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ABSTRACT
This study aimed to determine the similarity between and within positions in professional rugby league in 
terms of technical performance and match displacement. Here, the analyses were repeated on 3 different 
datasets which consisted of technical features only, displacement features only, and a combined dataset 
including both. Each dataset contained 7617 observations from the 2018 and 2019 Super League 
seasons, including 366 players from 11 teams. For each dataset, feature selection was initially used to 
rank features regarding their importance for predicting a player’s position for each match. Subsets of 12, 
11, and 27 features were retained for technical, displacement, and combined datasets for subsequent 
analyses. Hierarchical cluster analyses were then carried out on the positional means to find logical 
groupings. For the technical dataset, 3 clusters were found: (1) props, loose forwards, second-row, hooker; 
(2) halves; (3) wings, centres, fullback. For displacement, 4 clusters were found: (1) second-rows, halves; (2) 
wings, centres; (3) fullback; (4) props, loose forward, hooker. For the combined dataset, 3 clusters were 
found: (1) halves, fullback; (2) wings and centres; (3) props, loose forward, hooker, second-rows. These 
positional clusters can be used to standardise positional groups in research investigating either technical, 
displacement, or both constructs within rugby league.
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Introduction

Rugby league is an example of a collision-based invasion 
team sport. A match comprises two teams of 13 on-field 
players, each with distinct positional roles that interact 
with each other and the opposition (Gabbett et al., 2008). 
Players may be classified by their individual playing posi-
tion (i.e. fullback, left and right wings, left and right cen-
tres, half-back, stand-off, hooker, loose forward, left and 
right second-row, left and right props), or more often 
classified into broader positional groups (e.g., forwards, 
backs) based on commonality in their match characteristics 
and physical qualities (Gabbett et al., 2008). Typically, 
these characteristics include a combination of measures 
from various sources such as microtechnology and nota-
tional analyses that represent either physical, technical or 
tactical constructs (Johnston et al., 2014). Understanding 
the similarities between positions and players and how 
they should be logically grouped, using an objective fra-
mework and based on these constructs, is an important 
task (Johnston et al., 2014). Identifying logical positional 
groupings could help to inform team selection, assist in 
determining logical training groups, or could allow for the 
standardisation of positional groups in research thus allow-
ing for easier comparisons between studies in future.

However, there is currently no consensus in the literature as 
to exactly how these logical positional groups are formed, since 
they are usually anecdotally chosen. Some studies include no 
positional groupings and treat all players as the same sample 
(Kempton et al., 2017; Murray et al., 2014; Twist et al., 2014; 
Varley et al., 2014), whereas others classify players using the 
individual playing positions themselves (Austin & Kelly, 2014). 
Studies that do use positional groupings commonly include 
a forwards and backs split (e.g., Oxendale et al., 2016; Rennie 
et al., 2020), or forwards, backs and adjustables (King et al., 
2009). Adjustables consist of any combination of either halves, 
hookers, or fullbacks (King et al., 2009). This disparity likely 
reflects the different philosophies of the researchers or the 
study design employed, but nonetheless makes it difficult to 
compare results between studies (Glassbrook et al., 2019).

One method of identifying positional groupings is through 
unsupervised machine learning, such as cluster analysis. Within 
rugby union, previous research has used hierarchical cluster 
analysis to determine positional groups from a number of 
performance indicators and displacement metrics (Quarrie 
et al., 2013). Displacement metrics are considered to be any 
variable describing a measure of distance, speed, or accelera-
tion of a player (Polglaze et al., 2016). From the dendrogram (i.e. 
the tree diagram) produced by the analysis, it is possible to see 
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how positional sub-units cluster together, as well as their relat-
edness to other sub-units. For example, within their data set, 
Quarrie et al. (2013) reported outside backs (left wing, right 
wing, fullback) to be more related to centres (inside centre, 
outside centre), before joining with halves (fly half, scrum half) 
to form the backs positional group. Importantly however, their 
analyses relied on positional aggregation without considera-
tion for intra-positional variability. A recent study in rugby 
league observed high between-player variability (i.e. true 
player-to-player variability after accounting for the position, 
the fixture, and the club) in match displacement metrics within 
the Super League (SL; Dalton-Barron, Palczewska et al., 2020). 
For example, total distance and high-speed running (HSR; 
>5.5 m·s−1) distance during ball-in-play phases varied by 9.4% 
(90% confidence limit [CL] = 0.8%) and 15.0% (2.4%). Therefore, 
it may be worthwhile aggregating data at the player level as 
well as the position level, to account for the variability within 
positions in terms of displacement.

