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ABSTRACT

Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given
spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes
in the spatial dissimilarities among assemblages (termed ‘beta diversity’) is an increasingly recognised feature of
broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differenti-
ation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of
change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By concep-
tualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological
assemblages across space, environmental managers and conservation practitioners can make informed decisions about
what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future
disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic
homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that
explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change;
(ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and tro-
phic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a
function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and
losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in
beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity)
of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity out-
comes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change
associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth,
beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differen-
tiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can
influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by alter-
ing ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or
less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that
future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying
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mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and
direction of change in beta diversity, per se.
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I. INTRODUCTION

Change in biodiversity across ecosystems and organism groups
is a fundamental sign of the ‘Anthropocene’ (Albert
et al., 2021;McGill et al., 2015; Ripple et al., 2019). In turn, con-
servation policies and interventions seek to apply scientific

understanding and evidence to anticipate and address
biodiversity change from local to global spatial extents
(Heino et al., 2020; Mazor et al., 2018). Worldwide, substantial
changes to spatial variation in the composition of ecological
assemblages (termed ‘beta diversity’; Anderson et al., 2011)
over time have been reported in a variety of ecosystems

Biological Reviews 98 (2023) 1388–1423 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

Conceptual models of spatial beta diversity change 1389

 1469185x, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12958 by U

niversity O
f N

ew
 E

ngland, W
iley O

nline L
ibrary on [22/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Dornelas et al., 2014; Hillebrand et al., 2018; McGill
et al., 2015). Developing a conceptual framework highlighting
the drivers of directional changes in beta diversity would
strengthen our capacity to predict future biodiversity trends
associated with anthropogenic impacts and conservation inter-
ventions across multiple spatial scales or ecological contexts
(Chase et al., 2020).

Directional change in beta diversity refers to the process
of either decreasing or increasing dissimilarity among
assemblages over time, referred to as ‘biotic homogenisa-
tion’ and ‘biotic differentiation’, respectively (e.g. Olden &
Rooney, 2006). Interest in biotic homogenisation or differ-
entiation increased rapidly following formalisation of these
concepts by (McKinney & Lockwood, 1999). Previous stud-
ies of spatial changes in biodiversity have emphasised redis-
tributions of species (e.g. via range expansions) or loss of
species (e.g. via range contraction or local extinction) as
drivers of either biotic homogenisation or differentiation
in specific ecosystems and organism groups (e.g. Magurran
et al., 2015; Rahel, 2002). Changes in biodiversity from local
to global extents have been recognised as a signal of anthro-
pogenic impacts (e.g. Avolio et al., 2021; McGill et al., 2015).
Furthermore, the relevance of beta diversity to informing
management, conservation, and restoration across multi-
scale systems, such as identifying appropriate conservation
areas and delimiting the spatial arrangement of agriculture
practices, is now well-recognised (e.g. Socolar et al., 2016).
However, despite burgeoning interest in reporting direc-
tional changes in spatial beta diversity (e.g. Olden,
Comte & Giam, 2018), there is no unifying framework that
systematically synthesises mechanisms driving such
changes. Relevant evidence remains scattered across the
ecological literature specific to particular environmental
realms (i.e. marine, terrestrial, and fresh water;
e.g. Petsch, 2016).

Our goal here is to synthesise empirical evidence of the
drivers of change in spatial beta diversity in the context of
biotic homogenisation and biotic differentiation across eco-
systems. Changes in spatial beta diversity are routinely
interpreted as being the outcome of a single ecological
mechanism in isolated studies (e.g. the effects of adding
non-native species into a regional species pool), which
may lead to distorted perceptions regarding the broad
range of genuine potential drivers (e.g. Cardinale
et al., 2018). Here, we integrate evidence sourced from a
host of empirical studies to provide a systematic map of beta
diversity change as studied in the context of five key
themes – temporal environmental change, disturbance
regime, connectivity alteration and species redistribution,
habitat change, and biotic and trophic interactions. For
each theme in research on biotic homogenisation–differen-
tiation, we develop a conceptual model to explain mecha-
nisms of spatial beta diversity responses. We conclude by
illustrating how a conceptual framework of directional
change in beta diversity can be applied to understand causes
of biodiversity change across multiple spatial extents,
thereby informing conservation actions.

II. DEFINING BIOTIC HOMOGENISATION AND
DIFFERENTIATION AS DIRECTIONAL CHANGE
IN BETA DIVERSITY

Beta diversity is broadly defined as the variation in the com-
position of assemblages among sample units within a given
area (Anderson et al., 2011; Table 1), following the original
definition by Whittaker (1960, 1972). Quantifying beta
diversity requires delineating at least two spatial scales (as
grain and extent) within a standardised assessment protocol:
a set of smaller-spatial units (e.g. quadrats of 50 × 50 m2) and
a broader spatial unit (e.g. grid cells of 100 × 100 km2) that
covers all smaller spatial units. Here, Whittaker’s (1960)
diversity partitioning defines diversity for the broader spatial
unit as ‘gamma’ (or regional) diversity (γ) and the average
diversity at the smaller spatial unit as ‘alpha’ (or local) diver-
sity (α). ‘Beta’ diversity (β) is then defined as the degree to
which regional diversity exceeds local diversity (Fig. 1) and
can be measured either multiplicatively (β=γ=α) or addi-
tively (β=γ−α) (Crist & Veech, 2006; Lande, 1996;
Whittaker, 1960).
While the multiplicative definition of beta diversity is unit

free (i.e. the ratio consists of two numbers each expressed as
‘numbers of species’ that cancel each other out), it remains
clear that values for beta diversity will depend on the chosen
extent of both regional and local sampling units. More spe-
cies occur in sampling units spanning broader areas
(Connor &McCoy, 1979). Gamma diversity can only exceed
alpha diversity if and when the smaller sampling units con-
tain different combinations of taxa (or composition) from
one another. Therefore, the concept of beta diversity as dif-
ferentiation in the identities of taxa among smaller sampling
units within a larger spatial unit (Anderson, Ellingsen &
McArdle, 2006) is effectively equivalent to Whittaker’s
(1960) definition. The fundamental idea of differentiation
in identities of taxa is captured by measures of dissimilarity
in composition among small-scale sampling units. In turn,
the concept of beta diversity has been broadened to include
variation in assemblage structure more generally (Table 1;
Anderson et al., 2011, 2006; Jurasinski, Retzer &
Beierkuhnlein, 2009; Legendre & De C�aceres, 2013) and
can be quantified by any ecologically relevant dissimilarity
measure [e.g. Jaccard or Sørensen index for presence/
absence data, or percentage-difference (Bray–Curtis index
of dissimilarity) for differences in relative abundances of
species].
Variation in assemblage composition among sampling

units at a given spatial scale based on a given measure of dis-
similarity is quantified by dispersion in multivariate space
(Jurasinski et al., 2009; Legendre, Borcard & Peres-Neto,
2005; Legendre De C�aceres, 2013; Whittaker, 1960, 1972).
Useful measures of dispersion (summarised in Anderson
et al., 2011) include: (i) average interpoint dissimilarities
(Vellend et al., 2007; Whittaker, 1960, 1972); and (ii) average
distances-to-centroid (PERMDISP; Anderson, 2006;
Anderson et al., 2006) or components of variation from
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a dissimilarity-based partitioning (PERMANOVA; see
Anderson, 2001; Legendre & Anderson, 1999; McArdle &
Anderson, 2001). The latter is most easily extended to obtain
independent measures of assemblage variation (beta diver-
sity) for a hierarchy of spatial scales (e.g. Anderson
et al., 2005).

Temporal change in alpha diversity has been the predom-
inant focus of research quantifying biodiversity change
(e.g. Cardinale et al., 2018; Hillebrand et al., 2018; Vellend
et al., 2013). Yet measures of either alpha or gamma diversity
alone do not reflect changes in species’ identities (Hillebrand
et al., 2018; Magurran & Henderson, 2010) and are inade-
quate for quantifying biotic homogenisation or differentia-
tion (Olden & Rooney, 2006). Here, we focus on directional

change in spatial beta diversity. Note that this is conceptually quite
distinct from the notion of temporal beta diversity, per se
[being simply the change in assemblage composition for a
given spatial unit over time (e.g. Dornelas et al., 2014;
Legendre, 2019; McGill et al., 2015)]. We define directional
change in spatial beta diversity as either increasing dissimilar-
ity in composition among sampling units (‘biotic differentia-
tion’) or decreasing dissimilarity (i.e. increasing similarity)

in composition among sampling units over time (‘biotic
homogenisation’) (McKinney & Lockwood, 1999; Olden,
2006; Olden & Rooney, 2006; Socolar et al., 2016).
There are naturally three possible ways beta diversity may
vary over time within a specific time period: (i) no marked
directional change, with assemblages having non-significant
(and inconsistent) fluctuations in composition; (ii) divergence
in assemblage composition (biotic differentiation); or (iii) con-
vergence in assemblage composition (biotic homogenisation).

In addition to the concept of beta diversity as variation in
community structure among sampling units, beta diversity is
also considered ameasure of turnover (change) in assemblage
structure between sampling units that are ordered along a
nominated gradient of interest (e.g. elevation, depth, temper-
ature, moisture, etc.). This is commonly measured using
distance–decay curves (see Millar, Anderson & Tolimieri,
2011; Nekola & White, 1999; Vellend, 2001; Whittaker,
1960). We do not pursue this idea further in this synthesis;
rather, we focus on measures of beta diversity as ‘variation’
(sensu Anderson et al., 2011; Fig. 1). Furthermore, we focus
specifically on studies that measured biotic homogenisation
or biotic differentiation in ecological systems over time,

Table 1. Definitions of key terms relevant to interpreting and conceptualising directional change in spatial beta diversity as adopted
in this synthesis.

Term Definition

Assemblage A set of species (or a set of individuals belonging to a set of species) co-occurring at a given time within
a defined spatial sampling unit or area.

Alpha richness The number of species occurring within a small-scale (local) standardised sampling unit.
Alpha diversity The mean number of species present, calculated from a set of small-scale (local) standardised sampling

units taken from within a specified broad-scale (regional) area (see Whittaker, 1960).
Gamma diversity The total number of species occurring (or listed to occur) within a broad-scale (regional) sampling unit or

area (see Whittaker, 1960).
Beta diversity The ratio (or difference) of gamma diversity to alpha diversity or the variation (or dissimilarity) in

composition among assemblages within a defined spatial area (Whittaker, 1960; Anderson et al., 2011).
Turnover Change in composition of assemblages along a gradient (space, time, environmental) (see Anderson

et al., 2011). Also defined as a component of dissimilarity (see Replacement dissimilarity), as distinguished
from nestedness (see Baselga, 2010).

Variation The degree to which assemblages differ in composition among sample units (see Anderson et al., 2011).
Replacement dissimilarity The component of dissimilarity among assemblages that is due to the replacement of species or functional

characteristics among assemblages (see Legendre, 2014).
Richness difference
dissimilarity

The component of dissimilarity in assemblage composition due to assemblages having different numbers
of species or functional characteristics (see Legendre, 2014).

Temporal change in spatial
beta diversity

Change in the magnitude of dissimilarity among assemblages occurring in a set of spatial sampling units
over time. (Note that this is distinct from ‘temporal beta diversity’, which is the change in assemblage
composition through time for a given ecosystem or spatial area; see Legendre, 2019; Magurran
et al., 2019).

Biotic homogenisation Increasing similarity (decreasing dissimilarity) among assemblages occurring in a set of spatial sampling
units over time (Olden & Rooney, 2006). Measured as a decrease in the magnitude of beta diversity (as
variation) among sample units.

Biotic differentiation Opposite of biotic homogenisation; increasing dissimilarity (decreasing similarity) among assemblages
occurring in a set of spatial sampling units over time (Olden & Rooney, 2006). Used synonymously with
‘biotic heterogenisation’ (Socolar et al., 2016).

Ecosystem engineer Organisms that modify the availability of abiotic or biotic resources other than themselves to other species
(Jones et al., 1994).

Spatial hierarchy A nested hierarchy of spatial scales (e.g., quadrats, sites, regions, continents). Within each scale, changes
through time in the magnitude of beta diversity can be measured and considered (Wiens, 1989; Pavoine
et al., 2016).
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rather than attempting to synthesise results from any study
that quantified beta diversity.

Achieving a more detailed understanding of the mecha-
nisms driving biotic homogenisation or differentiation can
be gained by considering differences in richness and/or the
replacement of taxa among sample units (Baselga, 2010;
Legendre, 2014). Differences in the number of taxa (richness
differences) occur when an assemblage has a larger
number of taxa or functional traits compared to another
assemblage (Carvalho, Cardoso & Gomes, 2012), whereas
replacement refers to the fact that – even if richness remains
constant – the species present in one unit may be absent in
another, being replaced by a new species. A special form of
richness difference is nestedness, whereby an assemblage in
one sample unit is comprised of a subset of the taxa occupy-
ing another unit (Baselga, 2010). Importantly, pure nested-
ness directly implies differences in richness, whereas
differences in richness may or may not be generated by nest-
edness (Legendre, 2014). Kraft et al. (2011) also noted the
dependence of Jaccard dissimilarity on richness differences
(specifically, on the size of the regional species pool); hence,
they proposed the use of a probabilistic dissimilarity measure
(Raup–Crick) to account for richness differences in beta
diversity studies. However, most studies of biotic homogeni-
sation or differentiation that we reviewed simply did not pro-
vide a formal partitioning of replacement or richness
difference (sensu Legendre, 2014), nor was the Raup–Crick
probabilistic measure commonly adopted. Therefore, our
review draws conclusions regarding underlying drivers of
biotic homogenisation or differentiation from all ancillary

information provided by the authors in the context of a given
study.
The spatial scaling of patterns and processes is central to

ecology (Allen & Starr, 1982; Wiens, 1989). Therefore, inter-
preting changes in beta diversity (as variation in community
structure) can occur at any level within a hierarchy of scales
spanning individual patches (e.g. quadrats within a forest)
to the entire Earth (Barton et al., 2013). In many studies, there
are two spatial scales of interest (e.g. locations within regions),
yet study designs involving multiple spatial scales (e.g. Fig. 2)
are common and allow researchers to examine changes in
beta diversity across different scales (e.g. Heino, Louhi &
Muotka, 2004; Rolls et al., 2019). Changes in beta diversity
over time across different spatial scales may be inconsistent
over time in both magnitude and direction, even in response
to the same factor. Therefore, any study of beta diversity
needs to specify the spatial scales relevant to the organisms
of interest in any given environmental context, and inter-
preted accordingly (Pavoine, Marcon & Ricotta, 2016).

