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Abstract

We used a 2 (prior knowledge: low vs. high) � 4 (instructional approach: unitary

vs. unitary-pictorial vs. equation vs. equation-pictorial) ANOVA to examine the

relationship between instructional approach, student prior knowledge, and per-

sonal belief of best practice for learning of the find-whole percentage problems,

which pose a challenge for many middle school students. The unit percentage con-

cept is central to both the unitary approach and the unitary-pictorial approach,

where the latter has a diagram to scaffold the unit percentage concept. Both the

equation approach and the equation-pictorial approach, in contrast, are algebra

approaches that integrate relevant information to form an equation, allowing

learners to solve for an unknown (e.g., x). Furthermore, the equation-pictorial

approach relies on the proportional concept, scaffolded by a diagram to form an

equation. A student's best practice, reflected by what is known as the

‘actual – optimal bests dichotomy’, details her belief in capability to perform task

complexity (i.e., simple task vs. complex task). The concept of element interactivity

within cognitive load theory framework predicts differential instructional effi-

ciency: equation-pictorial > equation approach > unitary-pictorial > unitary. Our

findings (N = 218 secondary students) showed that performance outcomes

favored high prior knowledge students for complex problems and, to a lesser

extent, practice problems and simple problems. Low prior knowledge students

benefitted most from the equation-pictorial approach, and they invested higher

mental effort than high prior knowledge students across three approaches (uni-

tary, unitary-pictorial, equation) but not the equation-pictorial approach. Impor-

tantly, cognitive load imposition, by proxy of students' mental effort, was

unrelated to students' belief in optimal best.
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1 | INTRODUCTION

Is there a better way to help middle school students learn how to

solve percentage problems such as “If I pay $300 for my weekly rent,

which represents 25% of my weekly wage – what is my weekly

wage?” Mathematics educators in Australia tend to classify such per-

centage problems as ‘find-whole’ (Baratta et al., 2010), whereas

educators in Singapore classify these as ‘reverse percentages’
(Chow, 2007). The mathematics education researchers have con-

curred that there are three types of percentage problems (i.e., fine-

whole, find-part, and find-percent), which interrelate with each other

(Baratta et al., 2010; Phan et al., 2017). What is of significance,

though, is that there is research evidence to indicate that students dif-

fer in their understanding of three percentage problem types. For

example, Baratta et al. (2010) found that middle school students per-

formed more poorly on the find-whole percentage problems

(e.g., 15% of x = $30, where x represents the whole amount) than the

find-part (e.g., 15% of $200) and the find-percent (e.g., What percent-

age of $200 is $30?).

Concerning mathematics education, there are different instruc-

tional approaches, which educators may recommend. The Australian

Curriculum: Mathematics, for example, emphasizes the importance of

the unitary approach for teaching of ‘find-whole percentage’ prob-

lems. The unitary approach highlights the calculation of a unit per-

centage (i.e., 300/25), which is then multiplied by 100 to obtain the

answer (i.e., 300/25 � 100). However, educators in Singapore opt to

use the algebra approach (or the equation approach) – for example:

15% � x = $300, and solve for x (Chow, 2007). Does this difference

in preference of a particular instructional approach (e.g., the unitary

approach versus the algebra approach) make any meaningful impact?

We need to acknowledge the important fact in which on average,

Singaporean middle school students outperform their Western coun-

terparts in international mathematics education studies (Thomson

et al., 2010).

More importantly, strengthening middle school students' alge-

bra foundation would pave the way for them to pursue senior

mathematics education where algebra is an essential component of

its curriculum. For example, consider a percentage increased prob-

lem: “A book is sold for $160 which included 10% GST (Goods Ser-

vices Tax). Find its original price excluding the GST”. We can form

an equation, $160 = x + (x � 10%), and solve for x. Koedinger et al.

(2008) regard such percentage increased problems as “double-
reference problems” where the variable appears twice in the equa-

tion and therefore poses a challenge to students. Nonetheless, if

students have schema to solve the find-whole percentage problems

using the algebra approach, they would have prior knowledge of

x � 10%, which should help to reduce cognitive load imposed.

Indeed, research has highlighted a constructive alignment between

the design of an instructional approach and a learner's level of

expertise in a domain (Kalyuga et al., 2003). For example, an

instructional approach that is suitable for novice learners may be

detrimental for expert learners, and vice versa. The novice learners

who possess low prior knowledge requires greater instructional

support than expert learners.

The present study, which involves secondary school students

(N = 213) is significant as it advances the study of contrasting instruc-

tional approaches and levels of learner expertise on learning find-

whole percentage problems. Our inquiry also considers Phan et al.,

(2017) conceptualization of optimal best, and how this motivational

concept could coincide with cognitive load imposition and explain

the comparative instructional effects for learning (i.e., unitary, unitary-

pictorial, equation, and equation-pictorial). This examination, we con-

tend, is evolutionary especially in terms of providing empirical evi-

dence, which could help elucidate the association between two

distinct theoretical orientations: cognitive processing of information

and motivational beliefs for learning.

2 | COGNITIVE LOAD THEORY

According to cognitive load theory (Sweller et al., 2011; Sweller

et al., 2019) there are three distinct categories of cognitive load:

intrinsic, extraneous and germane cognitive loads. The intrinsic cog-

nitive load indicates that cognitive load imposition or cognitive bur-

den is imposed by the element interactivity level that is intrinsic to

a unit material. A level of element interactivity arises from the

interconnection between different elements (e.g., number, symbol,

procedure) that require learning (Chen et al., 2017). Importantly,

from cognitive load theory, the level of element interactivity may

act as an index for the complexity of material. A high level of ele-

ment interactivity, reflecting high complexity of material, would

impose a high level of intrinsic cognitive load and vice versa. How-

ever, levels of learner expertise can alter the level of element inter-

activity. An increase in expertise allows the learner to incorporate

interconnected elements into a schema, thus reducing the level of

element interactivity.

The extraneous cognitive load indicates that cognitive load

imposition is accounted for by a level of element interactivity that

is deemed ineffective or unprofitable for learning. For example,

integrating relevant information from diverse sources would

increase the element interactivity level, and thus increase extrane-

ous cognitive load imposition. To improve such instructional design,

educators could place textual material in relevant locations of a dia-

gram, which then would minimize extraneous cognitive load

(Sweller et al., 1990).