More recently, Wedding et al. (2020) used a comprehensive 
framework involving dimension reduction and cluster analysis 
at the player level to identify positional groups in the 
Australasian National Rugby League (NRL). They firstly classified 
each player in the NRL into one of four a priori chosen posi-
tional groups (adjustables = halves, hooker and fullback; 
backs = centres and wingers; forwards = second rows, props, 
loose forward; interchanges = benched players), based on pre-
vious literature (Austin et al., 2011; Gabbett et al., 2010, 2012). 
These groups were used as a basis for comparing with groups 
identified via their two-step data driven approach, which con-
sisted of an initial principal component analysis (PCA) followed 
by a hierarchical cluster analysis. The original dataset used 48 
technical performance indicators, after PCA the authors kept 
only the first 14 principal components as inputs into 
a hierarchical cluster analysis. They found six distinct positional 
groups that consisted of the four a priori identified positional 
groups (i.e., forwards, adjustables, interchanges, backs) as well 
as two additionally identified positional groups (i.e., inter-
change forwards, utility backs; Wedding et al., 2020). 
Although useful, their analyses only included technical perfor-
mance indicators which may lead to a somewhat one- 
dimensional view. Combining technical data with displacement 
data derived from microtechnology may yield different results, 
since displacement has also been shown to differentiate 
between positions in previous research (Glassbrook et al., 
2019).

Indeed, the widespread use of microtechnology and nota-
tional analyses within matches means that researchers and club 
practitioners now have a high volume and variety of informa-
tion available to quantify the demands imposed on players and 
positions. However, this also means they are faced with the 
challenge of analysing, visualising, and interpreting increas-
ingly complex data sets (Dalton-Barron, Whitehead et al., 
2020; Weaving, Beggs et al., 2019). One method of reducing 
this complexity is through the use of dimension reduction 
techniques, which is a global term incorporating both feature 
extraction and feature selection techniques. Feature extraction 
techniques involve projecting the original data onto a new 
smaller subspace with lower dimensionality whilst retaining 
the majority of the variance in the original data such as in 

PCA (Abdi & Williams, 2010). Feature extraction has gained 
much attention within sport recently (e.g., Weaving, Jones 
et al., 2019), as it lends particularly well to visualisation and 
may highlight previously unobservable groups or patterns 
within the data. However, the representation of the original 
data is abstracted since a new feature space is created. Whilst 
this may be the researcher’s or practitioner’s intention 
(Weaving, Beggs et al., 2019), they may also be interested in 
the detail provided by the original features to inform further 
decisions or analyses.

Unlike feature extraction, feature selection methods select 
a subset of important features without altering the features 
themselves, thus retaining their semantic value (Saeys et al., 
2007). Feature importance in this context refers to the rele-
vance of the feature with its target, which may either be 
categorical (e.g., match outcome) or continuous (e.g., points 
difference). Feature selection plays a vital role as a pre-process 
step in building either statistical or machine learning models 
within other fields such as computer science (Guyon & 
Elisseef, 2003), bioinformatics (Saeys et al., 2007), and medi-
cine (Remeseiro & Bolon-Canedo, 2019). Such techniques 
have gained less attention in sport but may nonetheless still 
prove useful. For example, feature selection may be used to 
determine an optimal dataset that only contains important 
features for discriminating between positions. In this way, 
feature selection may be used as a pre-process step in hier-
archical cluster analysis to determine broader positional 
groups.