III. SYNTHESISING EVIDENCE OF DRIVERS OF
CHANGE IN SPATIAL BETA DIVERSITY

We sourced all publications captured by ISI Web of Science

using all possible combinations of terms ‘biotic OR biologi-
cal’ AND ‘homogen* OR differentiat* OR heterogen*’ up
until 21 January 2021 (N = 1288 articles). This search string
was deliberately chosen to match the purpose of synthesising

Fig. 1. (A) Schematic diagram illustrating the links between average alpha (α) diversity, gamma (γ) diversity, and beta (β) diversity.
Beta diversity represents the degree to which gamma diversity exceeds alpha diversity, and therefore the degree to which
assemblages (at the smaller scale) differ from one another in the identities of species they contain. (B) Directional change in beta
diversity (i.e. decreasing and increasing beta diversity, termed ‘biotic homogenisation’ or ‘biotic differentiation’, respectively)
occurs when there are changes in the numbers of species occupying local sampling units, broader regional units, or both. B also
represents conceptual model 1.

Biological Reviews 98 (2023) 1388–1423 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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evidence of biotic homogenisation and differentiation
(i.e. studies of beta diversity with an applied or conservation
emphasis). Publications were retained for full review if they
sought to test hypotheses, identify drivers of biotic homogeni-
sation or differentiation, or interpreted empirical analyses in
the context of biotic homogenisation or differentiation using

raw data (N = 507 publications) (see online Supporting Infor-
mation, Fig. S1). We excluded the remaining 781 papers
(deemed unsuitable for our synthesis) because they: (i)
referred to directional change in beta diversity [e.g. citing
McKinney & Lockwood (1999), Olden et al. (2004) or
Olden & Rooney (2006)] without direct reference to primary
data (e.g. speculating about the role of species’ invasions as
drivers of unstudied directional change in beta diversity, or
review papers, etc.); (ii) cited papers that included at least
one of the search terms in the title yet made no reference to
the topic itself in the text; (iii) made predictions about future
changes to spatial variation in composition (e.g. via simula-
tion modelling); or (iv) incorrectly inferred conclusions about
directional change in composition without reference to
organisms’ taxonomic, functional, or phylogenetic identities
(e.g. used only community specialisation indices, species rich-
ness, etc.; Olden & Rooney, 2006). Importantly, directional
change in beta diversity is a time-dependent process
(Olden & Rooney, 2006). Our synthesis includes quantitative
evidence obtained by studies assessing change in spatial beta
diversity over time and also evidence drawn indirectly via

space-for-time studies (Pickett, 1989).
All 507 empirical publications retained were fully

reviewed and the following details compiled: (i) hypothesis

or context of interest; (ii) spatial extent of analysis (includ-
ing countries or regions covered); (iii) temporal extent of
analysis; (iv) measure of assemblage dissimilarity used; (v)
analytical methods used to measure change in beta diver-
sity; (vi) ecological realm (terrestrial, freshwater, marine);
(vii) organism group (response variable, or variables); (viii)
biodiversity facet for which change was being quantified
(taxonomic, functional, phylogenetic); (xi) key relevant
findings; and (x) inferred directional change (homogenisa-
tion, differentiation, neutral, or inconsistent/mixed). The
resulting database (see Database S1) formed the basis for
our synthesis.

We structured our synthesis around five key themes of
biotic homogenisation–differentiation research identified
during the review of literature (i.e. hypotheses being tested
by authors of empirical publications; Table S1). The first
theme was research examining temporal environmental
change. Such studies typically analysed trends or variability
in spatial beta diversity spanning time periods greater than
10 years, often in the context of change in abiotic conditions
(e.g. climate), and are a useful starting point for identifying
historical trends in spatial beta diversity. The second theme
was effects of environmental disturbance regimes on spatial
beta diversity patterns, such as fire, flooding, or heat waves.
The third theme was the effects of connectivity alteration
and species redistributions (e.g. invasions, human-facilitated
translocations) on spatial beta diversity. This has been a
major focus of research in the context of biotic
homogenisation–differentiation. The fourth theme was hab-
itat change (e.g. anthropogenic modification of landscapes),

Fig. 2. Schematic diagram illustrating how beta diversity can be quantified and examined across multiple hierarchical spatial scales.
For example, assemblages may be sampled across multiple region (R) units, multiple locations (L) within each region, and multiple
plots (P) within each location. Analytically, beta diversity (and, therefore, temporal change in beta diversity) can be quantified at
any spatial level within the sampling hierarchy.

Biological Reviews 98 (2023) 1388–1423 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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and the fifth theme was biotic and trophic interactions
(e.g. trophic interactions among species within assemblages).
We accept inevitable overlap among these five themes of
research, such as anthropogenic habitat change influencing
connectivity among assemblages (themes 4 and 3) and con-
nectivity facilitating species invasions and population size
changes, which may in turn influence beta diversity through
biotic interactions (themes 3 and 5).

For each of the five research themes on biotic homogenisa-
tion or differentiation, we summarised the hypothesised
mechanism(s) driving reported changes or relationships. We
recognise that there are many ways to measure beta diversity
as variation in ecological assemblages. There are a host of
methodological decisions made by the original researchers
for every study, including: (i) whether to include relative
abundances of organisms, or only to use presence/absence
(identities of species); (ii) which dissimilarity measure to
use (e.g. Jaccard, Sørensen, Bray–Curtis, Raup–Crick,
Hellinger); (iii) which set of organisms to consider as potential
members of the assemblage of interest (e.g. choice of sieve
mesh size for sampling soft-sediment infauna, etc.); (iv) how
to quantify relative abundance for various taxa (e.g. biomass,
cover, counts, presence/absence); (v) which index of beta diver-
sity to use (Anderson et al., 2011; Tuomisto, 2010a); and, for
any multi-scale studies, (vi) whether to use multiplicative or
additive components in a beta diversity partitioning (Crist &
Veech, 2006; Jost, 2007; Lande, 1996). All such decisions
can affect outcomes.We assumed, in all cases, that the original
authors made useful methodological choices for their study
organisms and system of interest. Hence, we treated the results
obtained by each study at face value, and the inferences drawn
by the original authors were assimilated directly into our syn-
thetic analysis (Table S2). The following sections synthesise
the findings of these studies for hypothesised mechanisms
across the three ecological realms.

IV. SYNTHESISING DRIVERS AND DIRECTIONS
OF CHANGE IN SPATIAL BETA DIVERSITY
ACROSS ENVIRONMENTAL REALMS

(1) Temporal environmental change

(a) Terrestrial ecosystems

Over decades to millennia, terrestrial beta diversity has had
distinct periods of homogenisation and differentiation prior
to major anthropogenic landscape change (Feurdean
et al., 2010). Beta diversity change in terrestrial systems is
reportedly driven by three main processes: losses of species
(extinctions) with narrow niches (i.e. ‘specialists’; e.g. Britton
et al., 2017), increases in the occurrence of species with broad
ecological tolerances [i.e. ‘generalists’ (e.g. Flagmeier et al.,
2014; Johnson, Mudrak & Waller, 2014)], or both [i.e. true
replacement (see e.g. Christian et al., 2009; Heinrichs &
Schmidt, 2017)]. Generalist species associated with biotic
homogenisation originate either within or beyond the regional
species pool (as native generalists or non-native invaders,

respectively) (Keith et al., 2009; Le Viol et al., 2012; Naaf &
Wulf, 2010; Sullivan, Newson & Pearce-Higgins, 2016). Both
homogenisation and differentiation of terrestrial assemblages
have been associated with changes in climate spanning five
decades (e.g. Flagmeier et al., 2014; Ross et al., 2012) or under
specific environmental conditions such as increased nutrient
availability (Reinecke, Klemm & Heinken, 2014). For exam-
ple, beta diversity of terrestrial plants declined only among
plots that were intact yet remained constant when compared
among plots that were subjected to human impact in the UK
(Diaz et al., 2013), suggesting some element of context depen-
dency regarding the direction of change in beta diversity across
landscapes.

(b) Marine ecosystems

Changes in spatial beta diversity in marine ecosystems have
been linked to changes in physical environmental variables.
Fish assemblages in contrasting depth and salinity zones of
a coastal bay became increasingly homogenised over an
18-year period in tropical Brazil, attributed to increasing
temperature and decreasing water clarity (Araujo, De
Azevedo &Guedes, 2016). In theMediterranean, beta diver-
sity of coral and algal assemblages declined, associated with
species ranges expanding with increasing temperature
(Bianchi et al., 2019; Gatti et al., 2015). Both contraction
and expansion of species’ ranges were responsible for declin-
ing beta diversity of coastal mangrove plants over 28 years in
Bangladesh (Sarker et al., 2019). Despite homogenisation
being frequently reported for change in taxonomic beta
diversity, comparisons of functional and taxonomic beta
diversity showed contrasting trajectories of temporal change.
In North Sea fish assemblages, for example, functional beta
diversity declined, whereas taxonomic beta diversity
increased, over a 33-year period of changing climate
(McLean et al., 2019).

(c) Freshwater ecosystems

Change in spatial beta diversity over time is inconsistent in
direction and magnitude in freshwater systems worldwide.
Multiple facets of beta diversity of macrophytes, fish, macro-
invertebrates, and phytoplankton assemblages remained sta-
ble across boreal, temperate, and tropical climates based on
studies spanning up to 127 years (Angeler & Drakare, 2013;
Gillette et al., 2012; Lindholm et al., 2020a,b; Parks, Quist &
Pierce, 2014; Wojciechowski et al., 2017). In other examples,
trends of biotic homogenisation have occurred, often linked
with changes in physico-chemical water quality and
diminishing surface water availability and driven by increas-
ing spatial similarity in population abundances and wide-
spread loss of large, long-lived organisms (i.e. nestedness)
(Ball-Damerow, M’Gonigle & Resh, 2014; dos Santos
Bertoncin et al., 2019; Cheng et al., 2014; Lopes et al., 2017;
Miyazono, Patiño & Taylor, 2015). Trends of biotic homog-
enisation in freshwater systems are not consistent in time,
space, nor facet of biodiversity (Gianuca et al., 2018).
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Taxonomic beta diversity of freshwater invertebrates
increased among streams in the UK over 30 years, yet func-
tional beta diversity showed no major change (Larsen
et al., 2018). Temporal patterns in homogenisation–
differentiation of freshwater biodiversity were variable
among river systems. In both France and the USA, for exam-
ple, beta diversity of fish assemblages trended towards
homogenisation within some streams and differentiation or
no clear change in others over the same period (Kuczynski,
Legendre & Grenouillet, 2018; Rogosch & Olden, 2019).

(d) Conceptual model 1: temporal change in beta diversity
through changes in species occurrence across spatial scales

Does directional change in beta diversity occur in the
absence of any obvious driving force (e.g. anthropogenic dis-
turbance)? Considering change in spatial beta diversity over
long time periods (100–10,000 years) is useful for assessing
whether biotic homogenisation or differentiation are persis-
tent, and if such events are ecologically significant against a
backdrop of historical fluctuations in beta diversity. Across
terrestrial, marine, and freshwater ecosystems, empirical
studies highlight that spatial beta diversity can show distinct
phases of stability (e.g. Benito et al., 2020; Lindholm
et al., 2020a,b), punctuated by periods of biotic differentiation
(e.g. Pinceloup et al., 2020) or homogenisation (e.g. Britton
et al., 2009). Temporal trends in beta diversity did not appear
to be associated with the duration or period of analysis.
These findings suggest that directional change in beta diver-
sity is not more or less evident when assessed over specific
time periods (e.g. annual, decadal, etc.).

Olden & Poff (2003) have emphasised the role of combina-
tions of species losses and species invasions (i.e. the spread of
species beyond their natural range) in contributing to biotic
homogenisation and differentiation. This idea emphasises
that different beta diversity outcomes will occur, depending
on (i) whether species losses or gains (i.e. colonisations) are
consistent or inconsistent among pairs of assemblages, and
(ii) the level of historical or ‘reference’ dissimilarity among
assemblages. Here, decreased beta diversity occurs when
assemblages consistently lose unique taxa and remaining taxa
are shared among sampling units, or when species additions
are ubiquitous among assemblages. Conversely, beta diver-
sity among assemblages increases when the occurrence of
taxa shifts from ubiquitous to patchy (i.e. patchy species
losses), or as patchy taxa additions coincide with patchy losses
(Olden & Poff, 2004).

