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ABSTRACT

Context. The accuracy of estimated breeding values (EBVs) is an important metric in genetic
evaluation systems in Australia.With reduced costs for DNA genotyping due to advances inmolecular
technology, more and more animals have been genotyped for EBVs. The rapid increase in genotyped
animals has grown beyond the capacity of the current genomic best linear unbiased prediction
(GBLUP) method. Aims. This study aimed to implement and evaluate a new single-nucleotide
polymorphism (SNP)–BLUP model for the computation of prediction error variances (PEVs) to
accommodate the increasing number of genotyped animals in beef and sheep single-step genetic
evaluations in Australia. Methods. First, the equivalence of PEV estimates obtained from both
GBLUP and SNP-BLUP models was demonstrated. Second, the computing resources required
by each model were compared. Third, within the SNP-BLUP model, the PEVs obtained from
subsets of SNP were evaluated against those from the complete dataset. Fourth, the new model
was tested in the Australian Merino sheep and Angus beef cattle datasets. Key results. The
PEVs of genotyped animals calculated from the SNP–BLUP model were equivalent to the PEVs
derived from the GBLUP model. The SNP–BLUP model used much less time than did the GBLUP
model when the number of genotyped animals was larger than the number of SNPs. Within the
SNP–BLUP model, the running time could be further reduced using a subset of SNPs makers,
with high correlations (>0.97) observed between the PEVs obtained from the complete dataset
and subsets. However, it is important to exercise caution when selecting the size of the subsets
in the SNP–BLUP model, as reducing the subset size may result in an increase in the bias of the
PEVs. Conclusions. The new SNP-BLUP model for PEV calculation for genotyped animals
outperforms the current GBLUP model. A new accuracy program has been developed for the
Australian genetic evaluation system which uses much less memory and time to compute
accuracies. Implications. The new model has been implemented in routine sheep and beef genetic
evaluation systems in Australia. This development ensures that the calculation of accuracies is
sustainable, with increasing numbers of animals with genotypes.
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Introduction

Single-step genomic best linear unbiased prediction (SS-GBLUP) models have been used 
in the Australian sheep genetic evaluation system OVIS (Brown et al. 2018) and the beef 
cattle genetic evaluation system BREEDPLAN (Johnston et al. 2018). Accuracies (or 
reliabilities) of EBVs, which quantify how close animals’ EBVs are to their true breeding 
values, are an essential output of genetic evaluation systems. In addition, accuracies 
provide information on how stable an EBV is to change in data, such as phenotypes on 
itself or relative, or genotype data. They are regularly used by breeders to inform selection 
decisions. OPEN ACCESS
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Accuracies of EBVs are derived from the prediction error 
variances (PEVs) of EBVs. PEVs are the diagonal elements 
of the inverse of a coefficient matrix (C) of a mixed model 
equation (MME; Henderson 1984). Due to the large size of 
MME for most national genetic evaluations, inverting C is 
generally infeasible. As a consequence, a variety of methods 
for approximating PEVs have been proposed (Liu et al. 
2017; Edel et al. 2019; Bermann et al. 2021; Ben Zaabza 
et al. 2022). 

In Australia, PEVs have successfully been approximated 
using the concept of effective progeny numbers (EPN) from 
an animal’s own performance, its progeny, parents, and 
correlated traits (Graser and Tier 1997). As part of the 
SS-GBLUP genetic evaluation systems for beef and sheep, a 
method for calculating the additional accuracy due to the 
inclusion of genomic information was developed (Li et al. 
2017). In brief, this method involves a few steps, including 
calculating PEV by using a series of single-trait GBLUP pseudo-
analyses, propagating genomic accuracy to ungenotyped 
ancestors and descendants, imputing single-trait genomic 
EPN to multiple-trait EPN, calculating the difference between 
the genomic EPN of an animal and the EPN arising from its 
own phenotype to avoid double counting of repeated use of 
phenotypes, and, finally, accumulating EPN from all other 
sources to derive the accuracy. The most computationally 
demanding part of this method is to calculate PEV on the 
basis of single-trait GBLUP pseudo-analyses, which require 
building and inverting the genomic relationship matrix (G). 
Since this method was developed, the number of individ-
uals with genotypes have grown significantly, so that inver-
ting G requires excessive amounts of computer memory 
and time. 