Within rugby league, there are no studies that examine the 
similarities between positions whilst accounting for the multi-
dimensional nature of match-play, which includes both physi-
cal (i.e., displacement) and technical constructs. Therefore, the 
primary aim of this study was to determine the similarity 
between positions in the SL in terms of match displacement 
and technical indicators, through a combination of feature 
selection and hierarchical cluster analysis (Aim 1). 
Furthermore, our second aim was to visually represent the 
intra-positional, or between-player, variability through PCA 
and cluster analysis (Aim 2). Such visualisations may uncover 
new multivariate patterns or groups, whilst accounting for the 
intra-positional variability in the data.

Methods

The flow chart in Figure 1 outlines the entire methodology for 
determining the similarity between playing positions (Aim 1) 
and players (Aim 2) in terms of displacement and technical 
performance indicators. The analysis was repeated three times 
to include three different datasets: 1) match displacement fea-
tures only, collected from microtechnology devices; 2) techni-
cal performance indicators only, collected from notational 
analysis; 3) combined dataset including both match displace-
ment and technical performance indicators. For the purposes of 
this study, playing positions at the most residual level were 
considered as 8 standard positions (i.e., fullback, wings, centres, 
halves, hooker, props, second-rows, loose forward). Left and 
right positional variations (e.g., left wing and right wing) were 
not considered and were treated as the same position. This is 
because players can swap left and right sides, even within 
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a match, which makes assigning a position label that represents 
the whole match problematic. Whereas players are much less 
likely to swap positions entirely. All analyses outlined below 
were completed in R (version 4.0.2).

Match displacement data were from a league-wide project 
(i.e., “Project SL-Catapult”). Within the project, all SL clubs use 
the same microtechnology devices (Optimeye S5, Catapult 
Sports, Melbourne, Australia; Firmware version = 7.17) and soft-
ware (Openfield™, Catapult Sports, Melbourne, Australia; 
Software version = 3.1.0) for downloading raw data and 

subsequent uploading to Catapult servers. The research team 
then accessed 10-Hz sensor data files for further data proces-
sing and filtering. These data and filtering processes were the 
same as those used by Dalton-Barron, Palczewska et al. (2020), 
resulting in the identical displacement data. Included are 7617 
observations collected from 11 SL teams and 366 senior male 
professional SL players. Matches included are from the 2018 
and 2019 SL seasons; the Middle 8s phase of the 2018 season 
was excluded since it included Championship teams. This data-
set also includes 35 discretised displacement metrics stratified 

Figure 1. Schematic diagram of the feature selection and hierarchical clustering analysis methodology used.
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by phases-of-play (i.e. attack, defence and transition phases), 
and are both absolute (i.e. total distance, high-speed running 
[HSR] distance, sprint distance) and relative to playing time (i.e. 
average speed, HSR distance per minute, sprint distance 
per minute, and absolute acceleration [Delaney et al., 2016]). 
Each match observation’s associated technical match perfor-
mance indicators were then extracted from Opta (Stats 
Perform, London, UK) Superscout files. Initially, 558 technical 
features were extracted that included both actions (e.g., pass) 
and action outcomes (e.g., pass completed). Upon consultation 
with two expert rugby league coaches, these were then 
reduced to 41 key technical features, which were then 
expressed both in absolute terms and relative to playing dura-
tion, totalling 82 features. Both coaches have international 
coaching experience and have over 15- and 30-years’ coaching 
professionally within the SL and NRL, respectively.