We propose here that ecologists may conceptualise tempo-
ral change in beta diversity using Whittaker’s (1960) original
measure: the ratio of richness in the regional species pool ver-
sus the mean richness in individual assemblages (i.e. gamma
versus alpha diversity) (Fig. 1B). Beta diversity remains stable
when there are either no substantial changes in the occur-
rence of taxa at both local or regional spatial scales, or when
changes in both alpha and gamma diversity match each
other proportionally (e.g. Angeler & Drakare, 2013). Species
invasions (i.e. increases in gamma diversity) lead to beta

diversity decline only when those new species occur ubiqui-
tously across most assemblages (thereby increasing mean
alpha diversity). By contrast, when species invasions occur
infrequently or patchily among assemblages, beta diversity
increases as the increase in mean alpha diversity among
assemblages will be minor relative to the change in gamma
diversity. For example, biotic differentiation of plants
occurred over 54 years as increases in gamma diversity
(26%) were greater than increases in alpha diversity (12%)
(Li & Waller, 2015). Furthermore, beta diversity fluctuations
can occur in the absence of species invasions via changes in
the occurrence of taxa across two sample units within the
native species pool. For example, homogenisation of
terrestrial plant assemblages occurred as the prevalence of
native species spread across assemblages (McCune &
Vellend, 2013). In this latter example, changes in alpha
diversity (and not changes in gamma diversity) drove a
decline in beta diversity.

This conceptual model of temporal change in beta diver-
sity emphasises ‘broad-sense’ measures of dissimilarity
among assemblages (sensu Koleff, Gaston & Lennon, 2003).
It does, however, inadequately identify the relative contribu-
tions of replacement versus richness differences towards
changing dissimilarity over time (sensu Legendre, 2014).
However, understanding these contributions is useful in the
context of biotic homogenisation or differentiation, because
either outcome can occur via changes in the replacement of
taxa among assemblages or via changes in richness (it is
important to note here that richness differences correspond
to the degree to which assemblages in different sampling
units differ in their individual richness values. This is not
the same as alpha diversity, which is the average richness for
a set of sampling units). Biotic homogenisation can occur by
way of either decreasing replacement of taxa among assem-
blages, or decreasing magnitudes in the degree to which
assemblages differ in richness values. For example, homoge-
nisation of woodland bird assemblages occurring with
climate extremes was driven by declines in richness differ-
ences but not replacement (Haslem et al., 2015). By contrast,
homogenisation of freshwater invertebrates in New Zealand
over 25 years was driven by declines in replacement among
assemblages (Mouton et al., 2020).

(2) Disturbance regime

(a) Terrestrial ecosystems

Individual disturbance events (e.g. fire, storms) and/or
changes to disturbance regimes can trigger either homogeni-
sation or differentiation for terrestrial assemblages. Both
biotic homogenisation and biotic differentiation can occur
with increases in fire frequency in different contexts, suggest-
ing diverging outcomes for different landscape ecosystems
(Da Silva et al., 2018; Grau-Andres et al., 2019; Li &
Waller, 2015; Velle et al., 2014). For example, increasing
prevalence of later successional organisms across landscapes
where fire disturbances have been reduced (‘mesophication’;
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Nowacki & Abrams, 2008) is associated with decreased beta
diversity (e.g. Li & Waller, 2015). Homogenisation also
occurs through filtering of fire-intolerant species from the
regional species pool by frequent disturbances (e.g. Da Silva
et al., 2018). By contrast, increased beta diversity can also be
created by patchiness in disturbance histories (Grau-Andres
et al., 2019). Variable beta diversity outcomes occur in
response to other disturbances, such as storms, with
increases, decreases, or no significant changes in beta diver-
sity having been detected in terrestrial plant assemblages
before vs after storm events (e.g. Brewer et al., 2012;
Martinez-Ruiz & Renton, 2018; Savage et al., 2018; Smart
et al., 2014). Such variable outcomes of terrestrial disturbance
regimes are potentially explained by two main factors. First,
individual studies differed in their temporal extent of moni-
toring, reporting outcomes at different points along the
disturbance–response timeframe. Second, different studies
are conducted at different spatial scales relative to the scale
of disturbances. Third, there were differences in extent, fre-
quency, severity (magnitude) and spatial variability of distur-
bance regimes across landscapes, indicating that the effects of
different disturbance regimes on spatial beta diversity will
vary with variation in historical disturbance context.

(b) Marine ecosystems

The single study testing the effects of disturbances on biotic
homogenisation–differentiation in marine ecosystems
revealed rapid change in beta diversity associated with
extreme disturbance events. A heatwave in the northern
Great Barrier Reef (Australia) caused mass coral bleaching,
leading to both taxonomic and functional homogenisation
of fish assemblages evident in less than 1 year (Richardson
et al., 2018). Here, neither taxonomic nor functional richness
changed significantly over time, but biotic homogenisation
occurred, with widespread and increasing dominance by
algivorous species occurring after the bleaching event
(Richardson et al., 2018). Additionally, high spatial variation
in the composition of coral communities prior to bleaching
was the primary predictor of decreasing beta diversity in fish
assemblages, as opposed to the severity of overall coral loss
(Richardson et al., 2018).

(c) Freshwater ecosystems

Temporal variation in hydrology functions as a fundamental
disturbance regime for freshwater ecosystems (Datry,
Bonanda & Heino, 2016; Lepori & Hjerdt, 2006). Both tem-
poral and spatial variation in hydrology can in some (but not
all) cases cause significant changes in beta diversity over
time (Crabot et al., 2020). Almost all studies assessing
homogenisation–differentiation outcomes associated with
disturbance regimes in freshwater systems focused on asses-
sing the effects of anthropogenic changes to hydrological dis-
turbance regimes. In France, Brazil, and the USA, beta
diversity of freshwater organisms in flow-regulated rivers
was lower or declined over time compared to free-flowing

rivers where floods and low flows remained as hydrological
disturbances and that contributed to spatial variation in
assemblage (Braghin et al., 2018; Bruno et al., 2019;
Lawson & Johnston, 2016). In some cases, differences in beta
diversity among rivers with contrasting levels of anthropo-
genic alteration were either more, or solely, evident for func-
tional rather than taxonomic beta diversity (Braghin
et al., 2018). However, beta diversity increased in hydrologi-
cally altered rivers due to patchy occupancy of non-native
species (Gido, Dodds & Eberle, 2010). For wetlands,
within-wetland beta diversity can vary over time with con-
trasting hydrological conditions. For example, nestedness
on a gradient of decreasing inundation permanence
(i.e. richness decline associated with systematic loss of species
along the hydrological gradient) led to decreased beta diver-
sity of amphibian assemblages (Ramalho, Machado &
Vieira, 2018).

(d) Conceptual model 2: disturbance heterogeneity as a driver of beta
diversity change

The contribution of environmental disturbances to spatial
patterns of biodiversity has been a persistent theme in ecol-
ogy (e.g. Connell, 1978; Lepori &Hjerdt, 2006). Disturbance
is defined as either predictable or unpredictable forces that
cause a change in the environmental conditions of an ecosys-
tem (Rykiel Jr, 1985). Disturbances (perturbations) are a fea-
ture of all ecosystems (Sousa, 1984), and disturbance regimes
(temporal sequences of disturbance events) vary in their
extent, frequency, severity, and duration. We can conceptu-
alise a model of directional beta diversity change as a func-
tion of broad-scale variation in environmental disturbances
(Fig. 3). The disturbance heterogeneity model of change in
beta diversity emphasises the role of spatial variation (patch-
iness) and temporal variation (asynchrony) in environmental
disturbances (i.e. ‘disturbance regimes’) in driving beta
diversity. Ecological disturbances can be either predictable
or unpredictable and they affect populations of species (typi-
cally via mortality) and their spatial distribution (Sousa,
1984). Some disturbance events may be considered as
‘extreme’ (e.g. drought, bleaching, earthquakes, etc.); their
effects are superimposed on natural levels of temporal envi-
ronmental variation. In other cases, stochastic disturbances
(caused by floods, fires or waves) may be expected as part of
the natural dynamics of a given ecosystem, landscape or
region. Disturbance events influence the degree to which
assemblages in different patches across and among regions
are spatially synchronised (or desynchronised) in their rela-
tive positions along the natural successional progression of
community assembly through time (Fig. 3). The ‘disturbance
heterogeneity’model is based on the idea that a single climax
assemblage ‘type’ will eventually dominate a region unless
the assemblage is ‘reset’ by disturbance. Spatial variation in
the frequency, extent, and intensity of disturbance events
generally increases beta diversity. Assemblages exposed to
different disturbance histories will be at differing stages of
succession within the overall spatial extent of interest.
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Our disturbance heterogeneity model of beta diversity
predicts that spatial variation in disturbance regimes among
patches positively affects beta diversity (Fig. 3). This model
is an adaptation of the heterogeneous disturbance hypothesis
(Warren et al., 2007), which emphasises the role of spatial var-
iation in disturbances among patches within a region to
maintain co-existence of species (gamma diversity). Spatial
variation in temporal disturbance regimes drives beta diver-
sity at corresponding spatial extents (‘asynchronous’ distur-
bances; Sousa, 1984). Beta diversity is hypothesised to be
positively driven by spatial variation in temporal disturbance
regimes. In regions where variation in disturbance (e.g. fire) is
low, within-region beta diversity will be low, and beta diver-
sity increases with increased spatial variation in disturbance.
As disturbance heterogeneity increases, assemblages in dif-
ferent patches become temporally desynchronised in terms
of their successional development towards a climax state.
Fire, floods, and storm events are examples of disturbance
forces in terrestrial, freshwater, and marine ecosystems,
respectively. A prediction from terrestrial ecology is that high
heterogeneity in fire regimes (pyrodiversity; patches with

contrasting histories of burning) support high levels of beta
diversity (e.g. Kelly, Brotons & McCarthy, 2017). Empirical
analyses provide moderate support for this hypothesis
(e.g. Andersen et al., 2014), for example, with bird assem-
blages in Spain having high levels of beta diversity with spa-
tial variation in burning regimes (Clavero, Brotons &
Herrando, 2011). In a freshwater context, increasing envi-
ronmental heterogeneity can lead to a decrease in the occur-
rences of aquatic invertebrates that are active dispersers (with
winged adults), increasing niche partitioning and hence beta
diversity (Heino, 2013).

Useful tests of the disturbance heterogeneity–beta diver-
sity hypothesis may be done where human activities and
management interventions have altered the spatial variation
of natural disturbance regimes (sensu Fukami & Wardle,
2005). For example, spatially consistent forest-management
practices have reduced the beta diversity of plants in the
Czech Republic (Prach & Kopecky, 2018). Indigenous burn-
ing regimes (often patchy, low-intensity fires with varying fre-
quency) have occurred historically across all inhabited
continents (Trauernicht et al., 2016). Across Australia,

Fig. 3. Conceptual model 2 illustrating how beta diversity can be driven by spatio-temporal variation in disturbance regimes across
scales. The overarching prediction is that beta diversity is positively associated with heterogeneity in disturbance regime (A). In B
and C, letters a–c and d–f represent three study sites in two regions, and the red and purple boxes represent the timing and
duration (or intensity) of disturbances. Dashed lines in B and C represent hypothetical points in time where assemblage
composition at each study site is assessed (and therefore beta diversity quantified). In a region where disturbance heterogeneity is
low (i.e. all sites are exposed to similar disturbance regimes in terms of frequency, timing, magnitude, B), beta diversity is predicted
to be low because at any point in time, each assemblage is at a similar phase of post-disturbance recovery. By contrast, where
variation in disturbance regimes among sites is high (C), assemblages will be in differing phases of post-disturbance recovery, and
hence beta diversity will be higher. The model is applicable within any level of a spatial hierarchy (e.g. variation in disturbance
regimes among locations within a region, or among regions).
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Norway, and the USA, prescribed fire regimes and fire
suppression (and concomitant loss of patchy, frequent, and
low-intensity fires) have reduced spatial variation (hence
decreased beta diversity) of plant assemblages (Li &
Waller, 2015; Velle et al., 2014). In freshwater ecosystems,
management of water resources (such as dam construction
and operation, and regulation and extraction of
water) has altered the spatial variation in hydrological
disturbance regimes both within and among river networks
(McManamay, Orth & Dolloff, 2012; Poff et al., 2007), lead-
ing to the hypothesis that reduced spatial heterogeneity in
hydrology contributes to reduced beta diversity (Moyle &
Mount, 2007). While empirical assessment of this overall
hypothesis has received much more attention in terrestrial
ecosystems (under the theme of ‘pyrodiversity’) than in fresh-
water systems (Rolls et al., 2018), reduced frequency of hydro-
logical disturbances along river channels due to flow
regulation is also predicted to reduce beta diversity by caus-
ing all assemblages to be consistently in the same phase of
succession (e.g. Johnson & Waller, 2013). In marine systems,
human disturbances such as nutrient enrichment can lead to
increases in biotic homogenisation (Chapman, Underwood
& Skilleter, 1995; Séguin, Gravel & Archambault, 2014), as
tolerant or opportunistic species can settle and dominate
open space post-disturbance.