Since the models using SNPs directly (SNP–BLUP) are 
equivalent to the models using G (VanRaden 2008; Strandén 
and Garrick 2009), it is more efficient to calculate PEVs for the 
SNPs and use these values to calculate the PEV for each animal 
when the number of SNPs is smaller than the number of geno-
typed animals. Although SNP–BLUP-based accuracy calculations 
have shown promising results when applied to some large 
national genomic evaluations (Liu et al. 2017; Ben Zaabza 
et al. 2020; Garcia et al. 2022), some of them have not 
included fixed effects, such as the contemporary group or 
random maternal genetic effects in their model. Furthermore, 
to the best of our knowledge, the influences of a subset of SNPs 
on the calculation efficiency and bias of PEVs by a SNP–BLUP 
model have rarely been published. 

The aims of this study were to (1) implement a SNP–BLUP 
model to calculate the PEV for genotyped animals in single-
step genetic evaluation systems, (2) compare the performance 
of the existing GBLUP and new SNP–BLUP models in terms of 
memory usage and computation time, (3) investigate the 
efficiency of using subsets of SNPs either by randomly or 
evenly selecting SNPs on the PEV estimation, and (4) test 
the performance of the new program with two recent 
Australian beef and sheep industry datasets. 

Materials and methods

Algorithms

Consider the following single-trait GBLUP model for calcu-
lating the accuracies: 

y = Xb + Za + e (1) 

where y is the vector of observations, b is the vector of fixed 
effects, a is the vector of breeding values, e is the residual 
vector, X and Z are incidence matrices that map observations 
to fixed effects and breeding values respectively. It is assumed 
that the random effects a and e are independent, with a ∼ 
Nð0, Gσ2Þ and e ∼ Nð0, Iσ2Þ, where  G is the genomic relation-a e 
ship matrix, and σ2 and σ2 are the genetic and residuala e 
variances respectively. The mixed model equation (MME) 
for this model is 

� �� � � �
X 0 X X 0 Z b̂ X 0 y= 
Z 0 Z 0X Z 0 Z + λG−1 â y 

In the equivalent SNP–BLUP model, breeding values are 
modelled as the sum of the SNP effects multiplied by the 
gene content for each animal, a = Ws, where W is the animals 
by markers matrix of centred and scaled marker genotypes 
and s is the vector of estimated SNP effects. Consider the 
SNP–BLUP model in matrix notation, 

y = Xb + ZWs + e (3) 

where y is the vector of observations, b is the vector of fixed 
effects, e is the residual vector, X and Z are incidence matrices 
that map observations to fixed effects and breeding values 
respectively. The Z matrix will be the identity for an additive 
genetic effect, but will be different if a maternal genetic effect 
is being examined. It is assumed that the random SNP effects s 
and e are independent, with s ∼ Nð0, Iσ2Þ, where σ2 is thes s 
variance of the SNP effect, which is calculated as the additive 
genetic variance divided by the number of markers. The 
mixed model equations for this model are 

� �� � � �
X 0 X X 0 ZW1 b̂ X 0 y= (4)

W 0 Z 0 
1Z

0 X W1 
0 Z 0 ZW1 + Iλ ŝ y 
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where λ= σ2e=σ
2
a . If we label the first matrix in this expression

as C, then the block of the inverse of this matrix for the
genotyped animals, i.e. the PEVs for each animal, C22, can
be calculated by block matrix inversion rules, as follows:

C22 = ½Z 0Z + λG−1 − Z 0XðX 0XÞ−1X 0Z��−1

which can be rewritten as

C22 = ½Z 0 ðI − PÞZ + λG−1��−1 (2)

where P = X(X 0X)−1X 0.
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where λ = σe2=σ2 and W1 is the centred and scaled markers fors 
animals with genotypes and phenotypes. Using the same 
block matrix rules from the previous GBLUP model, we can 
write the prediction error covariance for each SNP as 

where P = X(X 0X)−1X 0 as in the GBLUP model. After the PEV 
for each SNP is calculated, the PEV for all genotyped animals 
can be computed by 

PEV = WC22W 0 (6) 

where W includes animals with genotypes and phenotypes 
(W1), as well as animals with a genotype but not a phenotype. 