Feature ranking using ensemble feature selection

Firstly, taking an initial dataset, features were filtered if they 
displayed near zero variance using the “nearZeroVar” function 
from the Caret package (Kuhn, 2008; frequency cut off 
ratio = 100/1, unique values = 10%). Near zero variance fea-
tures have few unique values and occur infrequently in the 
data, and as such likely contain little valuable predictive infor-
mation (Kuhn, 2008). The frequency cut off ratio and propor-
tion of unique values are two frequently used indicators of 
near zero variance. Features were also filtered if they were 
highly correlated with another variable (r > 0.8). Removing 
highly correlated variables prior to feature selection is 
a common process to reduce model complexity (Andersen & 
Bro, 2010), without altering the feature space such as in PCA 
(Graham, 2003). This resulted in 39 features removed from the 
technical dataset and 15 features removed from the displace-
ment dataset. For descriptive data including median and 
quartile ranges for each position and dataset see 
Supplementary File 1.

Features were then ranked according to their importance for 
classifying playing position at the most residual level (i.e. full-
back, wing, centre, halves, hooker, loose forward, second row, 
prop) using an ensemble of feature selection techniques 
including filter, wrapper, and embedded methods. The objec-
tive of feature selection is to select an optimal subset of the 
original features within a dataset, such that the end model 
employed on the data contains a reduced set of features that 
maintain or even improve predictive performance. For 
a comprehensive review of feature selection and available 
methods see, Guyon and Elisseef (2003). The details of each 
feature selection technique used in this study, as well as their 
implementation in R, are outlined in Table 1. Multiple feature 
selection techniques were used to compensate for potential 
biases encountered using a single technique (Prati, 2012). Each 
technique provided its own base feature ranking according to 
each technique’s definition of importance. After which all base 
rankings were aggregated based on the order of each base 
ranking via the “Borda Count” voting system (Prati, 2012). The 
Borda count of a feature is its mean position in all base rank-
ings, that is: 

Borda ið Þ¼
Xn

j¼1
πj fið Þ

where πj fið Þ is the rank of feature fi in the ranking πj.

Determining optimal number of important features

To determine the optimal number of important features for the 
subsequent clustering analysis (i.e., the minimum number of 
important variables that still hold high predictive performance), 
1 to k features were recursively inputted as predictors in 
a random forest. The randomForest function from the 
randomForest package was used. 500 trees were inputted and 
the number of features used at each split was calculated as the 
square root of the total number of inputted features. Each 
random forest model was then cross-validated to gain the area- 
under-curve (AUC) statistic, whereby data were split by 70% 
training and 30% testing. Since the AUC requires a binary clas-
sification, multiple receiver-operator characteristic (ROC) curves 
were calculated for the classification of each position using the 
pROC package. The AUC was extracted from each ROC curve 
and the median AUC across all classifications was taken to gain 
overall model predictive performance. Each random forest was 
run 100 times to gain a stable AUC statistic. The AUCs from each 
dataset were then visually inspected and a judgement was 
made on the number of features to retain for subsequent 
analyses, based on the point at which the AUC plateaus. 
Subsequently, the top 12 technical features, the top 11 displa-
cement features, and the top 24 combined features were 
retained for further analysis (Figure 2).

Hierarchical cluster analysis

Two hierarchical cluster analyses were then applied to each of 
the three filtered datasets. The first hierarchical cluster was 
conducted at the positional level (Aim 1) and the second at 
the player level (Aim 2). For the positional level analysis, data 
were grouped by position and the mean taken for each feature. 
Data were then normalised (mean centred and scaled to unit 
variance) since there was a variety of features calculated in 
different units. Ward’s method of agglomerative hierarchical 

Table 1. Feature selection approaches taken and their implementation.