The germane cognitive load indicates that cognitive load imposi-

tion is account for by a level of element interactivity, which is intrinsic

to the task and thus is essential for learning. Germane cognitive load

is considered as part of intrinsic cognitive load and not as an indepen-

dent source of cognitive load. The variability practice that directs a

learner to the same problem structure across different problem con-

texts (Likourezos et al., 2019; Paas & Van Merriënboer, 1994)

increases the element interactivity level, which corresponds to an

increase in germane cognitive load.
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3 | THE IMPORTANCE OF PRIOR
KNOWLEDGE

The study of instructional designs, situated within the framework of

cognitive load theory (Sweller et al., 2011; Sweller et al., 2019), con-

tends an important premise – namely, a student's prior knowledge

and understanding of a subject matter. How much a student knows

may account for his/her appreciation of a particular instructional

design. Consider a linear equation of 2x + 8 = 12, which has four

solution steps: (i) 2x = 12–8, (ii) 2x = 4, (iii) x = 4 � 2, and (iv) x = 2.

Assume, likewise, that a student has acquired a schema to solve

3x = 6. When presented with 2x + 8 = 12, the student would

retrieve his/her acquired schema (3x = 6) from long-term memory to

solve 2x = 4. Because the student can process the schema of 2x = 4

as a single element in working memory, the element interactivity level

in 2x + 8 = 12 is therefore reduced. In other words, prior knowledge

of simpler equations (3x = 6) is advantageous in helping to reduce

the level of element interactivity of more complex problems

(2x + 8 = 12). From the example above, it can be said that the inter-

connected elements in steps 2, 3, and 4 have been incorporated into a

schema such as 3x = 6.

The example of the linear equation of 2x + 8 = 12 showcases the

importance of prior knowledge. Prior knowledge (e.g., novice versus

expertise) may explain an instructor's use of a particular instructional

approach, and/or account for the complexity of a unit material. A stu-

dent who is relatively weak in knowledge would appreciate a teacher's

scaffolding (e.g., solution steps 1, 2, 3 and 4). In contrast, a student

who is knowledgeable would regard step 3 and step 4 as redundant

information, given that he/she already has prior knowledge of these

two steps. Processing redundant information inevitably consumes

cognitive resources, which would impose extraneous cognitive load

(Chandler & Sweller, 1991) and limit quality learning experiences.

Aside from identifying a student's level of expertise, it is interesting to

note that the concept of element interactivity may also determine the

efficiency of an instructional approach (Ngu, Phan, et al., 2018; Ngu,

Yeung, et al. 2018; Phan et al., 2017).

4 | ELEMENT INTERACTIVITY AND
INSTRUCTIONAL APPROACHES

Existing research has supported the efficacy of learning from the use

of ‘worked examples’ (Sweller et al., 2011; van Gog et al., 2019). As

an instructional tool, a worked example provides a step-by-step solu-

tion procedure to facilitate learning. However, the effectiveness of a

worked example depends, in part, on its design. From the perspec-

tive of instructional design, the concept of element interactivity may

serve as a point of reference to discern and differentiate the effi-

ciency of a particular instructional approach (Ngu & Phan, 2022;

Ngu, Phan, et al., 2018; Ngu, Yeung, et al. 2018, Ngu et al., 2014).

For example, an instructional approach that aligns with a high level

of element interactivity would impose high cognitive load and, like-

wise, vice versa.

How shall we estimate the level of element interactivity that is

associated with a particular instructional design? According to cogni-

tive load theory (Sweller et al., 2011), anything that requires learning

constitutes an element. Chen et al. (2017) regard a symbol, a number

and a concept as an element. In their study, Leahy and Sweller (2008)

examined how students learned how to use bus timetable. They used

the element interactivity count to estimate the complexity of test

materials (i.e., in terms of the number of elements). They consider,

‘Look up to route numbers’ as one element, for example. The element

interactivity count, in this case, is proportional to the number of ele-

ments that exist in the materials.

In line with prior studies (e.g., Leahy & Sweller, 2008; Ngu &

Phan, 2022; Ngu, Phan, et al., 2018; Ngu, Yeung, et al., 2018), we used

the number of elements and their interactions as a point of reference

to estimate the level of element interactivity that is associated with a

particular instructional approach (i.e., unitary, unitary-pictorial, equa-

tion and equation-pictorial approaches) (Phan et al., 2017). Consider a

percentage problem such as “A worker pays $350 in tax per month,

which is 8% of her monthly income. What is her monthly income?”.
We analyse the number of elements and their relations in the solution

procedure of each instructional approach in order to estimate the ele-

ment interactivity count. We regard the following as elements:

• a number (e.g., 8%)

• relevant information (e.g., monthly income)

• a symbol (e.g., a variable such as x)

• a concept (e.g., the sub-goal is 1% of monthly income)

4.1 | The unitary approach

The unitary approach, as shown in Table 1, emphasizes the concept of

‘unit percentage’. This description depicts a need to calculate the unit

percent of a quantity (i.e., 1%) and then a multiple of this to solve the

problem. We estimate the level of element interactivity that is

imposed by the unitary approach on learning the percentage problem

above:

Step 1 has four elements: 8%, monthly income, $350,

and one concept (i.e., the relationship between 8%,

monthly income, and $350 where the left side of the

equation equals to its right side).

Step 2 has five elements: $350, 8, $43.75, and two

concepts (i.e., $350 represents 8% of monthly income,

and the sub-goal is 1% of monthly income).

Step 3 has five elements: $43.75, 100, $4375, and two

concepts (i.e., $43.75 is equivalent to 1% of monthly

income, and $43.75 � 100 is equivalent to 100% of

monthly income).

Manipulating multiple elements within and between the steps

involved would impose a high level of element interactivity, and, thus

a high level of intrinsic cognitive load. Calculating the sub-goal of 1%

would be problematic without a point of reference, such as “8% is

NGU ET AL. 1225
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equivalent to $350”. Moreover, investing cognitive resources for the

purpose of searching and integrating discrete sources of information

(i.e., 8% in step 1 and $350 in step 2) is likely to impose a level of ele-

ment interactivity, which would constitute extraneous cognitive load

(Yeung et al., 1998). Therefore, the unitary approach may not yield

effectiveness, consequently because of the combined effects of both

intrinsic cognitive load and extraneous cognitive load.

4.2 | The unitary-pictorial approach

The unitary-pictorial approach shares similar solution steps as those

found in the unitary approach with the exception, though, that the

former has a diagram (Table 1), which depicts the underlying problem

structure such as the proportion concept. The alignment between 8%

and $350 is proportional to the alignment between 100% and

monthly income (which will be greater than $350). Investing germane

cognitive load to activate prior knowledge of a proportional concept

would enable a student to process fewer elements in the working

memory (Carlson et al., 2003). Importantly, aligning 8% with $350 not

only eliminates the split-attention effect (Yeung et al., 1998) but also

serves as a point of reference for the calculation of the unit

percentage – the sub-goal of 1% of monthly income. Overall, scaffold-

ing provided by the unitary-pictorial approach, which eliminates the

split-attention effect as well as eliciting proportional schemas would

assist to lower the level of element interactivity. As such, unlike that

of the unitary approach, the unitary-pictorial approach would impose

a lower level of element interactivity for learning.

