due to woody thickening (an increase in standing

biomass of woody species) which is a global phenome-

non most commonly observed in arid and semiarid

regions including savannas and shrublands (Witt et al.,

Fig. 8 Summary of the effects of climate change, precipitation seasonality, fire regime (as described by fire return interval and fire tim-

ing) and subsequent fire intensity on tree/grass biomass in Australian savannas. A dynamic vegetation model (aDVGM – Scheiter &

Higgins, 2009) was applied to a number of experiments which varied precipitation seasonality, fire return interval (FRI) and fire timing

(Scheiter et al., 2014). Climate drivers were taken from output from the SRES A1B from the MPI Hamburg ECHAM5 model (Roeckner,

2013). In this scenario by 2100, carbon dioxide concentration [CO2] increased to ca. 700 ppm, air temperature (T) increased on average

by 4°, mean annual precipitation (P) increased by 13%. Simulations were conducted using the following experiments: #1 FRI ranges

from 1 to 10 years (10 year FRI minus 1 year FRI); #2 Fire timing from early to late dry season ignitions (early minus late); #3 Increased

precipitation seasonality from current to more than current (see Scheiter et al. 2014); #4 Full factorial simulations varying climate change

drivers T, P, and [CO2] where we report the ANOVA effect sizes as partial eta squares for the impact of [CO2], T and P on tree biomass

(#5) and grass biomass (#6). Here, modifications of fire intensity (#7) resulting from changes in FRI and fire timing are shown. Changes

in fire intensity feedback to affect tree/grass biomass which is incorporated as seen in the biomass arrows. Values show the difference

in biomass or fire intensity for the different experiments and the arrow sizes are proportional to those values. Dashed arrows indicate a

negative value. All biomass units are in tC ha�1 over the simulation and fire intensity is in units of W m�1.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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2009; Scott et al., 2012b). As a result of competition the

grass biomass decreased slightly. Interestingly the fire

intensity increased with longer return times (due to

increased fuel loads) but decreased in early dry season

fires (due to higher fuel moisture content).

As demonstrated by recent north Australian experi-

ence, there is substantial scope for mitigating savanna

burning emissions through the implementation of

strategic early-mid dry season fire management,

especially if there is a market incentive. For example,

the 28 000 km2 Western Arnhem Land fire Abate-

ment (WALFA) project reduced emissions of Kyoto-

accountable GHG (CH4, N2O) by 38% over the first

7 years of implementation, relative to the preproject

10-year emissions baseline (Russell-Smith et al., 2013).

This was achieved through the imposition of a more

conservative fire regime emphasizing prescribed early

season management to reduce late season wildfires.

Although WALFA operates under a voluntary market

offset arrangement with a multi-national corporate,

Australian greenhouse policy, currently in flux, is

likely to continue to support market incentives given

that non-CO2 emissions from savanna burning are

included in Australia’s NGGI.

Soil greenhouse gas exchange

Soils in savanna ecosystems contribute to the produc-

tion and consumption of the GHG CO2, CH4 and N2O

via soil microbial processes and subterranean termite

activity. In addition to direct GHG emissions during

biomass combustion (Biomass burning and emissions),

fire may also affect soil-atmosphere exchange of GHGs

in the long-term (Castaldi et al., 2006, 2010) by altering

soil carbon inputs, nutrient inputs, surface microbial

activity, surface moisture and temperature. However,

the effect of fire upon savanna soil-atmosphere

exchange of CO2, CH4, N2O, and other trace gases is

unclear and often contradictory (Anderson & Poth,

1998; Pinto, 2002).

A detailed study on the effect of fire on soil based

GHG emissions was conducted by Livesley et al. (2011)

at the Howard Springs site over a 16 month period,

from October 2007 to January 2009. Soil GHG fluxes

were measured at high temporal resolution before and

after an experimental fire. Fluxes were estimated using

automated chambers connected to a field-based gas

chromatograph connected to automated chambers.