Furthermore, defining L as the upper Cholesky factor of the 
matrix C22 = LL 0 , then 

� � � �0 � �−1W 0 L−1W 0 L−1W 0PEV = WC22W 0 
= W LL0 

= 

In practice, often only the diagonal elements of the PEV 
matrix are required, which further simplifies the equation to 

PEV = kL−1 W 0 2k (7) 

Data

The equivalence of PEV from GBLUP and SNP–BLUP models 
was tested using the data from the MERINOSELECT sheep 
evaluation from March 2021 (Brown et al. 2007). The dataset 
included 129 662 genotyped animals, each with 59 584 SNP 
genotypes. Two traits were examined, namely, intramuscular 
fat (IMF) with 5784 phenotypes and post-weaning weight 
(PWT) with 85 113 phenotypes. Only the animals with both 
phenotypes and genotypes were used in this study. These 
are referred to as ‘reference’ animals because they represent 
the genomic reference populations that underpin genomic 
predictions for individual traits. They are the animals 
included in the W1 matrix above. 

Analysis scenarios

Three main scenarios were designed to compare the PEV 
values and computing time required by the SNP–BLUP 
model and the GBLUP model, and the feasibility of using 
different subsets of SNPs in the approximation of PEV for 
genotyped animals. 

� Scenario 1: PEVs of IMF and PWT were calculated for both 
GBLUP and SNP–BLUP models by using all SNP makers. 
PEV values and running times from the two models were 
compared. The impact of increasing the number of animals 
in the reference set on running time was examined. 

� Scenario 2: PEVs for IMF and PWT were calculated using 
subsets of SNPs in the SNP–BLUP model. Nine subsets of 
SNPs were randomly selected on the basis of the percentage 
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C22 = ½W 0
1Z

0ZW1 −W 0 X 0
1Z

0XðX 0XÞ−1 ZW −
1 + Iλ�� 1

= ½W 0
1Z

0 (5)ðI − PÞZW + Iλ��−11

of total number from 10% to 90%, with 10% interval, to
test the efficiency of the number of markers on PEV
calculation.

• Scenario 3: instead of a random selection of SNPs for
different SNPs panels, PEVs of IMF and PWT were calcu-
lated using thinned subsets of SNPs in the SNP–BLUP
model. Thinning was performed by keeping every 2nd,
4th, 8th, 10th, 15th, 20th, 30th, and 40th SNPs to create
eight sets of thinned SNPs.

As the main aim was to compare the results and running
times between models within a trait due to the data structure,
rather than variance components, the units of the traits did
not affect the conclusion andwere thus ignored in the assump-
tion of variances of the model in this study. The genetic (σ2a)
and residual (σ2e) variances were assumed to be 0.5 and 1.0
respectively, for both traits.

Implementation

A new software package (snpEPN) was developed to calculate
the PEVs of genotyped animals. The program was written in
Fortran and utilised math kernel library routines for sparse
and dense matrix manipulations. To save memory usage, all
real scalars, vectors andmatrices were stored as single precision
floating point numbers after a comparison of single versus
double precision for all real variables was made, with results
showing no significant difference in PEVs. Features of the
package included the ability to switch between GBLUP and
SNP–BLUP approaches, construct the GRM using either the
VanRaden (2008) or Yang et al. (2010) methods, subset
the SNPs by either method discussed earlier, and include
weightings for calculating accuracies for categorical traits.

Validation of snpEPN program using sheep and
beef data sets

Two industry data sets from the MERINOSELECT sheep
evaluation (February 2022) and the TACE beef evaluation
(March 2022) were used to test the snpEPN program. A
summary of these data is presented in Table 1. A similar number
of genotyped animals was in both datasets (~200 000), but
with different SNP densities (70 026 for Angus versus
59 583 for Merino). There were 53 and 24 traits in the
MERINOSELECT and TACE analyses respectively. There was
a similar number of reference animals (~158 000) in both
data sets for the trait with the maximum number of reference
animals, which was birth weight for TACE, and weaning
weight for MERINOSELECT (Table 1). Contemporary groups
defined in the industry analyses were included as a fixed
effect. Additive and residual variances used in these analyses
were those used in routine industry analyses.

The two real data sets were analysed on a dual-socket Linux
server with an Intel(R) Xeon(R) Processor E5-2697 v3, a total
of 28 cores and 512 GB of memory. To check the running time
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Table 1. Summary of the Industry data sets – Trans Tasman Angus Cattle Evaluation (TACE) from March 2022 and MERINOSELECT sheep
evaluation from February 2022, including numbers of genotypes, traits, maternal effects, mean, minimum and maximum numbers of reference
animals and contemporary groups (CG) across traits.