The disturbance heterogeneity–beta diversity model can
be further developed with evidence of the effects of broad-
scale environmental disturbance events on beta diversity.
Disturbances that consistently affect large regions generally
reduce beta diversity (within the disturbed region), yet the
assemblage-level manifestations vary among studies (see also
Huston, 1994). Recurrent fire disturbances reduced beta
diversity of woody plant assemblages via both the removal
of fire-sensitive species and the increasing prevalence of
fire-tolerant taxa in Brazil (Da Silva et al., 2018). In both
marine and freshwater ecosystems, environmental distur-
bances that span entire groups of samples have led to increas-
ing homogenisation (both taxonomically and functionally)
(Chase, 2007; dos Santos Bertoncin et al., 2019; Richardson
et al., 2018). Under broad-scale disturbances, the mechanism
responsible for decreased within-region beta diversity is
either elimination of taxa from the regional species pool
(Chase, 2007), or alternatively, increased occurrence of taxa
(increasing alpha diversity) across sites (dos Santos Bertoncin
et al., 2019).

(3) Connectivity alteration and species
redistribution

(a) Terrestrial ecosystems

Both species invasion and extinction processes can drive
either homogenisation and differentiation of terrestrial
assemblages when assessed in terms of functional, taxonomic,
or phylogenetic composition (Carvallo & Castro, 2017;
Closset-Kopp, Hattab & Decocq, 2019; Howes et al., 2014;
Jackson et al., 2015; Lambdon, Lloret & Hulme, 2008;

Winter et al., 2010). Species invasion to regional species pools
can occur via human-assisted dispersal across biogeographic
boundaries, or removal or reduction of barriers to dispersal
between regions. Depending on the context, either of these
processes can lead to homogenisation, differentiation, or no
change in beta diversity (e.g. Campagnaro et al., 2018; Flor-
encio et al., 2015; McKinney, 2004), indicating that the
effects of species invasions on beta diversity are not predict-
able. However, the effect of species invasions on beta diver-
sity has been linked with the ratio of non-native to native
species (McKinney, 2004), the distribution of invaders within
the region of interest (Florencio et al., 2015), and the history
(i.e. duration) of invasion. Specifically, while invasions ini-
tially often have caused biotic differentiation, prolonged
periods of invasion tend to lead increasingly to biotic homog-
enisation (Lososova et al., 2016).

(b) Marine ecosystems

Alteration of habitat connectivity drives change in beta diver-
sity of marine organisms by facilitating species invasions.
Facilitated dispersal can occur either through the removal
of barriers or by enhancing the ability of organisms to occupy
formerly inhospitable locations. The invasion of 84 fish spe-
cies from the Indo-Pacific region into the Mediterranean
Sea occurred within 142 years since the construction of the
Suez Canal, leading to homogenisation of assemblages across
the two seas (Edelist et al., 2013). Widespread invasion of
Caulerpa cemose var. cylindracea in the north-westernMediterra-
nean reduced beta diversity of seaweed assemblages com-
pared to uninvaded regions (Piazzi & Balata, 2009). In both
the Aegean Sea and North Atlantic Ocean, biotic
homogenisation occurred over the scale of decades driven
by a combination of changes in abundances or occurrence
(redistribution) of indigenous species over time [Aegean Sea
(Bianchi et al., 2014); North Atlantic Ocean (Magurran
et al., 2015)]. However, patchy invasion of the marine algae
Sargassum muticum in intertidal rockpools has increased beta
diversity of sessile assemblages (i.e. biotic differentiation)
compared to uninvaded areas (Vye et al., 2018).

(c) Freshwater ecosystems

Facilitated dispersal, caused either by altering hydrological
connectivity or by transporting organisms beyond their
native ranges, is a major driver of change in freshwater beta
diversity. Hydrological connectivity is a main determinant of
the distribution and abundance of organisms in freshwater
systems (Fullerton et al., 2010) and anthropogenic alterations
to hydrological connectivity (e.g. dams fragmenting river net-
works) significantly alter freshwater beta diversity (e.g. Crook
et al., 2015). Anthropogenic activities can also increase hydro-
logical connectivity through the removal of natural or
anthropogenic barriers (e.g. waterfalls or dams), or the crea-
tion of reservoirs, facilitating the dispersal of organisms
between freshwater environments which, in turn, leads to
reduced taxonomic and phylogenetic beta diversity of
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fish and zooplankton (Munoz-Ramirez, Victoriano &
Habit, 2015; Strecker & Brittain, 2017). In the Americas,
the construction of large dams has increased hydrological
connectivity between reaches formerly fragmented by natu-
ral dispersal barriers, reducing beta diversity (Vitule, Sk�ora &
Abilhoa, 2012; Yamada et al., 2017). In contrast to dam con-
struction, dam removal has also reduced beta diversity of fish
assemblages between formerly fragmented reaches, such as
in the USA (Kornis et al., 2015).

Human-assisted translocation of freshwater biota has had
variable outcomes for beta diversity. Establishment of non-
native species (e.g. fish, macrophytes) can decrease beta
diversity by increasing the proportion of shared species
among river basins, ecoregions, or continents (e.g. Castano-
Sanchez et al., 2018; Hoagstrom et al., 2007; Liu et al., 2017;
Marr et al., 2010). However, spatial scaling and origin of
the invasive species can strongly influence the size and direc-
tion of these effects. For example, the effect of non-native spe-
cies was associated with contrasting directions of change in
beta diversity over time when assessed at catchment (water-
shed), ecoregional, and continental spatial scales (e.g. Daga
et al., 2015; Taylor, 2010; Vargas, Arismendi & Gomez-
Uchida, 2015). Furthermore, translocation of species within
their natural range had a stronger impact on changes in beta
diversity than the introduction of species from beyond the
regional species pool (e.g. Leprieur et al., 2008).

(d) Conceptual model 3: dispersal and connectivity drive directional
change in beta diversity, but responses are modulated by spatial extent and
grain

Connectivity and dispersal characteristics of species are key
determinants of variation in the species composition among
assemblages across multiple spatial scales (Krebs, 2001).
Therefore, directional changes in beta diversity can be con-
ceptualised as being driven by the dispersal characteristics
of organisms and spatial connectivity among assemblages
(Fig. 4). This conceptual model provides the simplest expla-
nation as to why species invasions do not produce consistent
results [in terms of homogenisation versus differentiation
among empirical studies (Table S2)]. Invading species with
strong dispersal capabilities (i.e. that can rapidly colonise
regions) contribute towards a shorter period of biotic differ-
entiation among assemblages compared to weak or slow dis-
persers as they become increasingly ubiquitous across a
region (Harris, Smith & Hanly, 2011; Mouquet &
Loreau, 2003). By contrast, poor dispersers are predicted to
drive biotic differentiation either for a longer duration (until
they occupymost assemblages), or permanently if they simply
fail to establish in many of the potential locations across an
invaded region, perhaps due to unsuitable environmental
conditions (Thompson et al., 2020).

Within-region connectivity (as a conduit for dispersal) is a
significant factor explaining how species occupancy patterns
influence temporal trends in beta diversity. This is specifically
relevant in the context of species invasions, where broad-
scale establishment is determined by the ability of an

invading species to spread within a region. Beta diversity of
assemblages is negatively associated with the dispersal abili-
ties of constituent species (e.g. Qian, 2009); therefore, the
effect of species invasions on within-region beta diversity is
hypothesised to be determined by among-patch connectivity
and spatial extent (Cadotte & Fukami, 2005). Specifically,
this third conceptual model predicts that invading species will
contribute to more pronounced biotic homogenisation when
their occupancy rates among patches are high due to the
combined effects of dispersal ability and among-patch con-
nectivity. By contrast, biotic differentiation is predicted when
among-patch connectivity is hindered and the proportion of
patches occupied remains low (sensuHarris et al., 2011).While
effects of landscape fragmentation on beta diversity are often
considered in the context of invasive non-native species,
changes to the occupancy and abundance of native species
due to fragmentation also determine temporal variation in
spatial beta diversity across landscapes (Tatsumi, Iritani &
Cadotte, 2021). Specifically, increasing fragmentation hin-
ders immigration of individuals to recolonise or support
populations that are unable to persist in isolation (loss of
rescue effects), causing extinction of species across land-
scapes, leading to biotic homogenisation (e.g. Jamoneau
et al., 2012; Si et al., 2016).

Connectivity and dispersal are especially useful for inter-
preting and predicting the consequences of species invasions
on beta diversity. There are three key characteristics that
influence the direction and magnitude of change in beta
diversity caused by species invasion. First, the magnitude of
the effect of species invasions on beta diversity becomes less
pronounced with increasing species richness of a region
(gamma diversity) (Harris et al., 2011). Second, the interac-
tion between beta diversity (prior to invasion) and among-site
occupancy of non-native species is relevant; regions with low
‘pre-invasion’ beta diversity are more likely to show biotic
differentiation following invasion, especially during the initial
phases of invasion (when within-region occupancy of non-
native species is patchy). By contrast, biotic homogenisation
is more likely to occur when pre-invasion beta diversity is
high, particularly if non-native species already occupy a high
proportion of sites. Third, the number of non-native species
comprising both gamma and alpha diversity prior to invasion
will determine the degree of homogenisation versus differenti-
ation caused by non-native invaders (McKinney, 2004).
Generally, beta diversity decreases when non-native species
swamp the pre-invasion gamma diversity; differentiation is
more likely to occur when there are fewer non-native species
invading relative to the previously established species pool
(McKinney, 2004).

Overall, conceptual model 3 assumes that dispersal and
connectivity are the primary drivers of assemblage composi-
tion and, hence, beta diversity, and that abiotic conditions,
disturbance, and/or other biotic interactions have relatively
little effect on species occupancy and abundance. Because
heterogeneity in abiotic conditions within landscapes is fre-
quently associated with variation in composition among
assemblages (e.g. Veech & Crist, 2007), the relevance of this
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(Figure 4 legend continues on next page.)
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conceptual model acting singularly to produce observed
outcomes is likely to be limited to contexts where environ-
mental heterogeneity within the region of interest is low.

Beta diversity values depend on the spatial scale (spatial
grain and extent) at which they are quantified (e.g. Barton
et al., 2013; Bini et al., 2014; Mac Nally et al., 2004; Vellend
et al., 2021). The relevance of grain size is particularly perti-
nent in understanding the role of the species occupancy and
invasion patterns on trends of biotic homogenisation and dif-
ferentiation. Higher beta diversity is expected with decreas-
ing sampling unit size due to declining probability of
detecting organisms in each sample (Chase et al., 2011). As
sampling grain size increases, the probability of occupancy
(and hence, detection) increases (e.g. McGeoch &
Gaston, 2002; Tan et al., 2017); therefore, declines in beta
diversity are more likely to be detected with increasing grain
size, while biotic differentiation is expected to be more
apparent when assemblages are quantified at fine spatial
extents (e.g. Taylor, 2004).

(4) Habitat change

(a) Terrestrial ecosystems

Anthropogenic habitat change remains the predominant
context for examining biotic homogenisation or differentia-
tion. Habitat conversion through urbanisation and agricul-
ture drives change in beta diversity in contrasting and scale-
dependent ways. Land-use change often increases beta diver-
sity within landscapes by driving differences in composition
between altered and unaltered locations (e.g. Endenburg
et al., 2019; Marconi & Armengot, 2020; Sattler
et al., 2011). By contrast, assemblages within altered habitat
types are frequently found to become increasingly homoge-
neous compared to unaltered environments (e.g. Liang
et al., 2019; Rocha et al., 2016; Steinitz, Robledo-Arnuncio &
Nathan, 2012). Biotic homogenisation in altered habitats is
primarily driven by reduced taxonomic, functional, or phylo-
genetic turnover among local assemblages (e.g. Dolan,
Aronson & Hipp, 2017; Durak et al., 2015; Staude
et al., 2018). Conversely, habitat alteration has resulted in
increased beta diversity among altered locations in some
cases (e.g. Newbold et al., 2016; Noreika, Pajunen &
Kotze, 2015) due to patchy redistribution of species among
samples and widespread loss of generalist and wide-ranging
taxa (e.g. Aronson et al., 2015; Buhk et al., 2017).

(b) Marine ecosystems

The role of habitat in influencing spatial beta diversity in
marine ecosystems is typically studied in the context of under-
standing anthropogenic impacts, such as urbanisation, sedi-
mentation, or pollution. Anthropogenic impacts on marine
ecosystems typically cause loss of natural habitat and either
the creation of entirely novel ecosystems or the alteration of
spatial variation in benthic habitats. A series of experiments
in the Mediterranean Sea revealed that increased sedimenta-
tion homogenised benthic infaunal assemblages by reducing
habitat heterogeneity (Airoldi et al., 2015; Balata, Piazzi &
Benedetti-Cecchi, 2007a; Balata, Piazzi & Cinelli, 2007b;
Bianchi et al., 2018; Mayer-Pinto et al., 2018; Oliveira
et al., 2014). Elsewhere, urbanised coastal marine environ-
ments supported lower beta diversity compared to undis-
turbed regions via creation of novel ecosystems occupied by
only generalist, broad-niche species (e.g. Iacarella et al., 2018;
Tamburello et al., 2012). By contrast, other studies have found
that the creation of novel habitats for marine organisms
(e.g. engineered marinas) caused biotic differentiation com-
pared to unmodified habitats (Airoldi et al., 2015; Bertocci
et al., 2017; Pastro et al., 2017). In some cases, anthropogenic-
ally created novel marine habitats are occupied by non-native
species, thereby increasing regional beta diversity amongmod-
ified and reference habitats (Airoldi et al., 2015).