These were supplemented by monthly manual chamber

measurements on unburnt and experimentally burnt

plots to provide greater replication and spatial cover-

age. There was no apparent impact of fire upon soil

CO2 emissions following either of the two experimental

burns, one conducted in September 2007 (data not

shown) and one in August 2008 (Fig. 9). The savanna

soil generally acted as a CH4 sink, and this did not

change after fire. However, relatively large CH4 emis-

sions were observed in a short 24 h period directly fol-

lowing the fire as the ash bed smouldered. The fire

treatments had no impact on the negligible soil N2O

exchange rates.

The moderate intensity of these savanna fires at

Howard Springs did not alter soil properties enough to

change the biogeochemical processes involved in the

production and consumption of soil GHGs. Similar

results were observed in South American (Pinto, 2002)

and South African (Zepp et al., 1996) savannas systems,

where no significant effect of fire on soil respiration flux

was detected. Significant changes in soil respiration can

only be expected after prolonged fire treatments

(annual burn or long-term fire prevention) (Pinto,

2002). However, a separate study in Australia’s North-

ern Territory demonstrated that frequent fires (annu-

ally) can potentially lower soil respiration in the wet

season following a fire (Richards et al., 2012), as

reduced overstorey carbon led to reduced belowground

carbon inputs and consequently reduced soil respira-

tion.

Soil CH4 oxidation (uptake) activity is often greatest

between 10 and 20 cm down the soil profile (Potter

et al., 1996), which is beyond the thermal impact of a

low or medium intensity fire. This may explain why

fire had no apparent effect on soil CH4 fluxes at How-

ard Springs (Livesley et al., 2011), even though there

was a significant decrease in soil surface moisture lev-

els (0–5 cm) and a significant increase in surface tem-

perature levels in the fire treatments. In South

American and South African savannas, soil CH4 oxida-

tion was similarly unresponsive to fire events (Zepp

et al., 1996; Anderson & Poth, 1998) although the mech-

anisms involved were unknown (Castaldi et al., 2006).

The temporary absence of termite activity after fire may

lead to a net increase in soil CH4 uptake, as microbial

oxidation is no longer offset by termite CH4 emissions

(Poth et al., 1995). Alternatively, CH4 uptake may

increase after fire as soil diffusivity increases after sur-

face organic material has combusted. Soil diffusivity is

one of the main controllers of soil CH4 uptake (Smith

et al., 2003; Von Fischer et al., 2009; Stiehl-Braun et al.,

2011), limiting the amount of CH4 and oxygen that can

reach the methanotrophic bacteria.

Forest or woodland fires often lead to an increase in

soil NO3
� and NH4

+ content (Attiwill & Adams, 1993)

which may provide a substrate for nitrification or deni-

trification processes and thus increased N2O emissions.

Livesley et al. (2011) observed an increase in NH4
+,

but no change in NO3
� after Howard Springs

savanna fires but soil N2O fluxes remained negligible

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81

FIRE IN AUSTRALIAN SAVANNAS 73

 13652486, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.12686 by U

niversity O
f N

ew
 E

ngland, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(�1.0 lg N m�2 h�1) suggesting tight N cycling in

these savannas (Bustamante et al., 2006). Many savanna

fire studies have measured an increase in soil inorganic

N but no discernible increase in N2O flux (Levine et al.,

1996; Anderson & Poth, 1998; Pinto, 2002; Andersson,

2003).

The research suggests that fire in savanna systems

can potentially impact soil respiration (decrease) as

well as soil CH4 uptake (increase). The specific circum-

stances under which these impacts can be observed are

not apparent and the mechanisms involved are unclear

and should be subject to further research. There is rea-

sonable evidence to suggest that fire has no, or very lit-

tle, impact upon savanna soil N2O emissions.

Energy and water balances

The previous sections have provided an assessment of

the effects of fire on the carbon balance and GHG

exchanges across leaf to biome scales. However, there

are also significant impacts on the radiation and energy

balance of savannas following fire. When flying above

(a)

(b)

(c)

(d)

Fig. 9 Soil CO2 (panel a) CH4 (panel b) and N2O (panel c) exchange recorded with an automated measuring system from August 2008

to December 2009 at Howard Springs, NT. Panel (d) shows soil water content, soil temperature and rainfall in the same time period.