Method R implementation Type
Data pre- 
process Reference

Chi2 FSelector Filter Mean centre 
and 
standardize

Cheng et al., 
2012

Information 
gain

FSelector Filter NA Cheng et al., 
2012

LDA RFE Caret Wrapper Mean centre 
and 
standardize

Kuhn, 2008

Boruta Boruta Wrapper NA Kursa & 
Rudnicki, 
2010

GBM xgboost Embedded NA Chen et al., 
2018

Random 
forest

randomForest Embedded NA Liaw & 
Wierner, 
2007

LDA = Linear discriminant analysis; RFE = Recursive feature elimination; 
GBM = Gradient boosting machines.
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clustering was used to logically cluster positions (Ward, 1963), 
using a squared Euclidean distance matrix. Briefly, Ward’s 
method starts with each observation, then finds pairs of clus-
ters with the smallest within-cluster error sum-of-squares 
increase; hence the method is sometimes termed the “mini-
mum variance method”. The “ward.D2” implementation in 
R was used here (Murtagh & Legendre, 2014). The results 
were then visualised on a dendrogram.

For the player level analysis, players were first labelled 
according to their most frequently played starting position. 
Starting positions for each player were provided by Opta. 
Data were then grouped by their associated player ID and the 
mean taken for each feature, at which point the data were then 
also normalised. Observations were filtered if the player did not 
play at least five matches in their respective position. The same 
cluster procedure as the positional level was applied at the 
player level. However, since there were so many observations, 
PCA was also applied on the same dataset to visualise the 
results in a 2-dimensional space. PCA is an eigenvector-based 
method and is one of the most common techniques for dimen-
sion reduction (Ringnér, 2008). Taking a high-dimensional data-
set, it is possible to create a linear set of orthogonalized 
composite variables, termed the principal components with 
minimal loss of information. The original data can then be 
projected onto the first two principal components for visualisa-
tion. Ward’s method of agglomerative hierarchical clustering is 
complementary to PCA since it utilises the same multivariate 
Euclidean space to find its clusters. As such the identified 
clusters are likely to be found in high density areas of PCA 
ordination (Murtagh & Legendre, 2014). Two principal compo-
nent plots were created for each dataset, both are projections 
of the original data in eigenspace, with each point representing 
a player and their colour representing either their position or 

their cluster membership. Data ellipses representing 90% of the 
data were also drawn in each principal component plot around 
each class (either position or cluster). Lastly, the NbClust func-
tion was also applied to find the optimal number of clusters 
within each dataset, which implements 30 commonly used 
indices and suggests the best clustering scheme according to 
the majority rule. For a full conceptual and mathematical out-
line of the function and its indices, see, Charrad et al. (2014).

Results

For descriptive data of each feature used in each of the 
datasets see Supplementary File 1. Figure 2 shows the AUCs 
extracted from the random forests built for classifying posi-
tion, as a function of the number of inputted important fea-
tures. The median AUCs at the chosen number of features (i.e. 
the dashed vertical line) were 0.77, 0.84, 0.82 for the technical, 
displacement, and combined datasets respectively. Table 2 
shows the top 10 extracted features from each dataset. For 
a full list of aggregated feature rankings and descriptions see 
Supplementary File 2.

Positional clustering

The results of the hierarchical cluster analysis at the positional 
level are presented in Figure 3. Up to seven possible clusters 
may be extracted from each dendrogram through “cutting” the 
dendrogram at different thresholds. However, for the technical 
dataset there appears to be three clear clusters which include: 
Technical cluster 1 (TechC1) = Props, loose forwards, second- 
rows and hooker; TechC2 = Halves; TechC3 = Wings, centres 
and fullback. For displacement, four clusters are noted which 

a

c

b

Figure 2. Results of the random forest for classifying position within each dataset, using k most important features. The dashed vertical line represents the chosen 
number of features to retain for subsequent analysis. Sub-plot A uses technical features only; B uses displacement features only; C uses technical and displacement 
features.
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include: Displacement cluster 1 (DispC1) = Props, loose forwards 
and hooker; DispC2 = Second-rows and halves; DispC3 = Fullback; 
DispC4 = Wings and centres. For the combined dataset, there are 
arguably three clusters which include: Combined cluster 1 
(CombC1) = Props, loose forward, hooker and second-rows; 
CombC2 = Halves and fullback; CombC3 = Wings and centres.