4.3 | The equation approach

The equation approach is analogous to the algebra approach of learn-

ing, highlighting the integration of relevant information (i.e., “monthly

income”, 8%, $350) to form an equation (Hegarty et al., 1995), and

solve for the variable (x) (Table 1). There are three solution steps

involved:

Step 1 has one element: the variable (x) may pose a

challenge if the student is not familiar with the concept

of a variable in the context of linear equations.

Step 2 has four elements: 8%, x, $350, and one concept

(i.e., the relationship between the percentage, quantity,

and the variable, where the left side of the equation

equals to the right side).

Step 3 has four elements: x, $350, 8%, and one concept

(i.e., conceptualize � as an inverse operation of � so

as to solve the equation).

We speculate that the element interactivity level within and

between the solution steps of the equation approach would be lower

than the element interactivity level for the unitary and/or the unitary-

pictorial approach. This observation is warranted, given that the

solution steps in the equation approach have fewer elements than the

corresponding solution steps in the unitary approach and/or the

unitary-pictorial approach.

4.4 | The equation-pictorial approach

The equation-pictorial approach is an alternative algebra approach,

where it shares the same diagram as the unitary-pictorial approach

except for the fact that x replaces “monthly income” (Table 1). Similar

to the unitary-pictorial approach, a student is expected to invest ger-

mane cognitive load to activate prior knowledge of proportional rea-

soning, which could result in the processing of fewer elements in the

working memory (Carlson et al., 2003). From proportional reasoning, a

student can transfer relevant information in the diagram to form an

equation such as 8/350 = 100/x, and solve for x. The equation-

pictorial approach and the equation approach differs in the format of

the equation (8/350 = 100/x versus 8% � x = 350), but they share

the same number of solution steps.

The equation-pictorial approach may impose a high level of ele-

ment interactivity for a student who has limited knowledge of solving

linear equations with fractions. Nevertheless, unlike that of the equa-

tion approach, the equation-pictorial approach would impose a lower

level of element interactivity. We expect the diagram to assist stu-

dents in their learning (e.g., to elicit a familiar schema such as propor-

tional reasoning), setting up the equation such as 8/350 = 100/x, and

solve for x.

5 | MEASURE OF COGNITIVE LOAD

Paas (1992) suggested that a learner can retrospect his/her cognitive

process during learning and indicate the magnitude of his/her mental

effort on a Likert scale, which ranges from 1 (extremely low) to

9 (extremely high). This Likert scale designed by Paas (1992) has been

tested in previous studies (Carlson et al., 2003; Ngu & Phan, 2022).

Researchers have used multiple items (Leppink et al., 2013) to mea-

sure three types of cognitive load separately (Naismith et al., 2015).

Importantly, they found a positive association between Paas's scale

and intrinsic cognitive load. Moreover, students who had higher prior

knowledge rated lower for intrinsic cognitive load. In the present

study, we estimated the level of element interactivity, reflecting

intrinsic cognitive load to distinguish the efficiency of the four instruc-

tional approaches. Thus, we used Paas's scale to measure mental

effort, indicating intrinsic cognitive load imposed during learning.

6 | SUMMARY

Overall, then, from the preceding sections, which of the four instruc-

tional approaches would benefit students' learning most? Of course,

the effectiveness of a particular instructional approach may interrelate

with the student's prior learning experience. From the perspective of

NGU ET AL. 1227
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cognitive load imposition (e.g., Sweller et al., 2011), however, we

speculate that the four instructional approaches would differ in terms

of element interactivity level and, consequently, their order of effi-

ciency would follow: the equation-pictorial approach > the equation

approach > the unitary-pictorial approach > the unitary approach.

7 | OPTIMAL STATE OF FUNCTIONING
AND MOTIVATIONAL BELIEFS

The study of optimal best within the context of academic learning

is emerging, reflecting the paradigm of positive psychology

(Seligman, 2010), which emphasizes the importance of motivation,

personal resolute, confidence, and inner strength (Seligman

et al., 2009). The underlying nature of optimal best, as Fraillon (2004)

explains, is intimately linked to the nature of a related concept known

as ‘actual best’. In terms of secondary school mathematics, consider

two examples, which may elucidate and clarify the nature of actual

best, denoted as ‘L1’, and the nature of optimal best, denoted as ‘L2’:

i. Actual best, which refers to a student's testament of his/her abil-

ity to understand and/or to perform a simple task as a result of

his/her learning experience – for example: “12% of my weekly

pay is $120; therefore, what is my weekly pay?”
ii. Optimal best, which refers to a student's indication of belief and

conviction of his/her optimal ability to understand and/or to per-

form a complex task as a result of their learning experience – for

example: “Lucy and John both won the first price of a maths

competition. Lucy's share of the price is $140, which represents

20% of the total price. How much does John get?”

According to Fraillon's (2004) explanatory account, which Phan

et al., (2016) subsequently expanded on, a person may use his/her

actual best as a point of reference to structure his/her optimal best.

Moreover, successful experience of optimal best from actual best,

denoted as ‘+Δ (L2 – L1)’, is positive and proactive, requiring some

form of ‘optimization’ or motivation (Phan et al., 2016, Phan et al.,

2020, Phan et al., 2021). We argue that the design of an instruc-

tional approach can, in fact, influence a student's learning experi-

ence of a subject matter. An optimal instructional approach, in this

case, can act as ‘an optimizing agent’, which would optimize and/or

facilitate a student's successful progress from L1 to L2. Thus, an

interesting question for consideration, arising from this proposed

premise relates to the extent to which an instructional approach

would assist to motivate and/or to facilitate a student's progress

from L1 to L2.

Our research focus for development, as detailed, is insightful

and innovative, linking two independent lines of inquiry: the design

of an instructional approach, which considers the impact of cogni-

tive load imposition (Sweller et al., 2011) versus the achievement of

optimal best in a subject matter, which may reflect a person's state

of motivation (Phan et al., 2021). We seek to understand the rela-

tionship between an instructional approach and the two levels of

best practice. For example, does a particular instructional approach

align more closely with, say, L1 than L2? In relation to our previous

mentioning (e.g., the equation-pictorial approach > the equation

approach > the unitary-pictorial approach > the unitary approach),

for example, we rationalize that the equation-pictorial approach

would coincide with L2, whereas the unitary approach would coin-

cide with L1. In other words, in terms of comparison, the equation-

pictorial approach is more effective as this approach would facilitate

the successful achievement of L2 whereas, in contrast, the unitary

approach would align with the achievement of L1.