(c) Freshwater ecosystems

Spatial variation in physical and chemical habitat characteris-
tics significantly alters beta diversity of freshwater organisms.
As withmarine and terrestrial realms, most evidence of drivers
of change in beta diversity in fresh waters by habitat-related
mechanisms is in the context of assessing anthropogenic
impacts. Furthermore, anthropogenic land-use change in the
surrounding catchment is a major driver of change in freshwa-
ter beta diversity. However, synthesis of studies of land-use
changes reveals that all possible outcomes for beta diversity
are possible. Specifically, beta diversity among urban ponds
was higher than ponds in non-urban landscapes due to the
development of novel assemblages (e.g. Hill et al., 2017;
Skultety & Matthews, 2018). By contrast, homogenisation of
assemblages in streams draining modified landscapes was
driven by (i) increasing similarity of abundance-based assem-
blage composition or (ii) increased occurrence of generalist
species and/or the loss of species with narrow environmental
niches (Hermoso, Clavero & Kennard, 2012; Mykrä &

(Figure legend continued from previous page.)
Fig. 4. Conceptual model 3 depicting how dispersal propensity and landscape connectivity drive directional change in beta diversity
over time. Situations where invading species have weak dispersal capability will result in higher levels of beta diversity for a more
prolonged period compared to situations where invading species have strong dispersal capability (A). During initial phases of
invasion, strong dispersers are predicted to drive a short period of increased beta diversity (as few locations are occupied), before
rapidly causing beta diversity to decline as most (or all) locations become occupied. A similar pattern of beta diversity change is
predicted to occur along a gradient of connectivity within a region (B). Invaders colonising regions with highly fragmented habitats
are predicted to cause prolonged increases in beta diversity (as dispersal across fragments within a region is restricted), whereas
beta diversity is expected to decline in regions with highly connected habitats where dispersal is not restricted.
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Heino, 2017; Pavel et al., 2016; Segovia et al., 2016; Siqueira,
Lacerda & Saito, 2015). Urbanisation had no effect on spatial
beta diversity among cities in theUKdue to high prevalence of
assemblage turnover among ponds (Hill et al., 2018). Further-
more, impacts of agricultural land-use change on beta diversity
in temperate and boreal lakes varied among organism groups
(increased for fish and invertebrates; no change for macro-
phytes and diatoms) (Johnson & Angeler, 2014).

Conversion of flowing water habitats to lentic habitats
(e.g. reservoirs) typically causes biotic homogenisation, partic-
ularly in river systems where natural lakes are not a major fea-
ture (Castano-Sanchez et al., 2018; Clavero &Hermoso, 2011;
Glowacki & Penczak, 2013; Li et al., 2013; Santos et al., 2017;
Zeng et al., 2017). However, the origin of species driving
reduced beta diversity in converted habitats is inconsistent
among studies – in some cases it is driven by the invasion of
non-native species (e.g. Castano-Sanchez et al., 2018; Zeng
et al., 2017), while in others, increased occupancy of native spe-
cies occurred (Glowacki & Penczak, 2013).

(d) Conceptual model 4: environmental heterogeneity as a driver of
directional change in beta diversity

Spatial environmental heterogeneity is a feature of all major
environmental realms (terrestrial, marine, fresh water),

underpinning community assembly and therefore beta diver-
sity (e.g. Heino, Melo & Bini, 2015a). Our fourth conceptual
model is based on the premise that beta diversity is positively
affected by the breadth of environmental variation, and this
concept is applicable across multiple spatial extents (Fig. 5).
Under this model, directional change in beta diversity at a
given spatial scale is predicted to mirror changes in the vari-
ation of environmental characteristics over time (such as hab-
itat structure or abiotic conditions) that occur at that scale
(Chase et al., 2020). This conceptual model draws on relevant
ideas developed in landscape ecology that emphasise the
effects of spatial heterogeneity and the configuration of phys-
ical environmental conditions on biodiversity (e.g. Fahrig
et al., 2011; Forman, 1995; Palmer, 1992; Veech &
Crist, 2007).
Our environmental heterogeneity model includes the

effects of: (i) the heterogeneity and magnitude of variation
among spatial units relative to that of the broader landscape
and, (ii) the magnitude of variation in environmental condi-
tions that historically occurred at a broad spatial scale. In
metacommunity theory, our fourth conceptual model aligns
with the species-sorting model of assemblage composition
(Leibold et al., 2004) and assumes that dispersal is not a con-
straint, so organisms are able to move to occupy locations
within their optimal environmental niche space.

Fig. 5. Conceptual model 4 depicting the relationship between environmental heterogeneity and beta diversity. According to this
model, beta diversity in a region is predicted to be positively associated with spatial variation in environmental characteristics
(i.e. environmental heterogeneity). Lower (or decreased) environmental heterogeneity results in lower (or decreased) beta diversity
(a, dotted line), predominantly generated by nestedness. Increasing environmental heterogeneity is predicted to increase beta
diversity (b, dashed line). However, contrasting patterns can occur if increased environmental heterogeneity spans historical
environmental conditions (solid diagonal line) or expands to encompass novel environmental conditions. For example, increased
environmental heterogeneity spanning novel conditions is likely to increase beta diversity if novel conditions allow new species to
add to the regional species pool (c). Alternatively, if increased environmental heterogeneity spans novel environmental conditions
and new species are precluded from colonising the regional species pool, then beta diversity is predicted to reach an asymptote due
to increased prevalence of nestedness (d).
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Our environmental heterogeneity model predicts that
beta diversity will be positively driven by variation in environ-
mental conditions at a corresponding spatial extent
(Anderson et al., 2006; Heino et al., 2015a). Changes in envi-
ronmental heterogeneity across scales (sensu Stein &
Kreft, 2015) are expected to cause change in the degree to
which assemblages differ in composition (e.g. Keller
et al., 2009). Therefore, scenarios of biotic homogenisation
are predicted when environmental heterogeneity declines
(i.e. as environmental conditions become more stable or con-
sistent), thereby facilitating the development of similar
assemblages across space (Thompson et al., 2020).
Conversely, biotic differentiation is expected to occur as envi-
ronmental heterogeneity increases by fostering the develop-
ment of increasingly distinctive assemblages (either
comprised of nested subsets of the regional species pool, or
by supporting assemblages dominated by species with nar-
row environmental niches).

The environmental heterogeneity model explains the
inconsistent or ‘mixed’ outcomes of beta diversity associated
with habitat change across multiple spatial scales across ter-
restrial, marine, and freshwater realms. Comparisons
between ‘control’ and ‘impact’ landscapes (e.g. unmodified
versus urbanised or harvested ecosystems) frequently reveal
biotic differentiation (e.g. Filloy et al., 2010; de Avila
et al., 2015) as environmental conditions or habitats for
organisms become increasingly different. By contrast,
reduced beta diversity frequently occurs among assemblages
occupying anthropogenically modified environments
(e.g. Chakraborty et al., 2019; Dopheide et al., 2020) where
environmental conditions become more consistent. These
contrasting and scale-dependent responses of beta diversity
to changing environmental conditions have been reported
across all realms (Table S2), highlighting how the spatial
scale at which environmental variation is altered contributes
to the specific direction and magnitude of change in beta
diversity.

A key feature of this model is that the effect of environ-
mental heterogeneity on changes in beta diversity depends
on the degree to which environmental conditions span or
extend beyond those that historically occurred in the region
of interest. Increasing environmental heterogeneity does
not necessarily cause biotic differentiation. Rather, the
direction of change in beta diversity depends on the envi-
ronmental niches of species that either historically occurred
within the region of interest (‘native species’) or those that
were precluded from occupying the region due to earlier
environmental conditions being beyond their envelope of
tolerance. In the absence of species invasion, the effect of
increased environmental heterogeneity on beta diversity is
hypothesised to drive increased nestedness along environ-
mental gradients, as broad-niche (more tolerant or general-
ist) species occupy (and narrow-niche species are precluded
from occupying) novel environments within the region
(Carscadden et al., 2020). Beta diversity is therefore pre-
dicted to show a hump-shaped response to environmental
heterogeneity, as, initially, more variable environments will

support a greater variety of assemblages, yet eventually
habitat characteristics become increasingly novel compared
to historical conditions, so unique combinations of mal-
adapted species decline across space. By contrast, if habitat
modification allows the invasion of species from beyond the
historical regional species pool, beta diversity is predicted to
increase (due to species-sorting mechanisms). This mecha-
nism has some support in the beta diversity literature. For
example, patchy occurrence of non-native plants contrib-
uted to higher beta diversity in increasingly modified eco-
systems (Airoldi et al., 2015; Aronson et al., 2015;
Skultety & Matthews, 2018). In contrast to the idea that
increased beta diversity is driven by nestedness
(as described above), biotic differentiation in modified hab-
itats can support the increasing prevalence of species
replacement among assemblages (Paquin et al., 2021).

(5) Biotic and trophic interactions

(a) Terrestrial ecosystems

Biotic interactions within terrestrial communities affect the
magnitude of temporal change in spatial beta diversity via

dispersal, habitat modification, trophic and disease mecha-
nisms. Dispersal of seeds by birds and bats as vectors among
fragmented urban and forested habitats caused homogenisa-
tion of plant assemblages among fragments (Czarnecka
et al., 2013; Wandrag et al., 2017). Expansion of ecosystem
engineers (Jones et al., 1994; Table 1) can lead to biotic
homogenisation by reducing environmental heterogeneity,
such as the effect of invasive plants modifying habitats for
invertebrates (Hansen, Ortega & Six, 2009). In terms of tro-
phic mechanisms, patch-specific grazing by herbivores
increases beta diversity among grazed versus non-grazed envi-
ronments (Nagaike, 2012). Top-down trophic cascades have
variable consequences for beta diversity among patches
exposed to similar grazing pressure, although most studies
have been completed at relatively small extents (10–
100 km2; Database S1). Across temperate regions in the
Northern Hemisphere, increased grazing by deer and sheep
was associated with biotic homogenisation of plants within
grazed areas (Courchesne et al., 2018; Holmes &
Webster, 2011; Ohashi & Hoshino, 2014; Perea, Girar-
dello & San Miguel, 2014; Rooney, 2009; Salgado-Luarte
et al., 2019). However, in contrast to increased grazing pres-
sure, experimental removal of grazers (i.e. reduced grazing
pressure) had either no effect on beta diversity or was associ-
ated with further homogenisation of plant assemblages
(Abella et al., 2019; Milligan, Rose & Marrs, 2016; Speed,
Austrheim & Mysterud, 2013; Watts, Griffith &
MacKinlay, 2019).

(b) Marine ecosystems

Species interactions within ecosystems are also an important
mechanism responsible for changes in marine beta diversity.
These effects are mediated by the role of species in habitat
modification (i.e. ecosystem engineers) or occur as top-down
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effects of consumers on prey assemblages. Increased
abundance or higher concentrations of consumers typically
yield greater homogenisation on prey assemblages, particu-
larly at small spatial extents (10–1000 km2). For example,
biotic homogenisation of macroalgal assemblages was associ-
ated with the presence of high densities of herbivorous sea
urchins compared to patches exposed to lower grazing pres-
sure by urchins among neighbouring Atlantic Ocean islands
(Sangil et al., 2014). Elsewhere, invasion by oysters resulted in
homogenisation of invertebrate and macroalgal assemblages
in intertidal mudflats, due to the (structural) engineering
effect of oysters on benthic habitat (Green & Crowe, 2014).
Similar impacts of non-native species invasions have been
reported, such as widespread dominance by macroalgae
reducing beta diversity of invertebrate and fish assemblages
(e.g. Navarro-Barranco et al., 2018; Pacciardi, De Biasi &
Piazzi, 2011; Piazzi & Balata, 2008, 2009). However, these
ecosystem-engineering effects of invasive species such as
marine algae vary among species. For example, seasonal per-
sistence of the invasive marine algae Womersleyella setacea

generated periodic biotic homogenisation of benthic inverte-
brates compared to invasion by Lophocladia lallemandii, which
undergoes a prolonged seasonal period of no-growth that
maintains spatial beta diversity of benthic invertebrates
(Bedini et al., 2015).

(c) Freshwater ecosystems

Eutrophication, disease, top-down predation, and ecosys-
tem engineers are all biological drivers of change in beta
diversity in freshwater systems (García-Gir�on et al., 2020).
Eutrophication generally decreases spatial beta diversity
(both functional and taxonomic) within and among fresh-
water systems, as evidenced in invertebrates, zooplankton,
bacteria, and plants. In Brazil and France, reservoir eutro-
phication was linked with biotic homogenisation of aquatic
plants as assemblages became increasingly nested with
increasing eutrophication, potentially driven by the loss of
oligotrophic and mesotrophic specialist species (Leboucher
et al., 2019; Wengrat et al., 2018). However, effects of eutro-
phication on freshwater beta diversity vary based on lake
characteristics, with fish assemblages becoming more
homogenous among shallow lakes and more differentiated
among deeper lakes undergoing eutrophication (Menezes
et al., 2015). In terms of disease, selective removal of
amphibian species by a fungal pathogen (Batrachochytrium
dendrobatidis) caused rapid biotic homogenisation prior to
complete assemblage extirpation in Panama (DiRenzo
et al., 2017). Ecosystem-level impacts (i.e. habitat modifica-
tion) of species are also a reported driver of directional
change in beta diversity, with non-native plants, algae,
and mussels leading to reduced beta diversity of inverte-
brates and plants (Kilroy, Larned & Biggs, 2009; Sardina,
Chaves & Marchese, 2011; Zhang et al., 2019b), whereas
tree encroachment in wetlands increased beta diversity of
vascular plant and bryophyte assemblages (Favreau,
Pellerin & Poulin, 2019).