Analysis Numbers of Numbers of reference animals (CG)

Genotypes Markers Traits Maternal effects Mean Minimum Maximum

TACE 200 259 70 026 24 4 47 334 (7445) 1354 (267) 157 720 (20 026)

MERINOSELECT 190 013 59 583 53 8 27 282 (1101) 747 (54) 158 317 (3642)

for the different number of SNP scenarios, all SNPs, every 
second SNP, and every fourth SNP were examined. The 
total running time for all traits and the running time for each 
trait were recorded. The running time for each trait was 
plotted over the size of reference animals (i.e. animals with 
both genotypes and phenotypes) to investigate the time 
allocations across the traits. 

Results

Test data

Comparing PEVs and running time between
GBLUP and SNP–BLUP models

The PEVs obtained from the SNP–BLUP model by using 
all SNP markers for genotyped animals were found to be 
equivalent to those obtained from the GBLUP model for both 
IMF and PWT, as anticipated. When all 59 584 SNPs (100%) 
were used, computing time using the SNP–BLUP model was 
43% less than that of the GBLUP model for PWT with 
85 113 genotyped and phenotyped animals (Fig. 1). However, 
for IMF with 5784 genotyped and phenotyped animals, the 
GBLUP model was faster than SNP–BLUP for all SNPs (100%) 
and most subsets of SNPs (10–90% of total SNPs). Notably, for 
both IMF and PWT, the computing time decreased signifi-
cantly as the number of SNPs in the subsets decreased in the 
SNP–BLUP model (Fig. 1). These results demonstrate that the 
SNP–BLUP model is more efficient when the number of 
genotyped and phenotyped animals exceeds the number of 
SNPs available. 

(a) IMF 
15 

Comparing PEVs using subsets of SNPs
There were very high correlations (≥0.98) between PEVs 

calculated with all SNPs and most of the subsets of 
randomly selected SNPs for both IMF and PWT, except for the 
smallest (10%) subset for PWT (0.95) (Table 2). However, the 
mean PEV and the range decreased as the number of SNPs 
used in the subsets decreased. The same pattern was observed 
when the subsets of SNP were selected on the basis of the 
order of SNPs along the chromosomes (Table 3). 

The lowest correlation between PEVs from analysing a 
subset of SNPs compared with analysing the full set was for 
the smallest subset (every 40th SNP), namely 0.88 (IMF) 
and 0.82 (PWT). Mean, standard deviation and ranges were 
also lower as the amount of thinning increased. For the same 
number of SNPs, there was no significant difference between 
the PEVs by random selection and by thinning. For example, 
the mean PEV of random 10% SNPs and the correlation with 
all SNPs were 0.342 and 0.98 for IMF and 0.063 and 0.95 for 
PWT (Table 2), which were close to the PEVs observed when 
selecting every 10th SNP (1 in 10) (Table 3). A similar 
comparison can be made between a random selection of 
50%, selecting every second SNP. 

The relationship between PEV of markers and
allele frequency

The PEVs for each SNP (i.e. the diagonals of C22 in Eqn 5 
above) are shown by their allele frequency for IMF in Fig. 2. 
Unsurprisingly, SNPs with intermediate frequencies tend to 
have lower PEVs (higher accuracies) than do SNPs with 
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Fig. 1. Wall-clock time required to obtain PEVs in GBLUP and SNP–BLUP models, by using all
SNPs (i.e. 100%) and nine subsets based on randomly selected 10%, 20%, : : : , and 90% of total
SNPs (N = 59 584) for (a) intramuscular fat (IMF) and (b) post-weaning weight (PWT) from the
MERINOSELECT sheep evaluation.
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Table 2. Summary statistics of PEVs calculated by SNP–BLUP on the basis of all available SNPs (59 584) and subsets of randomly selected SNPs for
intramuscular fat (IMF) and post-weaning weight (PWT) from the MERINOSELECT sheep evaluation.