An interesting focus of inquiry, which closely associates with the

study of instructional approaches is the measurement of cognitive

load imposition (Sweller et al., 2011). A determined level of

cognitive load imposition, as we discussed, may account for the design

of a particular instructional approach. By the same token, however, in

accordance with our rationalization, a determined level of cognitive

load imposition may coincide with a state of L1 or L2. For example, in

terms of comparison, we contend that a high level of perceived cogni-

tive load is likely to associate with a state of L1, whereas a low level of

perceived cognitive load would relate to a state of L2.

8 | THE PRESENT STUDY

The present study considers a particular instructional design against

a student's level of prior knowledge, cognitive processing of informa-

tion, and his/her subsequent motivational beliefs for learning

(Feldon et al., 2019; Likourezos et al., 2019). Feldon et al. (2018)

found that the cognitive load imposition during learning negated stu-

dents' academic self-efficacy beliefs. Moreover, Phan et al., (2017)

provided a theoretical framework, which explores the nature of opti-

mal best or optimal functioning (Fraillon, 2004; Phan et al., 2016).

According to the authors, the nature of optimal best, reflecting the

maximization of a learner's internal state of functioning (e.g., optimal

cognitive functioning in mathematics) is motivational and proactive.

A learner's successful accomplishment of optimal best in a subject

matter would indicate his/her motivational beliefs for learning (Phan

& Ngu, 2021).

Overall, the present study seeks to advance the study of appro-

priate instructional approaches for learning find-whole percentage

problems that exhibit two levels of complexity: simple problems and

complex problems. Students would need to adapt the solution proce-

dure of simple problems in order to solve complex problems

(Appendix A). We posit that the complexity of find-whole percentage

problems, determined by the level of element interactivity, would be

lower for students who have a high level of prior knowledge.

Our focus of inquiry also examines optimal best, reflecting a stu-

dent's state of motivation and how this consideration could relate to

the varying efficiencies of four instructional approaches. We specu-

late, for example, that the four approaches would differ on the

achievement of optimal best but not necessarily actual best, irrespec-

tive of students' prior knowledge levels. We formulate the following

hypotheses for statistical testing:
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1. Considering differential efficiency of the four instructional

approaches: (i) they would differ on practice problems for low

rather than high prior knowledge students, (ii) they would not

differ on the simple problems regardless of students' levels of prior

knowledge in the post-test, and (iii) they would differ for the com-

plex problems regardless of students' levels of prior knowledge in

the post-test.

2. Performance on the practice problems, simple problems and com-

plex problems in the post-test would favor high prior knowledge

students across the four instructional approaches.

3. Low prior knowledge students, and not high prior knowledge stu-

dents, would attest to differential mental effort and, similarly, they

would invest higher mental effort than high prior knowledge stu-

dents across the four instructional approaches.

4. Regardless of students' levels of prior knowledge, the four instruc-

tional approaches would differ on the Optimal Best (L2) but not on

the Actual Best (L1) [Corrections added on 17 August 2023, after

first online publication: ‘(L1)’ and ‘(L2)’ have been changed to ‘(L2)’
and ‘(L1)’, respectively, in the preceding sentence.]. Moreover,

drawing from previous research evidence, we speculate that men-

tal effort would not associate with the Optimal Best.

9 | METHOD

9.1 | Participants

We invited 218 Chinese students (boys = 47%) who consented to par-

ticipate in the study from two private secondary schools located in a city

in Asia. The students whose mean age was 15.00 (SD = 0.18) were

drawn from three classes of each school. The ethnic composition of one

school: Hokkian = 18.21%, Foochow = 43.33% and Hakka = 38.46%.

In another school, the ethnic composition: Foochow = 56.07% and

Hakka = 43.93%. In both schools, English Language was the medium of

instruction for Mathematics and Science subjects. Students followed

the National Curriculum for Secondary School Mathematics. According

to mathematics teachers, students had learned the percentage problems

a year ago prior to data collection.

9.2 | Materials

The materials consist of: (1) a pre-test that shares similar content as

the post-test, (2) an instruction sheet, (3) acquisition problems plus

a Likert scale to rate cognitive load, and (4) Optimal Outcomes

Questionnaire. The pre-test or post-test has 10 simple problems and

two complex problems (Appendix A). The simple problems share

similar problem structure as the practice problems (Reed, 1987). The

first complex problem has two parts and the second complex prob-

lems has three parts. The learner needed to adapt the solution proce-

dure of the simple problems in order to solve the complex problems.

One mark was assigned for a correct solution for each simple prob-

lem, resulting in a total of 10 marks. Each part of a complex problem

was awarded one mark. One of the complex problems had two parts

and the other complex problem had three parts, resulting in a total of

five marks. The solution was scored correct with or without including

the solution steps. We ignored the computational errors. However, no

mark would be awarded if students did not show correct procedure.

For example, to calculate the unit percentage for question

2 (Appendix A), a student wrote 12 � 3 (incorrect step), and thus no

mark was assigned for such calculation.

The instruction sheet pertaining to a particular approach presents

the definition of percentage, which is common across the four

approaches, a review of prior knowledge (i.e., unit concept, propor-

tional reasoning, and equation solving skills), and a worked example

(Table 1). In line with prior research (van Gog et al., 2011), we imple-

mented multiple worked example – practice problem pairs during the

intervention. The acquisition problems for each approach comprises

six worked example – practice problem pairs. Each pair consists of a

worked example and a practice problem that shares a similar problem

structure. Thus, students were required to study the solution proce-

dure of a worked example, and then transferred their understanding

to solve a practice problem.

In previous worked example research, the length of acquisition

phase varies across different domains (Carroll, 1994; Chen

et al., 2015; Ngu, Phan, et al., 2018, Ngu, Yeung, et al., 2018). For

example, Carroll (1994) and Ngu, Phan, et al., (2018), Ngu, Yeung,

et al., (2018) implemented worked examples intervention in

20 min. Likewise, we postulate that 20 min acquisition phase

(i.e., study an instruction sheet + complete six acquisition prob-

lems) would be sufficient for students to learn how to solve find-

whole percentage problems. We anticipate that schema acquisition

would predominately occur when students completed the acquisi-

tion problems; nonetheless, they may also benefit from studying

the instruction sheet. Overall, students in each approach would

have been exposed to relevant prior knowledge pertaining to a

specific approach (e.g., the unit concept for the unitary approach)

and one worked example in the instruction sheet plus 12 acquisi-

tion problems. Students were required to indicate their mental

effort on a 9-point Likert scale once they had completed the acqui-

sition problems.