Measurements were made in an area of unburnt savanna woodland and an area that received a controlled burn on 27 August 2008

(Livesley et al., 2011). Fire did not show a significant effect on soil CO2, CH4 and N2O exchange other than an immediate spike in CH4

emissions in the 24 h period after the controlled burn.

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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Australia’s tropical savanna late in the dry season, the

broad spatial extent of blackened landscape is clearly

visible, occasionally interspersed with unburned land-

scape, supporting a hypothesis of fire-scar driven atmo-

spheric circulations at a range of scales. Although there

have been many previous studies of Australian

savanna energy and water balances (Hutley et al., 2000;

Beringer & Tapper, 2002; Leuning et al., 2005) there

have been few documenting fire impacts on these

important surface processes. We have previously mea-

sured radiation, energy and carbon exchange over

unburned and burned (both before and after low and

moderate intensity fires) open woodland savanna at

Howard Springs, Australia (Beringer et al., 2003). Fire

affected the radiation balance immediately following

fire through consumption of the grass-dominated

understory and blackening of the surface. Albedo

almost halved following fire (from 0.12 to 0.07 and from

0.11 to 0.06 for the moderate and low intensity sites

respectively), but the recovery of albedo was dependent

on the initial fire intensity. The low intensity fire caused

little canopy damage with little impact on the surface

energy balance and only a slight increase in Bowen

ratio. However, the moderate fire resulted in a compre-

hensive canopy scorch and almost complete leaf drop

in the days and weeks following fire. The shutdown of

most leaves within the canopy reduced transpiration

and altered energy partitioning markedly, with much

less energy partitioned into the evaporative heat fluxes

and much more into sensible heating of the atmosphere

(Fig. 10). Leaf death and shedding also resulted in a

cessation of ecosystem carbon uptake and the savanna

turned from a sink to a source of carbon to the atmo-

sphere because of the continued ecosystem respiration

(previous section). Postfire, the Bowen ratio increased

greatly due to large increases in sensible heat fluxes. A

subsequent study by Wendt et al. (2007) at the same site

confirmed these results and also showed substantial

increases in ground heat flux following the fire, because

of removal of shading and insulating vegetation and

increased surface heating because of the reduced

albedo.

Despite decreases in canopy ET following high

intensity fire, at a catchment scale, there appears to

be little impact of fire on water yield, although this

finding is based on only two studies (Townsend &

Douglas, 2000, 2004). Water yield from catchments

subjected to fire exclusion and early- and late-dry

season fire regimes showed no difference between

the three treatments (Townsend & Douglas, 2000).

Woody cover was reduced in the catchment with late

dry season burning, with the more open canopy

favouring enhanced grass growth cover. These high

water using C4 grasses (Hutley et al., 2000) may have

compensated for any reduced tree water use, with

limited impact on water yield resulting. The lengthy

period between burning and wet season runoff may

also have mitigated the impact of fire (Townsend &

Douglas, 2000).

It is interesting to speculate upon the impact of fire

on surface roughness. Intuitively it might be expected

that aerodynamic roughness would decrease following

savanna fire, particularly an intense savanna fire, as a

result of removal of surface vegetation as well as leaf

material in the tree canopy. Such changes have been

observed in other parts of the world, including boreal

forest (Chambers et al., 2005). To our knowledge, there

have been no published direct meteorological mea-

surements of surface roughness within Australia’s

tropical savanna following fire. However, N. Tapper,

M. Katurji, J. Beringer, L.B. Hutley, (unpublished data)

found no discernable change in turbulence spectra that

could be linked to changes in aerodynamic roughness

before, and immediately after, a low intensity fire that

left the tree canopy intact at a site near Adelaide

River, Northern Territory. It might be expected that a
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Fig. 10 Comparison of (a) daily total evapotranspiration [ET]

and (b) daily total sensible heat flux for the moderate intensity

fire site and for an unburnt control. The fire occurred on day

218 and the data are shown for days 5 through 10 following the

fire. Reprinted from Beringer et al. (2003, p. 336).
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more intense fire would produce changes in aerody-

namic roughness that would impact turbulence.