(d) Conceptual model 5: biotic interactions as drivers of change in beta
diversity

By influencing the occurrence and abundance of
organisms, trophic and non-consumptive biotic interactions
(e.g. predation, competition, disease, or habitat modification)
are potential drivers of change in spatial beta diversity over
time. However, the ecological roles of species as drivers of
changes in beta diversity have been less well developed con-
ceptually compared to the potential drivers of dispersal, envi-
ronmental filtering, or disturbance regimes [conceptual
models 2–4 (Brustolin et al., 2021; Chase et al., 2020)]. Our
fifth conceptual model centres on the role of biotic interac-
tions and the multiple effects of species, including productiv-
ity on biotic homogenisation and differentiation (Fig. 6). This
biotic interactions model emphasises the specific ecological
roles of individual species within ecosystems on the presence
(or absence) of other species (habitat modification, dispersal
vectors, top-down trophic interactions) and how resource
supply and use (bottom-up or top-down trophic interactions,
competitive exclusion, etc.) affect beta diversity.

(i) Habitat modification by organisms. Both plants and animals
have multiple ecological roles within ecosystems and the eco-
logical effects of species can be consistent or context depen-
dent. Plants in both terrestrial and aquatic ecosystems affect
assemblages of other organisms by influencing habitat struc-
ture and local environmental conditions (e.g. sunlight). In
freshwater and marine ecosystems, macrophytes provide
habitat, refugia and feeding sites for different organism
groups, such as fish, thereby affecting spatial variation in
assemblage composition (Quirino et al., 2021). Evidence from
marine ecosystems also highlights that widespread domi-
nance of single plant species or plant assemblage types can
cause biotic homogenisation of benthic organisms
(e.g. macroinvertebrates) by reducing habitat heterogeneity
(e.g. Green & Crowe, 2014; Navarro-Barranco et al., 2018;
Pacciardi et al., 2011; Piazzi & Balata, 2009). The effect of
a species on habitat heterogeneity across space and subse-
quent outcomes for beta diversity links to our fourth concep-
tual model (Section IV.4.d); the environmental heterogeneity
experienced by a given assemblage may be influenced by the
effects of an engineering or habitat-forming species. For exam-
ple, the effect of two species of molluscs on macroinvertebrate
beta diversity in New Zealand intertidal sandflats was attrib-
uted to their differential roles in influencing seagrass density
(Brustolin et al., 2021). Mangrove crabs function as ecosystem
engineers by altering the functional diversity of microbial sys-
tems through burrowing and feeding activities that lead to bio-
geochemical heterogeneity (e.g. Kristensen, 2008). The
density, diversity and distribution of habitat-forming species,
such as macroalgae (Goodsell & Connell, 2008) or coral
(Acosta-Gonz�alez et al., 2013) in marine systems, can also have
important effects on the beta diversity of organisms relying on
them. Overall, change in the spatial variation of habitat char-
acteristics is the hypothesised driver by which ecosystem engi-
neers and habitat-forming species drive biotic homogenisation
and differentiation across ecosystems.

Biological Reviews 98 (2023) 1388–1423 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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(ii) Vectors of disease and dispersal. Dispersal of organisms by
other organisms (e.g. ‘zoochory’) and pathogen transmission
are two mechanisms leading to biotic homogenisation and
differentiation. Pathogen outbreaks explain biotic homoge-
nisation by species-specific losses among assemblages, mani-
festing as increasing nestedness among assemblages over

time, as has been reported for amphibians (DiRenzo
et al., 2017; Smith, Lips & Chase, 2009). Conversely, species
additions through range expansions caused by organism-
mediated dispersal (e.g. Reynolds, Miranda & Cumming,
2015) are hypothesised to result in biotic homogenisation.
Birds and bats, for example, reduce terrestrial plant

Fig. 6. Conceptual model 5 illustrating how biotic interactions can drive change in beta diversity across ecosystems. The description
of each mechanism focuses on increases in their strength; reductions, in each case, will generate a change in beta diversity in the
opposite direction.
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assemblage turnover via seed transfer (e.g. Czarnecka
et al., 2013; Wandrag et al., 2017). However, beta diversity
outcomes are predicted to depend on the extent of
organism-mediated dispersal, with patchy (or widespread)
dispersal expected to increase (or decrease) beta diversity,
respectively (see conceptual model 1 in Section IV.1.d; Harris
et al., 2011).

(iii) Top-down trophic interactions. Predation and grazing by
consumers influence beta diversity by selective or patchy
removal of species within prey assemblages. The magnitude
and direction of change in beta diversity appear to depend
on prey selectivity and spatial variation in predation pressure
(Ryberg, Smith & Chase, 2012). For example, herbivory is
associated with biotic homogenisation of plants in terrestrial
and marine ecosystems via selective removal of organisms
(e.g. Birtel & Matthews, 2016; Holmes & Webster, 2011;
Ohashi & Hoshino, 2014; Perea et al., 2014; Rooney,
2009). However, these responses were not consistent among
studies; removal (as opposed to introductions) of herbivores
can also reduce beta diversity (e.g. Milligan et al., 2016),
and in some cases alteration of herbivore densities had no
effect on plant beta diversity (Speed et al., 2013).

In marine ecosystems, classic ecological theory predicts
that the maintenance of high beta diversity occurs in
response to keystone species (e.g. Krebs, 2001). Keystone
predators (Paine, 1969), such as the seastar Pisaster ochraceus,
shift their diet to consume dominant prey species that are
the most prevalent or abundant at any given time or place,
thereby maintaining patchy multi-species prey communities
with high overall (gamma) diversity, and hence, high beta
diversity. By contrast, increased abundance of a generalist
predator (the Atlantic cod, Gadus morhua) in the Barents Sea
had a homogenising effect on benthic fish assemblages
(Ellingsen et al., 2015, 2020). Overall, these contrasting
responses suggest that while predators can have a significant
effect on beta diversity of prey assemblages, impacts are
inconsistent across spatial extents and depend on spatial var-
iation in predation pressure, predator richness, and prey
selectivity (e.g. Antiqueira et al., 2018).

(iv) Competitive interactions among species. Competitive exclu-
sion is the process where species either prevent the establish-
ment of other species within a community or remove species
from a community by functioning as superior competitors for
habitat resources or energy (Cutler, 1998; Putman, 1994).
Yet the role of competitive exclusion as a mechanism
driving spatial beta diversity remains poorly studied
(Segre et al., 2014). Competitive exclusion is a fundamental
aspect of community assembly–disassembly phenomena
(Krebs, 2001), therefore likely influencing beta diversity in
different environmental realms. Competitive interactions
potentially explain the widely reported role of non-native
species invasions in altering beta diversity (see Database
S1). Competitive interactions are a frequently emphasised
component of the impact of non-native species on invaded
assemblages (e.g. Cucherousset & Olden, 2011; Simon &
Townsend, 2003).

Competitive interactions (particularly competitive exclu-
sion) likely have marked outcomes for change in beta diver-
sity over time and studies of non-native species invasions
serve as a useful context to frame predictions. Two key fac-
tors are predicted to interact and determine how competitive
exclusion drives the direction and magnitude of change in
beta diversity: pre-invasion beta diversity and the spatial
extent of competitive exclusion. In a region with high pre-
invasion beta diversity, competitive exclusion is hypothesised
either to: (i) cause biotic homogenisation if an invading spe-
cies excludes (or removes) native species from the entire
region; (ii) cause little change on beta diversity if competitive
exclusion applies to few patches within the region; or (iii)
cause biotic differentiation by reducing the proportion of
shared taxa among assemblages. By contrast, where pre-
invasion beta diversity is low, competitive exclusion is pre-
dicted to cause beta diversity either to increase (if exclusion
applies inconsistently to patches within the invaded region,
or if exclusion applies inconsistently among native species),
or change little (where an invading species excludes a native
species from the entire region).

(v) Bottom-up food web effects. In addition to top-down tro-
phic mechanisms, bottom-up ecosystem processes are also
potentially important mechanisms influencing beta diversity.
Tests of beta diversity patterns along gradients of productiv-
ity (i.e. from oligotrophic to eutrophic conditions) suggest
either a negative or unimodal response. Increasingly eutro-
phic conditions have been associated with biotic homogeni-
sation in terrestrial, marine, and freshwater ecosystems
(e.g. Bianchi et al., 2018; Bini et al., 2014; de Sassi, Lewis &
Tylianakis, 2012; Donohue et al., 2009; Zhang et al., 2019a).
Eutrophication affected beta diversity by creating conditions
where a few tolerant species dominate and subsequently
eliminate other species via competitive exclusion (Wengrat
et al., 2018) or where specialist (intolerant) species were
removed (Leboucher et al., 2019). Eutrophication leading to
reduced beta diversity likely is to be somewhat context
dependent. For example, increasing eutrophication was asso-
ciated with homogenisation of lake fish assemblages in shal-
low lakes (0.5–2.9 m deep), but with differentiation in deep
lakes (3.1–16.5 m depth), speculated to be driven by there
being higher geomorphological variability on the lake bot-
tom (Menezes et al., 2015).

V. SYNTHESISING MECHANISMS
UNDERPINNING CHANGE IN BETA DIVERSITY
ACROSS ECOSYSTEM REALMS

Biotic homogenisation and differentiation are key concepts
to consider in the context of multi-scale biodiversity change
(e.g. McGill et al., 2015). Beta diversity is a core theme of
metacommunity ecology, combining ecological mechanisms
operating at multiple spatial scales to explain why assem-
blages vary in composition across space and time (Chase
et al., 2020; Leibold et al., 2004). Metacommunity ecology
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provides a holistic framework to integrate environmental
(abiotic) and ecological mechanisms (e.g. dispersal, environ-
mental filtering, biotic interactions) that affect local commu-
nity composition and therefore beta diversity (Chase
et al., 2020; Heino et al., 2015b). By contrast, a persistent
theme in the evolving theory of biotic homogenisation is
the emphasis on species invasions and concurrent extinctions
of native species (Cardinale et al., 2018; McGill et al., 2015;
Olden et al., 2018; Petsch et al., 2022). The emphasis on spe-
cies invasions and extinctions in reports of directional change
in beta diversity is possibly due to the framing of biotic
homogenisation as being driven by ‘winner’ and ‘loser’ spe-
cies (Dornelas et al., 2019; McKinney & Lockwood, 1999).
Consequently, the fundamental versus conservation aspects
of beta diversity theory have remained separated, yet both
aspects would benefit from a greater integration of existing
evidence (sensu Fukami & Wardle, 2005) to understand the
mechanisms and contexts whereby beta diversity either
increases or decreases over time.

Incorporating beta diversity into understanding multi-
scaled changes in biodiversity is directly relevant for man-
agement efforts and conservation planning (Socolar
et al., 2016). Efforts to address the conservation realities of
biotic homogenisation and differentiation can benefit
greatly when they are placed within a broader conceptual
understanding of the fundamental ecological mechanisms
that affect change in beta diversity over time. Ecologists
are more openly highlighting the need to move beyond ana-
lyses of non-native species invasions in the context of biotic
homogenisation and differentiation to consider the potential
role of environmental and ecological mechanisms driving
beta diversity change (e.g. Brice, Pellerin & Poulin, 2017).
Although species invasions and extinctions are a
relevant component of change in beta diversity (Olden &
Poff, 2003), variation in the occurrence and abundance of
species across a given region is determined by a combination
of biological, chemical and physical mechanisms (Chase
et al., 2020; Krebs, 2001). There are numerous relevant
ideas and evidence in the broader field of metacommunity
ecology that contribute to a more robust conceptualisation
of the mechanisms that contribute to or explain directional
change in beta diversity over time (Chase et al., 2020). Our
five conceptual models (Table 2; Figs 1B, 3–6) identify,
broadly, the primary ecological mechanisms and contexts
leading to biotic homogenisation or differentiation. These
broad conceptual models each emphasise a specific control
on community assembly, drawing on existing theories appli-
cable to beta diversity. We develop these conceptual models
in the context of mechanisms driving directional change in
beta diversity along a gradient of biotic homogenisation
and differentiation. We consider that these concepts are
not mutually exclusive – one or more mechanisms, arising
from one or more of these conceptual models, may indeed
occur simultaneously (perhaps additively, synergistically, or
interactively) to produce emergent observed patterns of
change in beta diversity over time for a given ecological
assemblage under study.

VI. INTEGRATING CONCEPTUAL
UNDERSTANDING OF DRIVERS OF CHANGE IN
SPATIAL BETA DIVERSITY

Beta diversity has been an increasingly frequent topic of eco-
logical research (Anderson et al., 2011). Debate about defini-
tions and methods to analyse beta diversity have been useful
for encouraging researchers to be clear about interpreting
outcomes of hypotheses (e.g. Anderson et al., 2011; Barwell,
Isaac &Kunin, 2015; Baselga, 2010; Legendre, 2014; Legen-
dre & De C�aceres, 2013; Tuomisto, 2010a,b), including how
it can be measured and analysed across multiple spatial scales

Table 2. Summary of mechanistic conceptual models driving
change in spatial beta diversity (biotic homogenisation and
biotic differentiation) across ecosystems.

Conceptual model Key premise

(1) Temporal change in beta
diversity through changes in
species occurrence at
different scales

Beta diversity changes are
driven by changes in the
occurrence of species at local
and regional spatial scales.

(2) Disturbance heterogeneity as
a driver of beta diversity
change

Spatial heterogeneity in
disturbance regimes across
scales positively influences
beta diversity. Assemblages
that are exposed to similar
disturbance regimes will be at
a similar phase of community
succession at any point in
time, whereas variation in
disturbance across scales
means that assemblages are at
differing phases of succession.

(3) Dispersal and connectivity
drive directional change in
beta diversity, but responses
are modulated by spatial
extent and grain

The contribution of species to
beta diversity change is
determined by their dispersal
characteristics and
connectivity of habitats.
Weak dispersers drive
increases in beta diversity,
whereas strong dispersers
decrease beta diversity.