IMF PWT

Proportion of Mean s.d. Min Max Corr Mean s.d. Min Max Corr
SNPs used (%)

100 0.422 0.044 0.117 0.659 1.00 0.184 0.034 0.040 0.476 1.00

90 0.421 0.043 0.116 0.656 1.00 0.181 0.033 0.038 0.467 1.00

80 0.419 0.043 0.115 0.656 1.00 0.177 0.032 0.036 0.454 1.00

70 0.417 0.043 0.114 0.651 1.00 0.172 0.031 0.035 0.445 1.00

60 0.415 0.043 0.114 0.645 1.00 0.165 0.030 0.032 0.422 1.00

50 0.410 0.042 0.113 0.636 1.00 0.157 0.028 0.030 0.398 1.00

40 0.405 0.042 0.110 0.632 1.00 0.146 0.026 0.025 0.377 1.00

30 0.398 0.041 0.101 0.622 0.99 0.130 0.022 0.021 0.319 0.99

20 0.382 0.039 0.094 0.587 0.99 0.106 0.017 0.015 0.257 0.98

10 0.342 0.035 0.074 0.549 0.98 0.063 0.009 0.008 0.133 0.95

Mean PEV (Mean), standard deviation (s.d.), minimum and maximum values (Min and Max), and correlations (Corr) with PEVs calculated with all SNPs (100%).

Table 3. Summary statistics of PEVs calculated by SNP–BLUP on the basis of all available SNPs (59 584) and SNP thinning for intramuscular fat
(IMF) and post-weaning weight (PWT) from the MERINOSELECT sheep evaluation.

IMF PWT

SNPs retained Mean s.d. Min Max Corr Mean s.d. Min Max Corr

All SNPs 0.422 0.044 0.117 0.659 1.00 0.184 0.034 0.040 0.476 1.00

1 in 2 0.412 0.043 0.113 0.642 1.00 0.159 0.029 0.031 0.400 1.00

1 in 4 0.394 0.041 0.096 0.618 0.99 0.121 0.021 0.018 0.301 0.99

1 in 8 0.361 0.037 0.082 0.560 0.98 0.078 0.012 0.009 0.172 0.96

1 in 10 0.346 0.035 0.075 0.532 0.98 0.064 0.009 0.007 0.131 0.96

1 in 15 0.312 0.031 0.067 0.483 0.97 0.045 0.006 0.006 0.086 0.94

1 in 20 0.282 0.028 0.062 0.441 0.95 0.035 0.004 0.005 0.063 0.91

1 in 30 0.235 0.022 0.057 0.364 0.92 0.024 0.003 0.004 0.042 0.87

1 in 40 0.199 0.018 0.053 0.305 0.88 0.018 0.002 0.004 0.031 0.82

Mean PEV (Mean), standard deviation (s.d.), minimum and maximum values (Min and Max), and correlations (Corr) with PEVs calculated with all SNPs (100%).

extreme frequencies. Similar results were found for PWT 
(not shown). 

Industry data sets

The computing times for PEV calculation based on the new 
SNP–BLUP method for the MERINOSELECT sheep and TACE 
beef evaluations are shown in Fig. 3. Across traits, computa-
tion times increased as the reference size increased, and 
decreased when the number of SNPs selected decreased. The 
equivalent GBLUP model could not be run on the server due to 
insufficient memory. 

There were 61 traits (including eight maternal effects) in 
MERINOSELECT, and those with fewer than 60 000 reference 
animals took 6–12 min each. The maximum time was for a 
trait with about 160 000 reference animals. In the TACE 
data, of 28 traits (including four maternal effects), 24 traits 

had fewer than 80 000 reference animals, with computing 
time between 10 and 18 min each. As the total number of 
SNPs was 59 583 for MERINOSELECT and 70 026 for TACE, 
the computing time was longer for TACE, even given with 
similar reference population sizes. For example, computing 
times were about 20 min in MERINOSELECT and 25 min in 
TACE for the traits, with the largest references of ~160 000 
animals in both (Fig. 3). 