The changes in surface energy exchange following

fire when applied at the landscape scale might be

expected to have impacts on climate through local

changes in circulation patterns and changes in regional

heating, precipitation and monsoon circulation.

Fire, local climate and boundary layer processes

As shown above, fire scars can radically alter the sur-

face energy budget of tropical savanna by reducing sur-

face albedo, increasing available energy for partitioning

into sensible and latent heat fluxes, as well as by

increasing ground heat flux. Changes such as these can

alter atmospheric heating rates and boundary-layer

conditions, which can ultimately feedback to affect the

local and regional climate. We have previously mea-

sured radiative and energy fluxes and boundary layer

profiles over burnt and unburnt tropical savanna near

Howard Springs (Wendt et al., 2007). At the burnt site,

a moderate intensity fire, estimated between 1000 and

3500 kW m�1, initially affected the land surface by

removing all understory vegetation, charring and

blackening the ground surface, scorching the oversto-

rey canopy and reducing the albedo (Wendt et al.,

2007). Tethered balloon measurements showed that,

despite the presence of premonsoonal rain events

occurring during the measurement period, the lower

boundary layer over the burnt site was up to 2 °C war-

mer than that over the unburnt site during the middle

of the day and this warming extended to at least 500 m

above the surface (Fig. 11). This increase in boundary-

layer heating, when applied to fire scars at the land-

scape scale, may can have the ability to form or alter

local mesoscale circulations and ultimately create a

feedback to regional heating and precipitation patterns

that may affect larger-scale processes such as the Aus-

tralian monsoon (Pielke et al., 2011). For example, a

similar effect has been observed across the Western

Australian ‘Rabbit Proof Fence’ where native vegetation

on one side contrasts with adjacent agricultural fields,

which generated altered boundary-layers and modified

precipitation patterns (Lyons et al., 1993; Evans et al.,

2011).

Regional climate feedbacks

Related to fire events and the accompanying strong

alteration of surface properties is an impact on

regional climate and associated processes and feed-

backs. Betts (2009) gives a general review on land–
surface–atmosphere coupling in observations and

models while Seneviratne et al. (2010) place an

emphasis on the soil-moisture temperature and pre-

cipitation feedbacks under a changing climate. Mcal-

pine et al. (2009) provide a synthesis on how natural

climate variability, climate change as well as land use

and land-cover change have an impact on Australian

climate as well as boundary layer processes. Albeit

specifically in relation to fire events, the potential for

feedbacks between changes in land surface properties

following fire (as described above) and the regional

climate have been investigated by G€orgen et al. (2006).

Here, a fire-regrowth scheme was implemented in the

soil-canopy component of the Conformal-Cubic Atmo-

sphere Model (C-CAM; McGregor & Dix, 2001) with a

grid resolution of 65 km over Australia. Surface prop-

erties were modified in the model by the fire intensity

and its spatial and temporal extent (timing of the

event, and the length of the regrowth period) were

mapped using the AVHRR satellite. Albedo, rough-

ness length, LAI, and fractional vegetation coverage

were modified to simulate the impacts of these bio-

physical factors on surface energy balances and flux

partitioning.

In an initial sensitivity experiment, they simulated a

large-scale and high intensity fire in the late dry-season

with a long regrowth period extending well into the

wet season (G€orgen et al., 2006). On average, the fire

caused a change of about 150 W m�2 in net radiation,

which led to increased soil temperature, larger turbu-

lent fluxes, higher mixing ratios in the boundary layer,

Fig. 11 Mean atmospheric temperature profiles from 13 days of

simultaneous soundings from the burnt and unburnt sites

(between days 247 and 276, 2005). Profiles show mean (�SE)

temperature data for each 25 m layer. The burnt site profile is

shown as a red line and the unburnt site profile as a blue line.

The dashed lines show the average for the nocturnal sounding

(0100) and the solid lines show the daytime sounding at (1200).

Data from Wendt et al. (2007).