The Optimal Outcomes Questionnaire consists of two subscales:

(1) Actual Best, and (2) Optimal Best. There are 12 items for each sub-

scale ranging from 1 (always false) to 5 (always true). Of the 12 items,

8 items are related to personal attributes associated with

actual – optimal bests dichotomy, and 4 items are related to the impact

of the instructional approach upon learning. In regard to Actual Best,

sample of items include: (1) I am content with what I have accomplished so

far for the topic of percentage problems and (2) The practice exercise is not

effective in helping me learn percentage problems. For the Optimal Best,

sample of items include: (1) I can achieve much more for the topic of per-

centage problems than I have indicated through my work so far, and (2) The

practice exercise is very effective in helping me learn percentage problems.

The reliability estimates for the Actual Best and Optimal Best that com-

prised 16 items (excluded 4 items that are related to the instructional

approach) were .81 and .79, respectively (Phan et al. 2018).
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9.3 | Procedure

Two researchers and three mathematics teachers from each school

administered group testing. In one school, 105 students from three

classes assembled in a seminar room. Random assignment of

students resulted in: unitary approach (n = 27), unitary-pictorial

approach (n = 27), equation approach (n = 26) and equation-pictorial

approach (n = 25). In another school, 113 students from three classes

assembled in a school hall. Random assignment of students resulted

in: unitary approach (n = 28), unitary-pictorial approach (n = 28),

equation approach (n = 28) and equation-pictorial approach (n = 29).

We eliminated five students who did not complete all the test mate-

rials in the final data analysis.

The students from the two schools undertook the same experimen-

tal procedure. We provided a briefing to students: (1) a pre-test

(10 min), (2) a learning phase that comprised an instruction sheet (5 min),

acquisition problems and a Likert scale of mental effort (15 min), (3) a

post-test (10 min), and (4) Optimal Outcomes Questionnaire (10 min).

We advised the students: to read the instruction on the first page of

each task before they begun, not to discuss with their classmates while

completing each task, and to seek help during the learning phase, if

needed. We distributed each task and collected it after the allocated

time had elapsed with the exception of the instruction sheet – it was

collected after students had completed the learning phase.

First, all students sat for a pre-test. Second, they studied their

respective instruction sheets, completed acquisition problems and

indicated their mental effort on a Likert scale. Third, students com-

pleted a post-test. Lastly, they completed Optimal Outcomes Ques-

tionnaire. In sum, the four groups were matched with the same

materials and time to complete a pre-test, an acquisition phase, a

post-test, and an Optimal Outcomes Questionnaire. The main differ-

ence between the four groups (unitary, unitary-pictorial, equation,

equation-pictorial) was the design of the worked examples.

10 | RESULTS AND DISCUSSION

The Cronbach's alpha value for the pre-test was .91. There were six

practice problems and most students either did not attempt or made

mistake for the 6th practice problem. Thus, after deleting the 6th prac-

tice problem, the Cronbach's alpha value for the practice equations was

.69. For the post-test, the Cronbach's alpha values for the simple prob-

lems and complex problems were .83 and .87, respectively.

Researchers have used differential scores on the pre-test

(Blayney et al., 2016), and students who studied in different year

levels (Year 8 vs. Year 9) (Bokosmaty et al., 2015) to differentiate their

prior knowledge. In the present study, one-way ANOVA indicated

nonsignificant difference between four approaches on the pre-test, F

(3, 213) = 0.85, p = .46, partial η2 = 0.01. We used the mean scores

of the pre-test as a point of reference to allocate students to low prior

knowledge group (pre-test < .25, n = 85), and high prior knowledge

group (pre-test > .25, n = 128).

The inter-scorer agreement was above .90 for the pre-test, prac-

tice problems, and post-test. The means and standard deviations for

the practice problems, simple problems and complex problems in the

post-test, mental effort and Actual Best and Optimal Best are pre-

sented in Table 2. We used ANOVA fixed effects, main effects and

interactions in G*Power analysis to estimate the minimum sample size

(Faul et al., 2009). The sample size (i.e., 213 students) exceeds the

minimum requirement of 179 participants, based on a priori power

calculation for an effect size, f = 0.25 for power = 80% and Type I

error rate = 5%. We acknowledge that the effect sizes for the results

were relatively small. As will be discussed later, for example, the effect

size for the main effect on prior knowledge for the complex problems

was 0.16.

We used 2 (prior knowledge: low vs. high) � 4 (instructional

approach: unitary vs. unitary-pictorial vs. equation vs. equation-pic-

torial) ANOVA to analyse performance outcomes (i.e., practice prob-

lems, simple problems and complex problems in the post-test, Actual

Best and Optimal Best) and the rating on the mental effort. A follow-

up pairwise comparisons with Bonferroni correction were used to

examine between-group differences on performance outcomes

and the rating on the mental effort. We used correlational analysis

to determine the relationship between mental effort and the

Optimal Best.

10.1 | Practice problems

Significant differences were found for the main effect on approach, F

(3, 205) = 5.02, p < .001, partial η2 = 0.07, the main effect on prior

knowledge, F(1, 205) = 22.87, p < .001, partial η2 = 0.10, and the

approach � prior knowledge interaction effect, F(3, 205) = 2.76,

p = .043, partial η2 = 0.04. As indicated in Figure 1, performance on

practice problems favored high prior knowledge students especially

for the unitary approach and unitary-pictorial approaches.

In support of hypothesis 1 (i), the simple main effects test

revealed a significant difference among the four approaches for low

prior knowledge students, F(3, 205) = 5.94, p < .001, partial

η2 = 0.08, but not for high prior knowledge students, F(3, 205)

= 0.51, p = .68, partial η2 = 0.01. For low prior knowledge students,

both the equation approach (p < .001) and equation-pictorial

approach (p = .01) were significantly better than the unitary-pictorial

approach, and no difference was found between other pairwise

comparisons.

We examined the main effect of prior knowledge (low vs. high)

on the four approaches. Significance simple main effects were found

between two levels (low vs. high) of students' prior knowledge for

only the unitary approach, F(1, 205) = 8.30, p < .001, partial

η2 = 0.04, and the unitary-pictorial approach, F(1, 205) = 20.65,

p < .001, partial η2 = 0.09. Indeed, high prior knowledge students

outperformed low prior knowledge students for the unitary approach

(p < .001) and the unitary-pictorial approach (p < .001) only. There-

fore, the results partially support hypothesis 2.
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Differential performance favored high prior knowledge students for

the unitary and unitary-pictorial approaches only. Taken together, the

results support the prediction that the equation approach and equation-

pictorial approach were more efficient than the unitary approach and

unitary-pictorial approach for low prior knowledge students.