Player clustering

Figure 4 shows the results of the hierarchical cluster ana-
lysis at the player level and includes a series of principal 
component plots. For the full results of the PCA applied to 
each dataset, including the eigenvalues, eigenvectors, 
and percent variance explained by each principal compo-
nent see Supplementary Files 4A, 4B, and 4C.

From the NbClust function applied to each dataset, 
three clusters were found in the technical dataset which 
consisted of: Technical cluster 1 (TechC1) = Props (propor-
tion of total players in position assigned to cluster = 100%), 
loose forwards (100%), second-rows (91%) and hookers 
(100%); TechC2 = Halves (89%); TechC3 = Wings (100%), 
centres (85%) and fullbacks (100%; Table 3).

Four clusters were identified for the displacement dataset: 
Displacement cluster 1 (DispC1) = Props (100%), loose forwards 
(100%) and hookers (100%); DispC2 = Second-rows (86%) and 
halves (97%); DispC3 = Fullbacks (100%); DispC4 = Wings (97%) 
and centres (98%; Table 3).

Finally, three clusters were found for the combined dataset: 
Combined cluster 1 (CombC1) = Props (100%), loose forwards 
(100%), second-rows (100%) and hookers (100%); 
CombC2 = Halves (95%); CombC3 = Wings (100%), centres 
(100%) and fullbacks (100%; Table 3).

Table 3 also shows the count of players within each position 
and their associated cluster membership. Supplementary Files 
5A, 5B, and 5C show the same principal component plots as in 
Figure 4 for player clusters using all possible clusters from 2 
to 7.

Discussion

The primary aim of this study was to determine the similarity 
between positions in professional rugby league by using ana-
lyses that include both physical and technical characteristics. 
This study implemented a novel framework which firstly used 
supervised feature selection to identify important technical and 
displacement features for classifying position. After which posi-
tions were clustered using those important features as inputs 
into three separate hierarchical cluster analyses, which 
included technical only features, displacement features, and 
a combined dataset. The dendrograms and principal compo-
nent plots produced from the analysis provide a visual insight 
into the similarity between playing positions and players, 
respectively. Using these visuals, practitioners and researchers 
may choose the number of clusters to extract from each dataset 
as required. For example, if 4 clusters are required the dendro-
grams in the positional clusters can be cut at the desired level 
and the resulting positional groups can be used. The use of 
a league-wide sample over two competitive seasons also allows 
researchers and practitioners greater confidence in the gener-
alisability of the presented results.

Determining logical positional groups using position 
labels

At the positional level, there appears to be common clusters 
across the three datasets (Figure 3). Firstly, wings and centres 
are consistently clustered across displacement, technical, and 
combined datasets, which is expected given their similarities in 
attacking and defensive roles (Sirotic et al., 2011). Fullbacks are 
often also grouped with centres and wings to form the “outside 
backs” positional group (e.g., Cummins & Orr, 2015; Twist et al., 
2014; Waldron et al., 2011). This is reflected in the technical only 
dataset (TechC3), but not in the displacement dataset where 
fullbacks form their own cluster (DispC3) or the combined data-
set where they are more similar to halves (CombC2). The latter is 
somewhat surprising given their distinct positional roles, parti-
cularly in defence where a fullback’s main responsibilities 
involve covering the goal line from kicks and breaks in the 
defensive line. Although some authors have previously 
included both halves and fullbacks in a broader “adjustables” 
group, along with hookers (Cummins et al., 2016; Gabbett et al., 
2011).

Another common grouping across all three datasets 
includes props, loose forwards, and hookers (TechC1, DispC1, 
CombC1). The emergence of this cluster could be due to 
a number of reasons, however the increased tackling involve-
ments these positions experience during match play compared 
to other positions is notable (Supplementary File 1; Naughton 

Table 2. Top 10 features selected for each dataset determined through ensemble 
feature selection.