The total computing times across all traits were directly 
related to the total number of traits and the number of 
SNPs used in the SNP–BLUP model. They were ~500 min 
for all SNPs, ~129 min for the subset using every second 
SNP and ~47 min for the subset using every fourth SNP 
for MERINOSELECT. They were ~400 min for all SNPs, 
~108 min for the subset using every second SNP, and ~29 min 
for the subset using every fourth SNP for TACE (Fig. 4). 
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Discussion

In Australia, the concept of EPNs from an animal’s own perfor-
mance, its progeny, parents, correlated traits and genomic 
information has been successfully applied to approximate 
breeding-value accuracy in the BREEDPLAN beef cattle and 
Sheep Genetics single-step genetic evaluation systems. With 
the increasing numbers of genotyped animals, the derivation 
of genomic EPN based on the current GBLUP models was 
getting more and more difficult. This study focused on 
investigating an alternative method to calculating PEVs by 
a SNP–BLUP model to meet the most challenging part 
of the process. This study confirmed the equivalence of 
calculating PEVs via SNP–BLUP and GBLUP models and the 
efficiency of the SNP–BLUP when the number of genotyped 
and phenotyped animals is larger than the number of SNPs. 
The key calculation underpinning computation times for 

Fig. 2. Distribution of PEVs for 59 584 markers calculated using the these methods is the inversion of the coefficient matrix, 
SNP–BLUP model compared with their minor allele frequency (MAF) which benefits the SNP–BLUP approach when the number of 
for intramuscular fat (IMF) from the MERINOSELECT sheep evaluation genotyped and phenotyped animals exceeds the number of 
from March 2021. SNPs. Although most of the traits have fewer genotyped 
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Fig. 3. Computing times (wall-clock time, min) for each trait calculating PEV of genotyped animals using SNP–
BLUPmodel for (a) the MERINOSELECT sheep evaluation from Feburary 2022 and (b) the Trans Tasman Angus
Cattle Evaluation (TACE) from March 2022. Each trait is presented three times, once using all SNPs (59 583 for
Merino and 70 026 for Angus), then every second SNP (2nd-SNP) and every fourth (4th-SNP) SNP.

1091

www.publish.csiro.au/an


L. Li et al. Animal Production Science

(a) MERINOSELECT (b) TACE 
600 500 
500 

Ti
m

e 
(m

in
) 

100 
200 
300 
400 

Ti
m

e 
(m

in
) 

0 0 

100 

200 

300 

400 

All SNP 2nd-SNP 4th-SNPAll SNP 2nd-SNP 4th-SNP 

Fig. 4. Total computing times (wall-clock time, min) for calculating PEV of genotyped animals using
SNP–BLUP model for 62 traits and eight maternal effects in a MERINOSELECT sheep evaluation from
Feburary 2022 (a) and 24 traits and four maternal effects in a Trans Tasman Angus Cattle Evaluation
(TACE) from March 2022 (b) using all SNPs, every second (2nd-SNP) and every fourth (4th-SNP) SNP.

and phenotyped animals than SNPs used in the current genetic 
evaluation systems at this stage, performance benefits in 
terms of memory usage and computation times exist for highly 
recorded traits such as some weight traits. Traits with large 
numbers of reference animals are a major bottleneck in the 
PEV calculations in the current genetic evaluations. 

For the implementation of this new SNP–BLUP model in 
the PEV approximation, a series of single-trait SNP–BLUP 
pseudo-analyses were conducted using Eqn 3 for genotyped 
animals. This model can fit fixed effects that were not 
included in the previous model (Li et al. 2017). This new 
improvement can account for an animal’s contemporary 
group as a fixed effect in the model. Furthermore, as X 0X 
(in Eqn 5) is a diagonal matrix with the contemporary 
group size in the diagonal, the total group size including 
both genotyped and ungenotyped animals in a contemporary 
group is used instead of the group size for genotyped only 
animals. This model refinement is supposed to improve the 
approximation of PEVs. 

When calculating for traits with large reference popula-
tions, there are usually two significant issues, namely, 
impractically long computing time and lack of computer 
memory. There are practical limits of ~200 000 genotyped 
animals for the GBLUP model for conducting the current 
Australian beef and sheep genetic evaluations with the exist-
ing computer capacity. The memory requirement is 
directly related to the size of the arrays required. In the 
implementation of this method, one optimisation performed 
was to use single precision for real variables with less preci-
sion required in accuracy approximations. This modifica-
tion saves half of the memory usage for all those real vectors. 
For example, in the GBLUP model, a GRM of 180 000 
genotypes stored at single precision requires 180 000 × 
180 000 × 4 byte ≈ 121 Gb instead of 241 Gb for double 
precision. Memory usage for the SNP–BLUP model is reduced 
compared with the GBLUP model when the number of SNPs is 
smaller than the number of genotyped animals. For example, 
in the TACE data used here, the number of SNPs is about 
70 000, and then the memory required to store the 70 000 
by 70 000 SNP PEV matrix is ≈18 Gb with single precision. 