10.2 | Simple problems

The approach � prior knowledge interaction effect was not significant,

F(3, 205) = 1.36, p = .26, partial η2 = 0.02. A significant main effect on

approach was observed, F(3, 205) = 2.59, p = .054, partial η2 = 0.04.

Also, a significant main effect on prior knowledge was found, F(1, 205)

= 31.47, p < .001, partial η2 = 0.13. As revealed in Figure 2, perfor-

mance outcomes favored the high prior knowledge student particularly

for the unitary, unitary-pictorial, and equation approaches.

For the main effect on approach, the equation-pictorial approach

was significantly better than the unitary-pictorial approach for low

prior knowledge students (p = .03). All other pairwise comparisons

were not significant. Such results partially support hypothesis

1 (ii) because not all pairwise comparisons were significant. For the

main effect on prior knowledge, performance on simple problems

TABLE 2 Means and standard deviations of scores on practice problems, post-test, mental effort and actual best and optimal best.

Unitary approach Unitary-pictorial approach Equation approach Equation-pictorial approach

Low prior
knowledge

High prior
knowledge

Low prior
knowledge

High prior
knowledge

Low prior
knowledge

High prior
knowledge

Low prior
knowledge

High prior
knowledge

n = 25 n = 30 n = 19 n = 35 n = 21 n = 31 n = 20 n = 32
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Practice

problems

(proportion)

0.78 (0.22) 0.92 (0.14)* 0.70 (0.30) 0.93 (0.15)* 0.91 (0.15) 0.97 (0.10) 0.88 (0.22) 0.93 (0.12)

Post-test (proportion)

Simple

problems

0.73 (0.29) 0.95 (0.17)* 0.66 (0.33) 0.91 (0.13)* 0.76 (0.32) 0.91 (0.21)* 0.87 (0.24) 0.95 (0.11)

Complex

problems

0.08 (0.19) 0.31 (0.34)* 0.08 (0.22) 0.38 (0.32)* 0.13 (0.21) 0.38 (0.30)* 0.10 (0.14) 0.33 (0.34)*

Mental effort 5.04 (2.51)* 3.87 (2.53) 5.13 (0.96)* 3.79 (2.10) 5.14 (1.98)* 3.33 (1.83) 4.60 (1.76) 3.94 (1.48)

Actual Best 2.74 (0.28) 2.83 (0.51) 2.65 (0.47) 2.68 (0.35) 2.88 (0.32) 2.81 (0.48) 2.85 (0.24) 2.75 (0.41)

Optimal Best 3.62 (0.52) 3.69 (0.49) 3.75 (0.48) 3.64 (0.45) 3.55 (0.35) 3.48 (0.70) 3.60 (0.47) 3.46 (0.48)

Note: There were 6 practice problems. The post-test comprised 10 simple problems and 2 complex problems. The Actual Best and Optimal Best had 12

items each. *p < .05.

F IGURE 1 2 (prior knowledge) � 4
(approach) ANOVA on practice problems.
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favored high prior knowledge students for the unitary approach

(p < .001), unitary-pictorial approach (p < .001) and equation

approach (p = .02), but not the equation-pictorial approach (p = .18).

Once again, the results partially support hypothesis 2 – the high prior

knowledge students were better than low prior knowledge students

across three approaches instead of four approaches.

Overall, a similar pattern of results emerged for the simple prob-

lems. As hypothesized, the four approaches did not differ for high prior

knowledge students, but the equation-pictorial approach was better

than the unitary-pictorial approach for low prior knowledge students.

Moreover, differential performance favored high prior knowledge stu-

dents for the unitary approach, unitary-pictorial approach and equation

approach but not the equation-pictorial approach. Hence, the results

support the superiority of the equation-pictorial approach over other

approaches for low prior knowledge students.

10.3 | Complex problems

A significant main effect on prior knowledge was observed, F(1, 205)

= 39.93, p < .001, partial η2 = 0.16. Indeed, as shown in Figure 3, per-

formance on complex problems favored high prior knowledge stu-

dents across the four approaches. Neither the main effect on

approach, F(3, 205) = 0.44, p = .73, partial η2 = 0.01, nor the

approach � prior knowledge interaction effect, F(3, 205) = 0.14,

p = .93, partial η2 = 0.00 was significant. The nonsignificant main

effect on approach contradicts hypothesis 1 (iii).

For the main effect on prior knowledge, high prior knowledge stu-

dents outperformed low prior knowledge students on complex

problems across all the four approaches: (1) unitary approach

(p < .001), (2) unitary-pictorial approach (p < .001), (3) equation

approach (p < .001), and (4) equation-pictorial approach (p = .01).

Such results support hypothesis 2.

In sum, for complex problems, it was a surprise that the four

approaches did not differ irrespective of students' levels of prior

knowledge. Presumably, the low mean proportion scores (Table 2) for

the complex problems revealed that these problems were too chal-

lenging for all students irrespective of their prior knowledge. The high

prior knowledge students outperformed low prior knowledge students

across the four approaches, supporting the hypothesis.

10.4 | Mental effort

A significant main effect on prior knowledge was found, F(1, 205)

= 18.96, p < .001, partial η2 = 0.09. Figure 4 shows that low prior knowl-

edge student invested higher mental effort than high prior knowledge

students across the four approaches. Neither the main effect on

approach, F(3, 205) = 0.17, p = .92, partial η2 = 0.00, nor the

approach � prior knowledge interaction effect, F(3, 205) = 0.69, p = .56,

partial η2 = 0.01 was significant. The nonsignificant effect on approach

supports hypothesis 3 for high prior knowledge students but not for low

prior knowledge students. For the main effect on prior knowledge, low

prior knowledge students invested significantly higher mental effort than

high prior knowledge students for the unitary approach (p = .03),

unitary-pictorial approach (p = .03), equation approach (p < .001), but

not the equation-pictorial approach (p = .25). Such results support

hypothesis 3 with the exception of the equation-pictorial approach.

F IGURE 2 2 (prior knowledge) � 4
(approach) ANOVA on simple problems.
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In sum, neither high prior knowledge students (support the hypothe-

sis) nor low prior knowledge students (contrary to hypothesis) invested

differential mental effort across the four instructional approaches. As

hypothesized, low prior knowledge students invested higher mental effort

than high prior knowledge students across all approaches except the

equation-pictorial approach. Viewing the results together with the perfor-

mance on practice problems and post-test, the equation-pictorial approach

was the most efficient approach for low prior knowledge students.