Ranking Technical Displacement Combined

1 Total tackles/min Total distance – 
Attack

Total tackles/min

2 Total tackles HSR distance – Attack Total distance – 
Attack

3 Caught full Absolute 
acceleration – 
Defence

Total tackles

4 Defensive catch – 
Success

Average speed – 
Defence

HSR distance – 
Attack

5 Kick outcome – 
Touch

Average speed – 
Attack

Average speed – 
Attack

6 Kick outcome – 
Collected bounced

HSR distance – 
Transition

Average speed – 
Defence

7 Total carries Total distance – 
Defence

Absolute 
acceleration – 
Defence

8 Quick PTB/min Total distance – 
Transition *

Caught full

9 Carry outcome – 
Offensive miss

Absolute 
acceleration – 
Transition *

HSR distance – 
Transition

10 Quick PTB Sprint distance – BIP Total distance – 
Defence

* = Feature ranking is tied; HSR = High-speed running; PTB = Play-the-ball.
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et al., 2020). Also, these positions tend to have less carries, 
catches, kicks, kick returns, and quick play-the-balls 
(Supplementary File 1; Johnston et al., 2014), all of which 
were deemed important for predicting positions for technical 
and combined datasets within the ensemble feature selection 
step (Table 2). It could be argued that the reduction in carries 
could be due to these positions being typically interchanged, 
and that by including carries per minute may resolve this. 
However, this was accounted for in the initial filtering step of 
the current framework and carries-per-minute was removed 
since it was highly correlated with total carries (r > 0.8). Given 
the known interplay between contact involvements and dis-
placement (Johnston et al., 2019), it also not surprising that 
these positions cluster together when looking at solely displa-
cement (DispC1).

Props and loose forwards are often grouped together in 
research as “middles” or “hit up forwards” (e.g., Scott 
et al., 2017). However, it is somewhat surprising that 

hookers are more related to this group than halves, 
since in attack the three positions work together to orga-
nise the area around the ruck and the attacking structure 
in general (Sirotic et al., 2011). Instead, halves are 
a unique position in the technical dataset (TechC2), which 
is likely due to their kicking responsibilities which appear 
as important variables (Table 2). Interestingly, for displace-
ment, halves are much more related to the second-row 
position (DispC2) and both are somewhat similar to the 
wings and centres (Figure 3(b)). Again, this could be 
explained by a number of different reasons but is likely 
related to their similarities in spatial occupancy. 
Although second-rows are commonly labelled as “for-
wards” they do operate in wider channels to provide 
attacking and defensive support. This increased space 
allows second-rows to accumulate more high-speed run-
ning than props, loose forwards, and hookers 
(Supplementary File 1), which may help to explain their 

a

b

c

Figure 3. Series of dendrograms showing the results of the hierarchical cluster analysis on the positional means. Sub-plot a uses technical features only; b uses 
displacement features only; c uses technical and displacement features.
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dissimilarity. For example, the props (n = 2), hooker and 
loose forward are typically the “middle” four, and 
the second-row, half-back, centre and wing are the 
“edge” four on each side.

Determining logical positional groups using player labels

Given the large between-player (i.e. within-position) variability 
found previously for the same displacement variables used 
here (Dalton-Barron, Palczewska et al., 2020), different clusters 
were expected to form at the player level analysis. However, the 
identified positional clusters are exactly the same as those 
identified at the positional level. Aside from the combined 
dataset where fullbacks join with centres and wings in the 
player level analysis instead of halves. This study also found 
very good separation between positions (Figure 4 a1, b1, c1), 
and players tend to cluster very well with their positional 
counterparts (Figure 4 a2, b2, c2) which can be seen visually 
in the principal component plots (Figure 4). Practically, this 
means there is more dissimilarity between-position centroids 

than there exists within-positions for both technical and dis-
placement datasets and suggests that data may be aggregated 
at the positional level. That being said, the methodology used 
to identify similarity between players may be used in other 
applications. For example, to help guide team selection; if 
a player is injured coaches may wish to choose a player who 
displays similar technical qualities. The dendrograms and prin-
cipal component plots may act as a tool to visualise highly 
complex data, whilst supplementing the numerical data.