Further, as SNP PEVs are converted to breeding-value 
PEVs, the memory usage requirements are reduced. As the 
number of predefined vectors and methods differ between 
the GBLUP and SNP–BLUP models, in general, the peak 
memory requirements for the SNP–BLUP model were found 
to be about one-third of the memory required for the 
GBLUP model for the data structures used in this study. To 
calculate Eqn 6, W has the dimensions of genotyped animals 
by SNPs. A dataset with 180 000 genotyped individuals and 
70 000 SNPs would require 47 GB of memory. However, in 
most cases, we are not interested in the prediction-error 
covariance terms; the full W does not need to be stored in 
memory and can be calculated piece-wise for subsets of animals. 
This  has not  been implemented in the  software  described here,  
but allows for further memory savings as required in the future. 
Furthermore, the memory for the GBLUP model increases 
quadratically as the number of genotyped animals increases. 
However, if the number of markers remains constant, the 
memory needed for the SNP–BLUP model increases linearly 
with the increase of the genotyped animals. Therefore, the 
SNP–BLUP model is much more scalable with increasing 
numbers of animals genotyped. 

If the number of markers increases, PEVs can still be 
calculated using subsets of SNPs by the SNP–BLUP model, 
with high correlations between PEVs from all SNPs and PEVs 
from subsets. Subsetting of SNPs was investigated by random 
selection and SNP thinning in this study, with a wide range of 
scenarios from 90% to 10% for random samplings and from 
every second to every 40th SNP for SNP thinning; both 
scenarios showed similar results when the number of SNPs 
was the same, indicating that the number of SNPs retained 
was more important than the method of subsetting. In this 
study, PEV based on the SNP–BLUP model using complete 
SNPs of ~60 000 was compared with PEVs using various 
subsets. The PEV using the total SNPs was highly correlated 
(1.0) with the PEV using randomly 50% or every second 
SNP (i.e. ~30 000), with a slight shrinkage distribution for the 
PEV using the subset. There were still very high correlations 
between PEV using complete SNPs and even 10% or every 
10th SNP (i.e. the size of ~6000). However, the mean and 
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standard deviation of PEVs decreases further as the size of the 
subset decreases, i.e. under-estimating of PEV occurs, which 
would lead to inflation of accuracies. These results were 
consistent with the findings of Sargolzaei et al. (2014) who 
also investigated the influence of subsets of SNPs on the 
approximation of reliability of EBVs. Therefore, caution should 
be taken to explore the proper subset size. This could be due to 
insufficient markers in linkage disequilibrium (LD) with the 
quantitative trait loci (QTL) affecting a specific trait in 
genomic selection. The number of markers needed to capture 
all genetic variance in genomic selection is related to the 
degree of LD decay in each species (Meuwissen and Goddard 
2001); hence, defining subsets on the basis of LD pruning at 
different thresholds may be a more reasonable method to 
reduce the number of SNPs. The relationship between the 
marker PEV and the marker allele frequency showed that 
higher accuracy (lower PEV) of marker effects was found for 
those markers with intermediate frequency, suggesting that 
alternate sampling of SNPs on the basis of allele frequency 
and LD would be a good option. 

One of the major advantages of genomic selection is to 
predict breeding values for genotyped animals that were 
not included in the genetic evaluations, i.e. young animals 
that have been genotyped since the latest analysis. Breeding 
values for these animals can be calculated as the sum of the 
SNP effects multiplied by its gene content. However, PEVs 
and, therefore, accuracies of those EBVs are non-trivial to 
calculate by the GBLUP model, although procedures have 
been proposed (Ferdosi et al. 2019). With the new SNP– 
BLUP model, the PEVs for these genotyped animals could be 
estimated by Eqn 5. With this flexibility, these animals could 
be compared with all other animals with the accuracy which is 
usually required by breeders to make selection decisions. 

Conclusions

The SNP–BLUP model for PEV calculation for genotyped 
animals outperforms the GBLUP model regarding the compute 
cost. A new accuracy program (snpEPN) has been developed 
and used in  routine  sheep  and  beef  genetic evaluation  systems  
in Australia. This program provides an efficient and sustainable 
solution in PEV calculation to cater for increasing volumes 
of animals genotyped. 
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