F IGURE 3 2 (prior knowledge) � 4
(approach) ANOVA on complex problems.

F IGURE 4 2 (prior knowledge) � 4
(approach) ANOVA on mental effort.
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10.5 | Actual best and optimal best

For the Actual Best, in support of the hypothesis 4, nonsignificant

differences were found on the main effect on prior knowledge,

F(1, 205) = 0.04, p = .84, partial η2 = 0.00, the main effect on

approach, F(3, 205) = 1.77, p = .15, partial η2 = 0.03, and the

approach � prior knowledge interaction effect, F(3, 205) = 0.64,

p = .59, partial η2 = 0.01. Contrary to hypothesis 4, for the Optimal

Best, nonsignificant differences were found for the main effect on

prior knowledge, F(1, 205) = 0.80, p = .37, partial η2 = 0.00, the main

effect on approach, F(3, 205) = 1.52, p = .21, partial η2 = 0.02, and

the approach � prior knowledge interaction effect, F(3, 205) = 0.43,

p = .74, partial η2 = 0.01.

It was a surprise that both low and high prior knowledge students

had similar belief in achieving optimal best irrespective of the instruc-

tional approaches. As shown in Table 1, both low and high prior

knowledge students across the four approaches struggled to solve the

complex problems; consequently, this may affect their belief in

the optimal best.

10.6 | Mental effort and optimal best

In support of hypothesis 4, the correlations between mental effort

and the Optimal Best for low prior knowledge students were nonsig-

nificant for the unitary approach, r(25) = .18, p = .39, unitary-pictorial

approach, r(19) = .02, p = .93, equation approach, r (21) = .26,

p = .25, and equation-pictorial approach, r(20) = .05, p = .85. Thus,

the evidence suggested that cognitive load imposition, by proxy of a

student's mental effort, was unrelated to belief in optimal

achievement best.

Similarly, as hypothesized, for high prior knowledge students,

nonsignificant correlations between mental effort and the Optimal

Best were found for the unitary approach, r(30) = .28, p = .14,

unitary-pictorial approach, r(35) = .20, p = .27, and equation-

pictorial approach, r(32) = .02, p = .94. However, it was a surprise

that the correlation between mental effort and the Optimal Best

for the equation approach was positive, r (31) = .60, p < .001,

suggesting that experienced of low mental effort may not

contribute towards greater optimism to excel in mathematics

learning and vice versa. Overall, the evidence implied that cogni-

tive load imposed during learning via the proxy of a student's

mental effort, was not associated to belief in optimal

achievement best.

In sum, irrespective of students' levels of prior knowledge, differ-

ential efficiency of the four instructional approaches did not influence

their belief in actual-optimal bests dichotomy. Such results support

the hypothesis for the belief in actual best but not optimal best. The

results for the relation between mental effort and Optimal Best were

as hypothesized with the exception of the equation approach for high

prior knowledge students. Therefore, cognitive load imposition during

learning was not associated with belief in achieving optimal best in

mathematics.

11 | DISCUSSION

The objective of the present study was to investigate the relation

between instructional efficiency, level of students' prior knowledge,

and motivation (reflected by indication of actual – optimal bests

dichotomy) on learning to solve find-whole percentage problems. We

used the concept of element interactivity as a basis to distinguish the

relative efficiency of the four instructional approaches: equation-

pictorial > equation > unitary-pictorial > unitary. In line with the

hypothesis, the equation approach and the equation-pictorial

approach (i.e., algebra approaches) were more effective than the

unitary-pictorial approach across the practice problems and simple

problems for low prior knowledge students. As hypothesized, for high

prior knowledge students, the four instructional approaches neither

differed on the practice problems nor on the simple problems. Con-

trary to the hypothesis, irrespective of the levels of student prior

knowledge, the four instructional approaches did not differ on the

complex problems. In support of hypothesis, performance outcomes

favored high prior knowledge students for the practice problems

(i.e., the unitary and unitary-pictorial approaches), simple problems (i.-

e., the unitary, unitary-pictorial and equation approaches), and com-

plex problems (i.e., all four instructional approaches). Substantiating

our hypothesis, the results show that low prior knowledge students

invested higher mental effort than high prior knowledge

students across three of the four instructional approaches (i.e., the

unitary, unitary-pictorial, equation), but not the equation-pictorial

approach.

Taken the results together, we may conclude that the

equation-pictorial approach, given its low level of element interac-

tivity (i.e., the lowest in terms of comparison) and thus low cogni-

tive load imposition, is the most efficient approach for low prior

knowledge students. We also note that differential performance

outcomes (i.e., especially the complex problems) tend to favor high

prior knowledge students across the four instructional approaches,

in line with our hypothesis. Such finding points to the importance

of prior knowledge upon learning. The high prior knowledge stu-

dents could process the complex problems with fewer elements

and thus impose lower cognitive load then low prior knowledge

students irrespective of the instructional approaches. This line of

evidence is valuable, adding theoretical understanding into the

comparative nature and effectiveness of different instructional

practices (Ngu & Phan, 2022; Ngu, Phan, et al., 2018; Ngu, Yeung,

et al., 2018).

Irrespective of students' prior knowledge levels, the four instruc-

tional approaches did not differ with reference to L1 and/or L2. We

find this ‘absence’ in statistical significance for L2, in particular, some-

what unexpected. We speculated that a student's perception of diffi-

culty and, hence, challenge of solving complex problems (Table 1)

would influence his/her indication of optimal best belief or lack

thereof. For example, a perception of ease would associate with a

high level of optimal best (i.e., a student would, in this case, attest to

a high level of L2) whereas, in contrast, a perception of difficulty

would associate with a low level of optimal best. The fact that we did
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not find evidence to substantiate our claim makes this inquiry more

intriguing, providing grounding for future research development. For

example, to reduce a perception of the difficulty for the complex

problems, future research could narrow the gap between the

complex problems and simple problems in terms of complexity. Impor-

tantly, consistent with prior studies (Feldon et al., 2018; Likourezos &

Kalyuga, 2017), a perceived level of cognitive load imposition, requir-

ing an exertion of mental effort negatively impacted on students'

belief in achieving optimal best for mathematics learning.