Whilst feature selection has been implemented previously in 
sport as a pre-process step (Bunker & Thabtah, 2019; 
Wundersitz et al., 2015), to the authors’ knowledge this is the 
first study to use an ensemble of techniques, which includes 
expert-domain led feature selection, in team sports. 
Importantly, there is variation in the taxonomy of the identified 
important features (Table 2). This means the variables inputted 
in the subsequent hierarchical cluster analyses represents 
a holistic overview of match play instead of focusing on solely 
a single aspect, such as only attacking play. For the technical 
dataset, the most important predictors of position are related 
to forward attacking play (e.g., tackle busts), defensive play 
(e.g., total tackles), and kicking and catching qualities. 
Whereas for the displacement dataset, the most important 
features identified relate to attacking, defensive, and transition 
running. They also include cumulative metrics (e.g., total dis-
tance, HSR distance, sprint distance) and metrics relative to 
playing time (e.g., average speed, average acceleration). This 
also outlines an important limitation of this study which is the 
reliance on discrete data for both technical and displacement 
data. That is not to say the current data are not useful; rather 
the inclusion of spatial and temporal properties in the data may 
yield new insights into the clustering of positions. Nonetheless, 

a1 a2

b2

c2

b1

c1

Figure 4. Series of PC-plots showing the results of the hierarchical cluster analysis on the player means. Each point represents the player’s centroid and the colour 
represents either their correct position (as in A1, B1, and C1) or their cluster membership (as in A2, B2, and C2). The ellipses are drawn from the bivariate normal 
distribution and represent 90% of the data for its class. Sub-plots A1 and A2 are technical features; B1 and B2 are displacement features; C1 and C2 are technical and 
displacement features.

Table 3. Results of our hierarchical cluster analysis for each dataset. The values 
show the count of players assigned to each cluster for each position.

Positions

Technical Displacement Combined

1 2 3 1 2 3 4 1 2 3

Loose forwards 27 0 0 0 27 0 0 27 0 0
Centres 6 0 35 1 0 40 0 0 0 41
Fullbacks 0 0 17 0 0 0 17 0 0 17
Halves 1 33 3 36 0 1 0 1 35 1
Hookers 21 0 0 0 21 0 0 21 0 0
Props 58 0 0 0 58 0 0 58 0 0
Second rows 45 0 4 43 6 1 0 49 0 0
Wings 0 0 34 0 0 33 1 0 0 34
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the variables included in this study are some of the most 
commonly used in rugby league for studies that use technical 
(e.g., Parmar et al., 2018; Wedding et al., 2020; Woods et al., 
2017) or displacement features (e.g., Delaney et al., 2016; 
Kempton & Coutts, 2016; Sirotic et al., 2011).

Conclusion

In conclusion, the positional clusters identified can be used to 
standardise positional groups in future research investigating 
either technical, displacement, or combined features in senior 
men’s rugby league. Importantly, whilst it appears that three 
clusters emerge from the technical and combined datasets, and 
four clusters from the displacement dataset, practitioners and 
researchers may choose the number of clusters to extract from 
each dataset as required. For example, if 4 clusters are needed 
the dendrograms can be cut at the desired level and the 
resulting positional groups can be used. Whilst within- 
position (i.e. between-player) variability did exist in all datasets, 
the separation between classes was still large enough to clearly 
demarcate the clusters in these data. However, performing 
cluster analyses at the player level may still be warranted if 
practitioners were interested in the similarity between indivi-
dual players in their team. Ensemble feature selection may also 
be used and generalised to other problems in research or 
practice, where the objective is to identify important features 
without changing their original semantic value.
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