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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increased wind speeds and an increased boundary-

layer height. Moisture availability was the limiting fac-

tor in convective precipitation responses. Precipitation

increases of around 15% were statistically significant

during the premonsoon season (Fig. 12a). These

changes were associated with an intensification of the

Pilbara heat low (Fig. 12b) and the potential for

increased lateral inflow of moist oceanic air. In a differ-

ent study with less strong and more uniform surface

property changes simulating fires, Notaro et al. (2011)

found similar changes in boundary layer processes but

the response on precipitation during the premonsoon

season was opposite.

The implications of these findings for Australian

monsoon precipitation and circulation were further

investigated using a factorial experimental design to

fully characterize the response of the system across a

realistic range of fire and regrowth characteristics in 90

independent 21-year experiments (Abramson et al.,

2006; Lynch et al., 2007). It was found that the total area

receiving monsoon precipitation could increase over

northern Australia by up to 30% in the presence of

large, high intensity fires late in the dry season. Indeed,

the timing of the fire accounted for 58% of the variance

in monsoon precipitation, followed by the area (18%)

and the intensity (15%). Fires above 40% of the maxi-

mum possible size that occur late in the dry season had

a strong positive impact on monsoonal circulation as

quantified by the Australian Monsoon Index (Fig. 13).

Furthermore, due to an increase in moisture conver-

gence the uplift intensity, rather than the moisture

availability, controlled the precipitation variability. Late

dry season fires of high intensity did significantly affect

the simulated Australian Monsoon Index from an aver-

age of 0.03 to 0.43 m s�1 (Fig. 13). Finally, and perhaps

(a) (b)

Fig. 12 Average (1979–1999) impacts of changed surface conditions on regional meteorological conditions in a C-CAM run with 80%

burned area and fire intensity vs. control run without fires. (a) Altered November premonsoon circulation patterns at 850 hPa. (b)

Statistically significant (dotted) precipitation increase [mm day�1], October–November–December (OND) and December–January–

February (DJF). Reprinted from G€orgen et al. (2006, p. 10 and 11).

Fig. 13 Simulated differences between the fire scenario and the

reference simulation of the response of the Australian Monsoon

Index (AUSMI) [m s�1] to variation in fire intensity and burned

area. AUSMI is obtained by averaging the daily mean 850 hPa

zonal wind speed from the equator to 10°S and from 120°E to

150°E, the zone of monsoonal reversal of the flow in and out of

Australia. The crosses indicate the population of the simulation

space consisting only experiments with a timing of the fire-

event later than the Julian day 250 (7 September). The contoured

response metric is then Gaussian low pass filtered linear inter-

polations based on Delauney triangulations. Reprinted from

Lynch et al. (2007, p. 4).

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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most significantly, these findings clearly indicate that

the impacts depend upon key thresholds in intensity

and area of the savanna fire regime.

In addition to surface properties, changes in direct

and indirect aerosol emissions associated with land-

scape fires also exert multiple effects on different

spatial and temporal scales. Bowman et al. (2009) give

a general overview of those effects. Ward et al. (2012)

provide global estimates of the radiative forcing associ-

ated with aerosols from fires using sensitivity experi-

ments with the Community Atmosphere Model

(CAM). From 1850 to 2000 radiative forcing amounted

to 0.5 W m�2. Again using CAM, Tosca et al. (2013)

found that simulations using prescribed fire emissions

and aerosol optical depths that were 10% greater than

present resulted in increased tropospheric heating and

a decreased surface temperature. This altered the Had-

ley circulation and then modified precipitation pat-

terns and amounts. Simulations including fires vs.

those without resulted in a cooling of between 0.05

and 0.3 K across parts of northern Australia as well as

positive precipitation anomalies of up to 0.3 mm day�1

occur over Western Australia. Precipitation decreases

were statistically not significant and amounted to

�0.2 mm day�1 in the Northern Territory and the Gulf

of Carpentaria region. In regional model experiments

Tummon et al. (2010) showed for South Africa that

direct and semidirect effects of biomass burning on

radiation and aerosol optical depth may reduce surface

radiative forcing and thereby decrease latent and sensi-

ble heat fluxes and PBL height. The radiative absorp-

tion in these experiments led to a tropospheric

warming and thereby stabilization with a decrease in

precipitation. In a similar experiment for equatorial

Asia, touching on northern Australia, Tosca et al.