The present study has expanded on previous studies (Ngu &

Phan, 2022; Ngu, Phan, et al., 2018; Ngu, Yeung, et al., 2018; Pollock

et al., 2002), in which we used the level of element interactivity as a

point of reference to identify relevant sources of cognitive load asso-

ciated with the four approaches (unitary, unitary-pictorial, equation,

equation-pictorial). Focusing on the concept of expertise reversal

effect (Kalyuga et al., 2003; Kalyuga & Renkl, 2010), the relative effi-

ciency of the four approaches was a function of learning outcomes for

low prior knowledge students, but not for high prior knowledge

students.

The study of optimal best has recently gained research traction

(Appleton, 2021; Phan et al., 2016; Tikoft, 2021), resulting in the

development of different types of conceptualizations and empirical

inquiries. Optimal best, denoted as ‘L2’, and its corresponding level of

best practice, actual best, denoted as ‘L1’, both serve to indicate a

person's state of motivation, aspiration, and self-belief (Phan &

Ngu, 2021). Our inquiry as reported here, regardless of its limited evi-

dence, has provided new theoretical insights into the operational

nature of optimal best belief and its association with perceived cogni-

tive load imposition. This recognition, indeed, is significant as it sup-

ports and coincides with recent emphases, which detail the

importance of association between cognitive and non-cognitive pro-

cesses of learning (Feldon et al., 2019; Phan et al., 2017).

11.1 | Practical implications for consideration

Our focus of inquiry sought to clarify the efficiency and inefficiency

of contrasting instructional designs for the purpose of in-class imple-

mentation. The equation-pictorial approach, reflecting the intricacy of

the algebra approach is most effective for the learning of find-whole

percentage problems especially for low prior knowledge students. On

this basis, we encourage mathematics educators in Western countries

(e.g., Australia) to consider the use of the algebra approach in their

teaching. Complementary use of the algebra approach with other pop-

ular pedagogical approaches may assist to improve students' learning

experiences (e.g., PISA).

Arising from our research investigation, we encourage educators

to consider using different visual representations to scaffold mathe-

matical concepts. The use of diagrams, for example, may scaffold and

support students' understanding of the proportional concept by

reducing the level of element interactivity imposed on working mem-

ory. In a similar vein, we encourage educators to consider students'

motivational beliefs (e.g., a student's optimal best belief) and their

learning needs when considering specific instructional approaches for

usage. Drawing from previous conceptualization (Phan et al., 2017),

we contend that an instructional approach (e.g., unitary approach) that

poses a high level of cognitive load would likely serve to convolute

less knowledgeable student understanding, potentially causing a state

of demotivation and task-avoidance.

11.2 | Limitations and future directions

There is a need for ‘diversity’ or generalization – that is, the applica-

bility of the four mentioned instructional approaches for different

topics of percentage (e.g., ‘find-percentage’, ‘find-part percentage’).
This line of inquiry would provide clarity into the operational nature

of a particular instructional approach – for example, does the effec-

tiveness of the equation-pictorial approach apply to different topical

contexts?

Another caveat involved our use of the pre-test score to catego-

rize students into two groups: low versus high prior knowledge. This

emphasis, upon reflection, does pose a limitation given that prior

knowledge associated with a particular instructional approach may

instill a student's understanding and assist his/her performance out-

come. Therefore, it would be of interest to explore the potential

impact of a student's prior knowledge of equation solving skills on

his/her understanding and appreciation for the equation approach or

the equation-pictorial approach.

We acknowledge that there are other ways to design an

experimental study that could enable researchers to investigate the

relationship between students' prior knowledge and instructional

approaches for learning (i.e., unitary, unitary-pictorial, equation,

equation-pictorial). For example, we could consider a factorial design,

such as 2 (procedure: equation vs. unitary) � 2 (pictorial: unitary-

pictorial vs. equation-pictorial) � 2 prior knowledge (experts

vs. novices) in future enquiry.

We acknowledge that the relationship between personal beliefs

of best practice (Fraillon, 2004; Phan et al., 2016, Phan et al., 2017)

and varying efficiencies of contrasting instructional approaches is

inconclusive. A ‘one-off’ cross-sectional design is somewhat limited

as it does not offer any meaningful insight into growth patterns

(Bollen & Curran, 2006) of progression of skills, and students' beliefs

of their best practice (e.g., an increase in belief of optimal best from L1

to L2). Aside from considering a longitudinal research design, we could

re-design the complex problems in order to reduce their complexity

relative to the simple problems. This consideration could assist more

students to acquire the skill to successfully solve the complex prob-

lems, which would result in differential optimal best beliefs across the

four contrasting instructional approaches.

12 | CONCLUSION

The underlying premise of our research inquiry, as reported in this

article, is grounded in the observation in which mathematics
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textbooks (e.g., Vincent et al., 2012), in general, only recommend one

preferred way (i.e., the unitary approach) to learn find-whole percent-

age problems. This preference and recommendation for the use of

one particular instructional approach is somewhat limited. Based on

the nature of cognitive load theory (Sweller et al., 2011), contrasting

instructional approaches and levels of expertise are important consid-

erations to facilitate enriched learning experiences. One way to affirm

this plausibility (i.e., the use of more than one instructional approach)

is to use the concept of ‘element interactivity’, which may help to dis-

cern the relative effectiveness of contrasting instructional approaches

for students with varying levels of expertise.

Overall, the present study has provided evidence, which we con-

tend could help to elucidate theoretical understanding into the rela-

tionship between levels of learner expertise and instructional

approach (Kalyuga et al., 2003). Furthermore, as one of the very first

research studies, our study also highlighted the potential association

between cognitive (e.g., cognitive load imposition) and non-cognitive

(e.g., belief in optimal best) processes of learning (e.g., the negative

impact of cognitive load imposition on a student's belief in optimal

achievement best for future mathematic learning).
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APPENDIX A: Sample of post-test

A.1 | Simple problems

1. A tank contained 120 L of water, which was 5% of its total capac-

ity. What is the total capacity?

2. There were 3 students absent from mathematics class on Monday,

which is 12% of the total students in the class. What is total num-

ber of students in the class?

A.2 | Complex problems

1. Mary and Tom won the first price for an outstanding art work.

Mary's share of the price is $150, which represents 20% of the

total price.

(a) What is the total price?

(b) Tom's share of the price is 80% of the total price. How much

does Tom get?

2. When Year 8 students at Jaya Secondary School were surveyed

about how they travelled to school each day, it was found that

25% walk, 59% come by bus, and the remaining 25 students were

driven to school.

(a) If 39 students walk to school, how many Year 8 students are

there at the Jaya Secondary School?

(b) Calculate the number of students who come by bus.

(c) What percentage of students were driven to school?

[Correction added on 17 August 2023, after first online publication: the Reference ‘Ngu,

Phan, et al., 2018’ has been corrected.]
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