(4) Environmental
heterogeneity as a driver of
directional change in beta
diversity

Beta diversity is positively
driven by environmental
heterogeneity by facilitating
variation in the distribution,
abundance, and dominance
of different species among
assemblages.

(5) Biotic and trophic
interactions as drivers of beta
diversity

The ecological roles
(competition, predation,
herbivory, consumption,
disease, dispersal) of
individual species within
ecosystems strongly affect
variation in assemblage
composition across multiple
spatial scales.
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(e.g. Crist & Veech, 2006; Jost, 2007). As empirical research
has become available, syntheses and meta-analyses have
focussed heavily on quantifying the prevalence of the direc-
tion of change in spatial beta diversity (e.g. Li et al., 2020;
Olden et al., 2018).

Change in spatial beta diversity over time is disproportion-
ately framed around the role of species invasions as these
relate to homogenisation (McKinney, 2008; McKinney &
Lockwood, 1999; Petsch et al., 2022; Wilkinson, 2004), and
indeed studies finding homogenisation dominate the litera-
ture. However, as local assemblages are shaped by multiple
factors operating simultaneously (Lindholm et al., 2020a;
Mori, Isbell & Seidl, 2018), testing single hypotheses about
the drivers of change in beta diversity risks leading to dis-
torted perceptions about the outcomes and causes of biotic
homogenisation or differentiation when findings are not con-
sidered in the context of other possible mechanisms. In an
applied context, the use of such evidence in conservation
interventions therefore has a high risk of failing to meet bio-
diversity management goals if other (possibly multiple) fac-
tors that have a relevant role in driving beta diversity are
not considered throughout the process of incorporating sci-
entific evidence into decision making. Synthesis of the empir-
ical evidence examining change in beta diversity reveals that
community- or ecosystem-level effects of specific species
within assemblages can underpin temporal change in spatial
beta diversity and that the direction of change varies across
spatial scales. For example, in the northern Atlantic Ocean,
homogenisation of fish assemblages occurred in the Barents
Sea, whereas biotic differentiation was identified on the
Scotian Shelf, driven by increasing or declining population
size, respectively, of the apex predator Atlantic cod
(Ellingsen et al., 2015, 2020).

Species invasion and/or extinctions are not necessarily a
defining characteristic of biotic homogenisation or differenti-
ation. There are scenarios where changes in either the occur-
rence or spatial variation in the abundance of native species
manifests as either biotic homogenisation or differentiation
over time (Tabarelli, Peres & Melo, 2012). In terrestrial eco-
systems, for example, anthropogenic rearrangement of land-
scapes by urbanisation reduced spatial variation among local
habitat characteristics, fostering the increasing prevalence of
generalist, broad-niche taxa among assemblages
(Durak, 2010; Hodges & McKinney, 2018; Knop, 2016).
Framing change in beta diversity by reference to ‘winner’
and ‘loser’ species [typically corresponding to non-native
and rare native species, respectively, sensuMcKinney & Lock-
wood (1999) and Olden & Poff (2003)] disregards the fact
that both native and non-native species may jointly occupy
a region where the environmental and biotic conditions sup-
port their respective ecological niches, given their traits and
tolerances (Cassini, 2020; Tabarelli et al., 2012).

One of the most challenging aspects of change in beta
diversity through time is the scale dependence of variation
in assemblage composition (Barton et al., 2013; Pavoine
et al., 2016). Temporal change in the composition among
local assemblages is a pronounced feature of global

biodiversity (Dornelas et al., 2014; Hillebrand et al., 2018).
However, in isolation, such analyses of temporal change in
assemblage composition, per se, do not reveal changes in the
magnitude of beta diversity across spatial scales but rather
straightforwardly quantify the degree to which local assem-
blages have changed over time. Such studies, while naturally
extremely useful for contributing to evidence of the pace
(in time) and consistency (among locations) of biodiversity
change (e.g. McGill et al., 2015) do not yield information
regarding potential changes in spatial beta diversity (i.e. the
spatial variability among assemblages within a given time
point) through time.
Most empirical studies that identified inconsistent or vari-

able beta diversity responses to environmental factors
(e.g. habitat change, species redistribution) found that the
direction of change in beta diversity was dependent on a spe-
cific spatial scale (Database S1). Inconsistent beta diversity
responses across spatial scales to ecological drivers have been
recognised throughout the history of research into beta diver-
sity and biotic homogenisation (e.g. Rooney et al., 2007).
However, conceptual models can be applied to predict the
direction of change in beta diversity across multiple spatial
scales. For example, conceptual model 4 can be used to
explain and predict why changes in land use (yielding a vari-
ety of land-use ‘types’) frequently causes beta diversity to be
maintained or increased at a regional scale, yet within a given
habitat or land-use type, biotic homogenisation occurs due a
reduction in environmental variation (e.g. Filloy et al., 2010;
Holting, Bovolo & Ernst, 2016). Because beta diversity is a
multi-scaled concept, it is necessary for change in beta diver-
sity to be communicated in terms of (i) the spatial scale(s) from
which conclusions are drawn (Heino et al., 2015a,b) and to
which inferences apply (Chase et al., 2018) and (ii) the tempo-
ral scale (extent) over which change has occurred (Lindholm
et al., 2020a).
The direction, magnitude, and pace of change in beta

diversity is highly variable across the globe and can be linked
with different environmental variables (Blowes et al., 2019; Su
et al., 2021), even within the same organism group
(e.g. freshwater fish; Su et al., 2021). This suggests, overall, a
high degree of context dependency in the spatial and tempo-
ral characteristics of change in beta diversity (e.g. for flood-
plain biota; Lansac-Tôha et al., 2021), posing challenges for
deriving generalisations or predictions. However, under-
standing the ecological mechanisms underpinning why
change in beta diversity is more pronounced in some areas
and less so (or absent) in others provides opportunities for
ecologists and managers to identify specific spatial units that
may serve as priorities for monitoring or to prioritise regions
that require spatially targeted research foci or conservation
interventions (see Socolar et al., 2016). Our conceptual
framework provides an integrated platform from which
future meta-analyses and quantitative assessments of changes
in beta diversity, along with their associated underlying
ecological mechanisms, can be articulated and developed
further, to enhance our collective understanding and stew-
ardship of dynamic ecosystems.
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VII. CONCLUSIONS

(1) The degree to which ecological assemblages differ in
composition from each other across space (termed ‘beta
diversity’) provides a tractable method to assess, understand,
and communicate biodiversity change. Biotic homogenisa-
tion and biotic differentiation represent a gradient of decreas-
ing and increasing beta diversity, respectively. Despite
substantial empirical research and meta-analyses reporting
the prevalence of biotic homogenisation, the lack of a concep-
tual synthesis regarding underlying mechanisms hinders sci-
entists and conservation managers from identifying the true
drivers of change in beta diversity across ecosystems.
(2) Five distinct themes of biotic homogenisation–
differentiation research were identified in our evidence
synthesis. Beta diversity of marine, terrestrial, and fresh-
water organisms is rarely static in time, and often fluctu-
ates between periods of increasing dissimilarity (biotic
differentiation) and similarity (biotic homogenisation),
even in the absence of anthropogenic impact or species
invasions.
(3) We developed five conceptual models that mechanisti-
cally identify the ecological drivers of biotic homogenisation
and differentiation as directional change in spatial beta diver-
sity. Our first conceptual model identifies effects of changes in
local and/or regional diversity (i.e. alpha and/or gamma
diversity, respectively). This conceptual model clarifies how
biotic homogenisation or differentiation can occur indepen-
dently of species invasions or losses via changes in the spatial
patterning of species occurrences among assemblages. Our
second conceptual model centres on the effects of distur-
bance intensity and disturbance heterogeneity as a driver of
beta diversity change. In this model, the direction and mag-
nitude of change in beta diversity depend on the interaction
between spatial variation (patchiness) and temporal variation
(asynchronicity) of disturbance. The third conceptual model
highlights the role of connectivity and species dispersal
among assemblages and regions in driving biotic homogeni-
sation and differentiation. Divergent beta diversity outcomes
in response to connectivity and dispersal limitation occur
because different species have different dispersal characteris-
tics (e.g. ability, propensity), and the magnitude of beta diver-
sity change associated with species invasion also depends
strongly on both gamma and beta diversity prior to invasion.
The fourth conceptual model emphasises how changes to
habitat and environmental heterogeneity drive variable
biotic homogenisation and biotic differentiation outcomes
across spatial scales. This model predicts that beta diversity
is positively linked to spatial environmental variability, such
that biotic homogenisation or differentiation occur when
environmental heterogeneity decreases or increases, respec-
tively. Our fifth conceptual model is focussed on how the
varying roles of species and trophic interactions influence
beta diversity by way of habitat modification, disease and
transfer of organisms, consumption, competition, and alter-
ation of productivity.

(4) Conclusions regarding biotic homogenisation or differ-
entiation depend on the spatial and temporal extent of a
given study along with the combined effects of broad-scale
environmental characteristics and the biological traits of the
organisms being examined. Ongoing studies of change in
beta diversity would be greatly strengthened by examining
(and emphasising) the underlying biological and ecological
mechanisms ultimately responsible for detected patterns,
rather than simply reporting of change in beta diversity, per
se, in the absence of ecological context.
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Lansac-Tôha, F. M., Bini, L. M., Heino, J., Meira, B. R., Segovia, B. T.,

Pavanelli, C. S., Bonecker, C. C., De Deus, C. P., Benedito, E.,
Alves, G. M., Manetta, G. I., Dias, J. D., Vieira, L. C. G.,
Rodrigues, L. C., Do Carmo Roberto, M., ET AL. (2021). Scale-dependent
patterns of metacommunity structuring in aquatic organisms across floodplain
systems. Journal of Biogeography 48, 872–885.

Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. (2018). Lifting the veil:
richness measurements fail to detect systematic biodiversity change over three
decades. Ecology 99, 1316–1326.

*Larson, E. R. & Pool, T. K. (2020). Biological invasions drive biotic
homogenization of North American crayfishes. Hydrobiologia 847, 3795–3809.

Lawson, K. M. & Johnston, C. E. (2016). The role of flow dependency and water
availability in fish assemblage homogenization in tributaries of the Chattahoochee
River, Alabama, USA. Ecology of Freshwater Fish 25, 631–641.

Le Viol, I., Jiguet, F., Brotons, L., Herrando, S., Lindstrom, A., Pearce-
Higgins, J. W., Reif, J., Van Turnhout, C. & Devictor, V. (2012). More and
more generalists: two decades of changes in the European avifauna. Biology Letters
8, 780–782.

*Leao, H., Siqueira, T., Torres, N. R. & De Assis Montag, L. F. (2020).
Ecological uniqueness of fish communities from streams in modified landscapes of
Eastern Amazonia. Ecological Indicators 111, 106039.

Leboucher, T., Budnick, W. R., Passy, S. I., Boutry, S., Jamoneau, A.,
Soininen, J., Vyverman, W. & Tison-Rosebery, J. (2019). Diatom β–
diversity in streams increases with spatial scale and decreases with nutrient
enrichment across regional to sub–continental scales. Journal of Biogeography

46, 734–744.
*Lee-Cruz, L., Edwards, D. P., Tripathi, B. M. & Adams, J. M. (2013). Impact of

logging and forest conversion to oil palm plantations on soil bacterial communities in
Borneo. Applied and Environmental Microbiology 79, 7290–7297.

Legendre, P. (2014). Interpreting the replacement and richness difference
components of beta diversity. Global Ecology and Biogeography 23, 1324–1334.

Legendre, P. (2019). A temporal beta-diversity index to identify sites that have
changed in exceptional ways in space-time surveys. Ecology and Evolution 9, 3500–
3514.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis:
testing multispecies responses in multifactorial ecological experiments. Ecological
Monographs 69, 1–24.

Legendre, P., Borcard, D. & Peres-Neto, P. R. (2005). Analyzing beta diversity:
partitioning the spatial variation of community composition data. Ecological

Monographs 75, 435–450.
Legendre, P. &De C�aceres, M. (2013). Beta diversity as the variance of community
data: dissimilarity coefficients and partitioning. Ecology Letters 16, 951–963.

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M.,
Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D.,
Loreau, M. & Gonzalez, A. (2004). The metacommunity concept: a framework
for multi-scale community ecology. Ecology Letters 7, 601–613.

*Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. (2001). The
geographical structure of British bird distributions: diversity, spatial turnover and
scale. Journal of Animal Ecology 70, 966–979.

Lepori, F. & Hjerdt, N. (2006). Disturbance and aquatic biodiversity: reconciling
contrasting views. Bioscience 56, 809–818.

Leprieur, F., Beauchard, O., Hugueny, B., Grenouillet, G. & Brosse, S.

(2008). Null model of biotic homogenization: a test with the European freshwater
fish fauna. Diversity and Distributions 14, 291–300.

*Leveau, L. M., Leveau, C. M., Villegas, M., Cursach, J. A. & Suazo, C. G.

(2017). Bird communities along urbanization gradients: a comparative analysis
among three neotropical cities. Ornitologia Neotropical 28, 77–87.

Li, D.,Olden, J. D.,Lockwood, J. L.,Record, S.,McKinney, M. L.&Baiser, B.

(2020). Changes in taxonomic and phylogenetic diversity in the Anthropocene.
Proceedings of the Royal Society B–Biological Sciences 287, 20200777.

Li, D. & Waller, D. (2015). Drivers of observed biotic homogenization in pine
barrens of central Wisconsin. Ecology 96, 1030–1041.