(2010) found similar feedback mechanisms. In Mitchell

et al. (2013), recent observational data are presented

that give evidence for a fairly homogeneous distribu-

tion of elevated fire-induced aerosol levels during the

late dry season.

Conclusions

This article has demonstrated that the modification of

the savanna land surface via fire influences the rest of

the earth system via biophysical and biogeochemical

cycles with feedbacks to regional and global climate.

The future status of savannas worldwide remains

uncertain as they are particularly threatened by land-

use change and disturbance (fire, cyclones, grazing,

invasive species). We show that the savanna NEP is a

small sink but that the magnitude of the disturbance

components are sufficient to change the system to a

modest source. Changes in the frequency and magni-

tude of disturbance from climate change could easily

tip the balance one way or the other. There is a strong

need to reduce uncertainties in estimates of fire, ter-

mites and cyclones and understand how these may

interact with environmental change (climate change

and invasive species). Moreover, there remain possibly

important terms (black carbon and VOC’s) that we do

not yet know enough about. We suggest that a priority

for future research is to understand how these agents

affect biophysical and biogeochemical cycling and how

these may interact with climate change in the future.

We suggest that climate change will confound projec-

tions to quantify how savannas may respond to future

environmental perturbations. For example, reductions

in rainfall would have consequences for grass and tree

biomass (and hence fuel load) with a feedback to fire

intensity (reduction), which may reduce the impact of

fire and therefore alter biophysical and biogeochemical

processes in the short term. Long- term shifts in fire fre-

quency and intensity will have a flow on effect upon

savanna demography, thereby altering savanna struc-

ture and function that in turn modifies land surface

properties such as leaf area index, surface roughness

and flux partitioning. This then has the potential to

feedback from local to global climate both mechanically

(local) and through secondary effects driven by regional

circulation changes.

Additional research priorities include the need to

quantify additional processes to obtain a comprehen-

sive NBP, such as non-CO2 fluxes, DOC and DIC losses

to rivers, VOC, black carbon, and sediment transport

(Randerson et al., 2002). Although this article focussed

on the ecosystem scale, it is expected that grass and

trees will respond differently to future environmental

change and disturbance. Consequently that we may see

shifts in the tree:grass ratio due to changes in rainfall

and increasing atmospheric CO2. Increasing tempera-

ture and changing growing season length will also

modify fire regimes that will subsequently feedback to

further alter tree and grass dynamics. Therefore, an

understanding of the complex suite of feedbacks is

required using a process based approach to better

understand potential responses. Despite their impor-

tance for the earth system and human well-being, sav-

annas represent a gap in earth observations because of

the major difficulty in the remote assessment of vegeta-

tion structure and dynamics of two such distinct func-

tional groups (tree and grass) (Hanan & Hill, 2012). The

challenges for remote sensing observations in savannas

were highlighted in a recent workshop on the ‘Chal-

lenges and Opportunities in remote sensing of Global

Savannas’ in Fort Collins in 2010 and a subsequently

NASA white paper (Hanan & Hill, 2012) on tree/grass

systems. In addition, savannas are a challenge for mod-

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 21, 62–81
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elling communities to simulate in global climate and

vegetation models (Beringer et al., 2011a).

The challenge will be to manage our savanna ecosys-

tems to provide ecosystem services in the face of chang-

ing fire regimes and the potential interaction between

climate change, invasive species and land management.

Currently ‘our capacity to manage fire remains imper-

fect and may become more difficult in the future as cli-

mate change alters fire regimes. This risk is difficult to

assess, however, because fires are still poorly repre-

sented in global models’ (Bowman et al., 2009, p. 481).

The solution requires an earth system science frame-

work to provide a holistic understanding of linkages

between physical and human systems to provide tools

for assessment, management and policy.
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