*Li, D. J., Poisot, T., Waller, D. M. & Baiser, B. (2018). Homogenization of
species composition and species association networks are decoupled. Global Ecology
and Biogeography 27, 1481–1491.

Li, J. P., Dong, S. K., Peng, M. C., Yang, Z. F., Liu, S. L., Li, X. Y. & Zhao, C.

(2013). Effects of damming on the biological integrity of fish assemblages in the
middle Lancang-Mekong River basin. Ecological Indicators 34, 94–102.

Liang, C., Yang, G., Wang, N., Feng, G., Yang, F., Svenning, J.-C. & Yang, J.

(2019). Taxonomic, phylogenetic and functional homogenization of bird
communities due to land use change. Biological Conservation 236, 37–43.

Lindholm, M., Alahuhta, J., Heino, J., Hjort, J. & Toivonen, H. (2020a).
Changes in the functional features of macrophyte communities and driving factors
across a 70-year period. Hydrobiologia 847, 3811–3827.

Lindholm, M., Alahuhta, J., Heino, J. & Toivonen, H. (2020b). No biotic
homogenisation across decades but consistent effects of landscape position and pH
on macrophyte communities in boreal lakes. Ecography 43, 294–305.

Liu, C. L., He, D. K., Chen, Y. F. & Olden, J. D. (2017). Species invasions
threaten the antiquity of China’s freshwater fish fauna. Diversity and

Distributions 23, 556–566.
*Liu, J.,Xu, A.,Wang, C.,Guo, Z.,Wu, S., Pan, K., Zhang, F. & Pan, X. (2020a).
Soil microbiotic homogenization occurred after long–term agricultural development
in desert areas across northern China. Land Degradation & Development 31, 1014–1025.

*Liu, P.,Xu, S.,Lin, J.,Li, H.,Lin, Q.&Han, B.-P. (2020b). Urbanization increases
biotic homogenization of zooplankton communities in tropical reservoirs. Ecological
Indicators 110, 105899.

*Lobo, D., Leao, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. (2011).
Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic
homogenization. Diversity and Distributions 17, 287–296.

*Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M. & Hoye, T. T. (2018).
Declining diversity and abundance of high Arctic fly assemblages over two decades
of rapid climate warming. Ecography 41, 265–277.

*Lockwood, J. L. (2006). Life in a double–hotspot: the transformation of Hawaiian
passerine bird diversity following invasion and extinction. Biological Invasions 8,
449–457.

*Loiselle, A., Pellerin, S. & Poulin, M. (2020). Impacts of urbanization and
agricultural legacy on taxonomic and functional diversity in isolated wetlands.
Wetlands Ecology and Management 28, 19–34.

*Lolis, L. A., Alves, D. C., Fan, S., Lv, T., Yang, L., Li, Y., Liu, C., Yu, D. &
Thomaz, S. M. (2020). Negative correlations between native macrophyte diversity
and water hyacinth abundance are stronger in its introduced than in its native
range. Diversity and Distributions 26, 242–253.

*Longman, E. K.,Rosenblad, K.& Sax, D. F. (2018). Extreme homogenization: the
past, present and future of mammal assemblages on islands. Global Ecology and

Biogeography 27, 77–95.

Biological Reviews 98 (2023) 1388–1423 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

1416 Robert J. Rolls and others

 1469185x, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12958 by U

niversity O
f N

ew
 E

ngland, W
iley O

nline L
ibrary on [22/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Lopes, V. G., Castelo Branco, C. W., Kozlowsky-Suzuki, B., Sousa-

Filho, I. F., Souza, L. C. E. & Bini, L. M. (2017). Predicting temporal variation
in zooplankton beta diversity is challenging. PLoS One 12, e0187499.

Lososova, Z.,Chytry,M.,Danihelka, J.,Tichy, L.&Ricotta, C. (2016). Biotic
homogenization of urban floras by alien species: the role of species turnover and
richness differences. Journal of Vegetation Science 27, 452–459.

*Lososova, Z., Chytry, M., Tichy, L., Danihelka, J., Fajmon, K., Hajek, O.,
Kintrova, K., Lanikova, D., Otypkova, Z. & Rehorek, V. (2012). Biotic
homogenization of central European urban floras depends on residence time of
alien species and habitat types. Biological Conservation 145, 179–184.

*Lougheed, V. L., McIntosh, M. D., Parker, C. A. & Stevenson, R. J. (2008).
Wetland degradation leads to homogenization of the biota at local and landscape
scales. Freshwater Biology 53, 2402–2413.

*Luck, G. W. & Smallbone, L. T. (2011). The impact of urbanization on taxonomic
and functional similarity among bird communities. Journal of Biogeography 38,
894–906.

*Maas, B., Putra, D. D., Waltert, M., Clough, Y., Tscharntke, T. &
Schulze, C. H. (2009). Six years of habitat modification in a tropical rainforest
margin of Indonesia do not affect bird diversity but endemic forest species.
Biological Conservation 142, 2665–2671.

Mac Nally, R., Fleishman, E., Bulluck, L. P. & Betrus, C. J. (2004).
Comparative influence of spatial scale on beta diversity within regional
assemblages of birds and butterflies. Journal of Biogeography 31, 917–929.

*Machado, I. F.,Moreira, L. F. B.&Maltchik, L. (2012). Effects of pine invasion
on anurans assemblage in southern Brazil coastal ponds. Amphibia-Reptilia 33,
227–237.

*Mackintosh, T. J., Davis, J. A. & Thompson, R. M. (2015). The influence of
urbanisation on macroinvertebrate biodiversity in constructed stormwater
wetlands. Science of the Total Environment 536, 527–537.

*Magalhaes, A. L. B., Daga, V. S., Bezerra, L. A. V., Vitule, J. R. S.,
Jacobi, C. M. & Silva, L. G. M. (2020). All the colors of the world: biotic
homogenization-differentiation dynamics of freshwater fish communities on
demand of the Brazilian aquarium trade. Hydrobiologia 847, 3897–3915.

*Magee, T. K., Ringold, P. L. & Bollman, M. A. (2008). Alien species importance
in native vegetation along wadeable streams, John Day River basin, Oregon, USA.
Plant Ecology 195, 287–307.

*Magura, T., Lovei, G. L. & Tothmeresz, B. (2010). Does urbanization decrease
diversity in ground beetle (Carabidae) assemblages? Global Ecology and Biogeography 19,
16–26.

Magurran, A. E.,Dornelas, M.,Moyes, F.,Gotelli, N. J.&McGill, B. (2015).
Rapid biotic homogenization of marine fish assemblages. Nature Communications 6,
8405.

Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. (2019).
Temporal β diversity—a macroecological perspective. Global Ecology and

Biogeography 28, 1949–1960.
Magurran, A. E. & Henderson, P. A. (2010). Temporal turnover and the

maintenance of diversity in ecological assemblages. Philosophical Transactions of the
Royal Society B: Biological Sciences 365, 3611–3620.

*Majer, J. D., De Sousa-Majer, M. J. &Heterick, B. E. (2021). Partial clearing of
a road corridor leads to homogenisation of the invertebrate fauna. Pacific Conservation
Biology 27, 70–85.

*M�alis, F., Bobek, P., Hedl, R., Chudomelova, M., Petrik, P., Ujhazy, K.,
Ujhazyova, M. & Kopecky, M. (2021). Historical charcoal burning and
coppicing suppressed beech and increased forest vegetation heterogeneity. Journal
of Vegetation Science 32, e12923.

*Malloch, B., Tatsumi, S., Seibold, S., Cadotte, M. W. & Macivor, J. S.

(2020). Urbanization and plant invasion alter the structure of litter
microarthropod communities. Journal of Animal Ecology 89, 2496–2507.

*Marchetti, M. P., Lockwood, J. L. & Light, T. (2006). Effects of urbanization
on California’s fish diversity: differentiation, homogenization and the influence of
spatial scale. Biological Conservation 127, 310–318.

Marconi, L. & Armengot, L. (2020). Complex agroforestry systems against biotic
homogenization: the case of plants in the herbaceous stratum of cocoa production
systems. Agriculture Ecosystems & Environment 287, 106664.

*Marques, H., Dias, J. H. P., Perbiche-Neves, G., Kashiwaqui, E. A. L. &
Ramos, I. P. (2018). Importance of dam-free tributaries for conserving fish
biodiversity in Neotropical reservoirs. Biological Conservation 224, 347–354.

Marr, S. M., Marchetti, M. P., Olden, J. D., Garcia-Berthou, E.,
Morgan, D. L., Arismendi, I., Day, J. A., Griffiths, C. L. &
Skelton, P. H. (2010). Freshwater fish introductions in mediterranean-
climate regions: are there commonalities in the conservation problem? Diversity
and Distributions 16, 606–619.

*Marr, S. M., Olden, J. D., Leprieur, F., Arismendi, I., Caleta, M.,
Morgan, D. L., Nocita, A., Sanda, R., Tarkan, A. S. & Garcia-

Berthou, E. (2013). A global assessment of freshwater fish introductions in
mediterranean-climate regions. Hydrobiologia 719, 317–329.

*Martin, L. M. & Wilsey, B. J. (2015). Differences in beta diversity between exotic
and native grasslands vary with scale along a latitudinal gradient. Ecology 96, 1042–
1051.

*Martinez, O. J. A. (2010). Invasion by native tree species prevents biotic
homogenization in novel forests of Puerto Rico. Plant Ecology 211, 49–64.

*Martinez-Lendech, N., Martinez-Falcon, A. P., Jacobo Schmitter-

Soto, J., Mejia-Mojica, H., Sorani-Dalbon, V., Cruz-Ruiz, G. I. &
Mercado-Silva, N. (2020). Ichthyological differentiation and homogenization in
the Panuco Basin, Mexico. Diversity 12, 187.

*Martinez-Nunez, C., Manzaneda, A. J., Lendinez, S., Perez, A. J., Ruiz-
Valenzuela, L. & Rey, P. J. (2019). Interacting effects of landscape and
management on plant-solitary bee networks in olive orchards. Functional Ecology 33,
2316–2326.

Martinez-Ruiz, M.& Renton, K. (2018). Habitat heterogeneity facilitates resilience
of diurnal raptor communities to hurricane disturbance. Forest Ecology and Management

426, 134–144.
*Mattingly, W. B., Orrock, J., Collins, C., Brudvig, L., Damschen, E.,

Veldman, J. & Walker, J. (2015). Historical agriculture alters the effects of fire
on understory plant beta diversity. Oecologia 177, 507–518.

*Maurel, N., Salmon, S., Ponge, J. F., Machon, N., Moret, J. & Muratet, A.

(2010). Does the invasive species Reynoutria japonica have an impact on soil and flora in
urban wastelands? Biological Invasions 12, 1709–1719.

Mayer-Pinto, M., Cole, V. J., Johnston, E. L., Bugnot, A., Hurst, H.,
Airoldi, L., Glasby, T. M. & Dafforn, K. A. (2018). Functional and structural
responses to marine urbanisation. Environmental Research Letters 13, 14009.

*Mayor, S. J., Boutin, S., He, F. & Cahill, J. F. Jr. (2015). Limited impacts of
extensive human land use on dominance, specialization, and biotic
homogenization in boreal plant communities. BMC Ecology 15, 5.

Mazor, T., Doropoulos, C., Schwarzmueller, F., Gladish, D. W.,
Kumaran, N., Merkel, K., Di Marco, M. & Gagic, V. (2018). Global
mismatch of policy and research on drivers of biodiversity loss. Nature Ecology &

Evolution 2, 1071–1074.
McArdle, B. H. & Anderson, M. J. (2001). Fitting multivariate models to

community data: a comment on distance-based redundancy analysis. Ecology 82,
290–297.

McCune, J. L. & Vellend, M. (2013). Gains in native species promote biotic
homogenization over four decades in a human-dominated landscape. Journal of
Ecology 101, 1542–1551.

McGeoch, M. A. & Gaston, K. J. (2002). Occupancy frequency distributions:
patterns, artefacts and mechanisms. Biological Reviews 77, 311–331.

McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. (2015). Fifteen
forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution 30,
104–113.

*McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. (2013). Does
lake habitat alteration and land-use pressure homogenize European littoral
macroinvertebrate communities? Journal of Applied Ecology 50, 1010–1018.

McKinney, M. (2008). Do humans homogenize or differentiate biotas? It depends.
Journal of Biogeography 35, 1960–1961.

McKinney, M. L. (2004). Do exotics homogenize or differentiate communities? Roles
of sampling and exotic species richness. Biological Invasions 6, 495–504.

*McKinney, M. L. (2005). Species introduced from nearby sources have a more
homogenizing effect than species from distant sources: evidence from plants and
fishes in the USA. Diversity and Distributions 11, 367–374.

*McKinney, M. L. & La Sorte, F. A. (2007). Invasiveness and homogenization:
synergism of wide dispersal and high local abundance. Global Ecology and

Biogeography 16, 394–400.
McKinney, M. L. & Lockwood, J. L. (1999). Biotic homogenization: a few winners

replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14,
450–453.

*McLean, K. I., Mushet, D. M., Sweetman, J. N., Anteau, M. J. &
Wiltermuth, M. T. (2020). Invertebrate communities of prairie-pothole
wetlands in the age of the aquatic Homogenocene. Hydrobiologia 847, 3773–
3793.

McLean, M., Mouillot, D., Lindegren, M., Villéger, S., Engelhard, G.,
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January 2021.
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covered by each theme.
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assessing directional change in beta diversity spanning terres-
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